Materials Availability for TW Scale Photovoltaics

Eray S. Aydil

University of Minnesota

Department of Chemical Engineering & Materials Science

aydil@umn.edu

Survey of audience

a) Current thin film technologies, CdTe, CIGS & thin film Si will grow at rates that will accumulate to ~10 TW by sometime between 2050-2100.

- a) Above statement can not be true. We will need other (new) materials and technologies other than or in addition to CdTe, CIGS & thin film Si to achieve ~10 TW by sometime between 2050-2100.
 - One can defend any one of these statements with seemingly reasonable assumptions.

References addressing the materials availability issue

- Fthenakis "Sustainability of photovoltaics: the case for thin-film solar cells." *Renewable and Sustainable Energy Reviews* **23**, 2746 (2009).
- Wadia, Alivisatos & Kammen, "Materials availability expands the opportunity for large scale photovoltaics development." *Environ. Sci. Technol.* 43, 2072 (2009).
- Zweibel, "The Terrawatt challenge for thin film PV: A work in progress" NREL Report (2006).
- Andersson, "Materials availability for large-scale thin-film photovoltaics," *Prog. Photovoltaics* **8**, 61 (2000).

One limitation is abundance of elements

- > If rare also difficult to recover and therefore expensive.
- > There may not be enough of it to reach ~10 TW

Another limitation could be the price

September 2008 - "SMG filed an IPO to raise \$55 million on the American Stock Exchange – plans to use the money it raises to stockpile indium in the hope of selling it for higher prices in the future."

- > If rare others may want it too.
- > Supply & demand difficult to predict

Te availability may limit the growth rate of CdTe PV

- Te is a byproduct of Cu production
- Te production rate tied to Cu production
- ~ 30-40% of available Te is recovered
- Cu production is uncertain

Projected growth rate limits for CdTe solar cells based on Te Availability

- Cu production peaks 2025 or 2060
- ~ 80% of available Te is recovered
- CdTe thickness down to 1 μm, efficiency up to 14%
- All scenarios include secondary recovery

Fthenakis, Renewable & Sustainable Energy Reviews. Sci. Technol. 13, 2746 (2009).

Projected growth rate limits for CdTe solar cells based on Te Availability

- Cu production grows to 2060 and remains constant at 53 Mt/year
- ~ 33% of available Te is recovered
- CdTe thickness 2 μm, efficiency up to 15 %

In availability may limit the growth rate of CIGS PV

- In is a byproduct of Zn production
- Te production rate tied to Zn production
- ~ 70-80 % of available In is recovered

Projected growth rate limits for CIGS solar cells based on In Availability

- Zn production grows to 2060 and remains constant at 11 Mt/year
- ~ 80% of available In is recovered
- CdTe thickness 1.6 μm, efficiency up to 17 %

Annual electricity production potential of common inorganic semiconductors

Raw materials cost of common inorganic semiconductors

Which materials have extraction costs lower than Si and electricity producing potential greater than Si?

CZTS Solar Cells by Sulfurization of a stack of evaporated Zn/Sn/Cu films

CZTS Solar Cells by Sulfurization of co-sputtered Cu, SnS and ZnS film

Evolution of CZTS power conversion efficiency

- > ~ 600 articles keywords = CIGS and solar
- > ~ 1300 articles keywords = CdTe and solar
- > ~ 6800 articles keywords = organic and solar
- > ~ 7100 articles keywords = a-Si and solar
- > ~ 50 articles keywords = CZTS and solar

Cu₂ZnSnS₄ (CZTS)

- Synthesized 2-10 nm CZTS nanocrystals from metal dithiocarbamates
- Stable colloidal dispersions in organic solvents
- HRTEM, XRD, Raman, EPMA, optical absorption consistent with CZTS

A. Khare, D. J. Norris, and E. S. Aydil, *unnpublished*, (2010).

Solar cells with films cast from CZTS colloidal nanocrystal solutions

Riha, Parkinson & Prieto, JACS **131**, 1 (2009); Guo, Hillhouse & Agrawal, JACS **131**, 11672 (2009); Steinhagen, Panthani, Akhavan, Goodfellow, Koo & Korgel, JACS **131**, 12554 (2009);

High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber

Cu₂O-ZnO heterojunction solar cells

Jeong & Aydil, J. Cryst. Growth 311, 4188 (2009).

Cu₂O-ZnO heterojunction solar cells

- \triangleright efficiencies (~1-2%) and V_{oc} (~0.1-0.4 V) so far has been low
- > Interface quality and defects implicated for poor performance

Summary

a) Current thin film technologies, CdTe, CIGS & thin film Si may grow at rates that will accumulate to ~10 TW by sometime between 2050-2100.

a) We will need other (new) materials and technologies in addition to CdTe, CIGS & thin film Si to achieve ~10 TW by sometime between 2050-2100.