

"Advanced Photon Management"

Dr. Juanita Kurtin
Director of R&D
5/6/10

Outline

- Importance of photon management
- Where and why photons are lost
- Opportunities for light management in the blue
 - Downconversion/downshifting
- Opportunities for light management in the red
- Broad opportunities for light management
 - Waveguiding/low power concentration

Why is light management important?

Kurtz, MRS Bulletin (2007)

- Single gap cells are limited by cell architecture and bandgap to a portion of the solar spectrum
- Multijunction approaches to take better advantage of solar spectrum but are typically expensive
- Photon management offers opportunities to make better use of the photons, both inside and outside the single junction window

Where and why are photons lost

Si cells: Improved blue and red response through electrical and optical confinement

Traditional opportunities for blue and red enhancement in Si

- Reduce front surface recombination
- Thinner emitter
- Selective emitter

Reduce rear surface recombination

Electrical

- Improve texturization (random, honeycomb, inverted, laser)
- DLAR coating

Improve back surface reflection

Optical

General opportunities for gaining photons in the blue: Downconversion/downshifting

Downshifting on multiple technologies

Opportunities for light management in the red

- Better rear reflectors
- Increased lifetimes
- Upconversion
- Intermediate band gap

Broad opportunities for light management

- Multiple layer AR coating
 - Graded index AR coating
- Better texturization
- Waveguiding
- Luminescent concentration/lateral concentration

Waveguiding/Lateral concentration

Diffraction gratings

Luminescent concentrators

Lateral luminescent concentrators

Requirements for inter-cell material:

- Highly luminescent (95% PLQY)
- Controllable absorption/emission (tailored to cell); low self-absorption
- Tunable bandgap
- Stable

Inter-cell Spacing (cm)

Summary

- Conventional photon management techniques such as improving surface recombination, better texturization, better rear reflectors, etc are a clear way to advance toward higher efficiencies
- Advanced photon management such as up/downconversion, downshifting, and waveguiding are heavily materials-dependent, but could lead to a non-monolithic "multijunction" technology