NSF PV-Workshop

Critical Issues in Thin Film Si

Chandan Das Steve Hegedus

Institute of Energy Conversion University of Delaware Newark, 19716, DE

Institute of Energy Conversion University Center of Excellence for Photovoltaic Research and Education

Module selling prices: German market 2009

Photon International 11/09 and 03/10

Institute of Energy Conversion D University Center of Excellence for Photovoltaic Research and Education

Date 5/6/2010

Attributes of a-Si based modules

- ~5% of total PV market in 2008
- High yield (kWhrs/kW) due to good performance at high temperature and low light condition
- > Inherently and easily made as multijunction allowing more efficient utilization of spectrum (only thin film PV with MJ modules)
- Fundamental understanding of material properties, deposition parameters and large area equipment
 - **35** years **R&D** on single deposition method
 - **u** strong non-PV industrial interest
- **Minimal deposition steps: PECVD + back contact**
- Either glass or flexible substrate demonstrated in manufacturing \succ

Institute of Energy Conversion Date 5/6/2010 University Center of Excellence for Photovoltaic Research and Education

Status of manufacturing of a-Si based technology

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and EducationDate

Status of Manufacturing

Several companies completing lines for tandem a-Si/nc-Si module with rated stabilized performance 9-10%

Kaneka, Mitsubishi Heavy Ind, Sharp Solar: 40-60 MW in 2008

Sharp Solar: 10%, 160 MW now, 480 Mw by 2011

□ United Solar Ovonic: >100 MW of BIPV laminate in 2009

Several companies selling turn-key fab lines

Applied Materials, Oerlikon Solar, Leybold Optics, Ulvac

Masdar Initiative (UAE) selected tandem a-Si/nc-Si technology for both manufacturing development and installation

□ Investor confidence with \$2B support for joint Masdar PV group with **MIT and Helmholtz-Zentrum Berlin as R&D partners**

Critical issues: before and now

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and EducationDate

Critical Issues for a-Si based technology

- Steady improvements in efficiency over 20 years leveling off \succ
- No further improvements in \succ
 - **Light induced degradation**
 - **Engineering low band gap**
- + Nanocrystalline (nc-Si) materials solve these problems.
- Several groups have demonstrated stabilized eff >11% with aSi/nc-Si double or triple junction cells
- However, new issues with nc-Si arise

Institute of Energy Conversion

- Weaker absorption of nc-Si requires 5x thicker layer
 - Significant efforts to increase growth rate with high nc-Si quality
- Control of nc-Si properties over large area module

Date 5/6/2010 University Center of Excellence for Photovoltaic Research and Education

Issues with introduction of nc-Si

Institute of Energy ConversionDatUniversity Center of Excellence for Photovoltaic Research and EducationDat

Institute of Energy ConversionDaUniversity Center of Excellence for Photovoltaic Research and Education

Technical barriers for PECVD grown nc-Si and thrust area of R&D

- Increase nc-Si deposition rate » Higher throughput » Reduce \$/Wp Pressure and plasma frequency new concepts for gas feed, gas pumping
- Large area substrates » Higher throughput
 - Effect of frequency: high rate Vs homogeneity over large area
 - Effect of electrode design: homogeneous and high throughput
- Increase efficiency by improved light trapping concepts
 - > Effect of plasmon, intermediate reflector, thin AR for light trapping: Current management » increase Jsc » higher efficiency

Issues with increase deposition rate of nc-Si

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and EducationDate

Selection of Frequency-Power-Pressure for High rate nc-Si Deposition

Institute of Energy Conversion Do University Center of Excellence for Photovoltaic Research and Education

Effect of Frequency on plasma deposition process

Institute of Energy Conversion Da University Center of Excellence for Photovoltaic Research and Education

Date 5/6/2010

Improved homogeneity (a) high dep rate with VHF

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and Education

Concept of Linear Source Electrode: Homogeneity and Throughput issues

Dresden Univ. of Technology

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and Education

Cost estimation for in-line production machine

substrate width (y)substrate velocity (v)solar module efficiency (η) deposition rate (r). Estimation done by : Dresden Univ. of Technology and FAP GmbH, Germany

Institute of Energy Conversion

University Center of Excellence for Photovoltaic Research and Education

Improved light harvesting with new optical engineering

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and Education

Index matching optical layers

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and Education

Device design for a-Si/nc-Si thin film solar cell

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and Education

a-Si/nc-Si cell with TiO₂ as anti-reflection layer

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and Education

a-Si/nc-Si cell with SiOx as intermediate-refletor layer

Institute of Energy ConversionDeUniversity Center of Excellence for Photovoltaic Research and Education

a-Si/nc-Si cell with both TiO2 and SiOx as index matching optical layers

Institute of Energy ConversionIUniversity Center of Excellence for Photovoltaic Research and Education

Current management in a-Si/nc-Si cell

Institute of Energy ConversionIUniversity Center of Excellence for Photovoltaic Research and Education

Plasmonic absorption with nanoparticles

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and Education

Light trapping by surface plasmons

Conventional design

Surface Plasmonic Patterning

Attwater et al./ Polman et al.

Institute of Energy ConversionDaUniversity Center of Excellence for Photovoltaic Research and Education

Surface Plasmonic Light Trapping

Metal nanoparticle surface coatings

Substrate conformal imprint lithography (SCIL) - Philips

A. Polman et. al

Institute of Energy ConversionDateUniversity Center of Excellence for Photovoltaic Research and Education

Demonstration of Plasmonic Solar Cell Design

Amorphous Si thin-film solar cell fabrication steps

Institute of Energy ConversionDUniversity Center of Excellence for Photovoltaic Research and Education

Improved Long-Wavelength response using plasmonic design

6% eff cell Measured Spectral Response

Ferry et al.

Institute of Energy Conversion Date 5/6/2010 University Center of Excellence for Photovoltaic Research and Education

Recommendations for strengthening U.S. thin Si industry: a-Si/nc-Si technology

Higher deposition rate \Rightarrow higher throughput

- new plasma electrode configurations (linear, ??)
- new plasma conditions in terms of pressure, power
- nc-Si material and device uniformity and interface control with diagnostic tools

Better light trapping \Rightarrow Higher Jsc \Rightarrow higher efficiency

- dielectric interlayers
- index matching front TCO
- plasmonic back reflector

Institute of Energy ConversionIUniversity Center of Excellence for Photovoltaic Research and Education

