Aquifer Operator-Scaling and the Effect on Solute Mixing and Dispersion

David A. Benson
Desert Research Institute, Reno, Nevada, USA
(now at Colorado School of Mines, Golden, CO, USA)

Mark M. Meerschaert
University of Otago, Dunedin, New Zealand

Boris Baeumer
University of Otago, Dunedin, New Zealand

Hans-Peter Scheffler
University of Nevada, Reno, Nevada, USA

Abstract.
The creation of representative aquifer facsimiles is a fundamental building block of Monte Carlo stochastic hydrology. This process hinges on the identification and re-creation of the statistical properties (distribution and dependence structure) of aquifer characteristics such as hydraulic conductivity (K). Since aquifer parameters may have dependence structures, such as correlation, that are present across a huge range of scales, the concepts of fractional Brownian motion (fBm) have been explored previously in both analytic and numerical stochastic settings. Most previous models have used isotropic scaling, in which the self-similarity properties do not vary with direction and are described by a scalar Hurst coefficient. Any real-world anisotropy in the degree of statistical dependence has been handled by an elliptical stretching of the scalar random K field. We define an extension of fBm to d-dimensions in which the fractional-order integration in the d primary scaling directions (which do not have to be orthogonal) and the degree of connectivity and long-range dependence is freely assigned according to a discrete or continuous measure on the unit sphere. This approach accounts for the different scaling found in the vertical versus horizontal in real granular aquifers, and allows very general degrees of continuity of K in certain directions. Taken to an end member, it also allows for the direct representation of fracture networks in a continuum setting: the eigenvectors of the scaling matrix describe the primary fracture scaling directions, and discrete weights of fractional integration represent fracture continuity that may be limited to a small number of directions. In a numerical experiment simulating a granular aquifer, the motion of solutes through these “operator-fractional” Gaussian fields depends very much on both the longitudinal and the transverse scaling (Hurst) coefficients. Lower integration order in the transverse direction (in the range of fractional Gaussian noise) engenders greater mixing and a transition to a Fickian regime, contrary to previous stochastic analytic results. Higher orders of integration, in the range of fractional Brownian motion, are associated with thicker layering of aquifer sediments and more preferential, non-mixing flow and transport. Therefore, the methods in this paper, which account for the (possibly) unique scaling properties of an aquifer in all directions, are important for realistic Monte Carlo simulation of aquifers with long-range statistical dependence.

1. Introduction

Predicting the movement of dissolved chemicals through real-world aquifer material has been a priority of hydrogeologists for decades. In the 1970s, an understanding evolved that no aquifer could be completely characterized [Freeze, 1975; Gelhar et al., 1979; Smith and Schwartz, 1980]. Uncertain aquifer properties, at every unsampled point, must be represented by some statistical model. Two interrelated methods evolved to model the effect of the uncertain aquifer, using either analytic or numerical methods. The analytic method replaces the deterministic advection-dispersion equation with a stochastic version and solves for the moments of the head and concentration fields [see the extensive review by Gelhar, 1993]. The numerical approach uses classical Monte Carlo methods (e.g., Tompson and Gelhar, 1990), and more recently, Bayesian and other conditioning methods [Woodbury and Ulych, 2000; Feyen et al., 2002;
Morse et al., 2003; Huang et al., 2004], to simulate a large number of aquifer realizations (some more likely than others), and either analyzes the ensemble statistics of the head and concentration fields or solves the moment equations themselves [Graham and Mclaughlin, 1989; Li and Mclaughlin, 1991; Li et al., 2003, 2004; Guadagnini and Neuman, 1999a,b; 2001; Ye et al., 2004]. A number of techniques are widely used to generate scalar random field replicas of aquifers for use in the Monte Carlo studies [Tompson et al., 1989; Deutsch and Journel, 1992; Dietrich and Newsam, 1993; Robin et al., 1993; Carle and Fogg, 1997; Bruning et al., 1997; Hassan et al., 1997; Ruan and McGlaughlin, 1998; Painter, 2001; La et al., 2003].

Both the analytic and numerical methods have enjoyed great success for various subsets of the variety of aquifer types. The strength of the analytic method lies in the simplicity of representing the aquifer statistical characteristics, but is burdened with assumptions needed to gain well-posedness (closure) of the stochastic equations (see a recent discussion by Wood et al. [2003]). The strength of the numerical method lies in the robustness of each deterministic solution, the ability to condition with data from specific locations (e.g., Dietrich and Newsam [1996]), and the ability to incorporate any number of uncertain parameters [Burr et al., 1994; Cushman et al., 1995; Hu et al., 1995; Huang and Hu, 2001]. Furthermore, the rapid and predictable advancement of computer speed and addressable memory allows the representation of aquifer features from many scales. The downside of the numerical method, aside from the computational time required, is that the aquifer facsimiles must be created according to some defined statistical model that is typically an oversimplification. The chosen model should adhere to the real characteristics of the aquifer, including the statistical dependence structures that might be present across all scales [Neuman, 1995; Molz and Boman, 1993; Molz et al., 1997].

One early statistical model that parsimoniously accounts for evolving heterogeneity at all scales is a fractional Brownian motion (fBm), since this stochastic process has the property of self-similarity [Mandelbrot and van Ness, 1968]. However, true multidimensional fBm is an overly restrictive model for several reasons. First, non-Gaussian increments of K or ln(K) may be the rule, not the exception. The distribution of K or ln(K) is typically heavier tailed than a Gaussian [Eggleston et al., 1996; Painter and Paterson, 1994; Painter, 1996, 2001; Rasmussen et al., 1993; Liu and Molz, 1996, 1997; Benson et al., 2001; Hyun and Neuman, 2002b; Meerschaert et al., 2004; Aban et al., 2005]. Since simple fBm cannot replicate the long-range K dependence that can account for continual faster-than-Fickian growth rate of plumes [e.g., Kemblowski and Wen, 1993; Neuman, 1995; Rajaram and Gelhar, 1995; Zhan and Wheatcraft, 1996; Bellin et al., 1996; Cushman, 1997; Hassan et al., 1997; Di Federico and Neuman, 1998; Painter and Mahinthakumar, 1999], it is still the basis of several simulation techniques that have replaced the restrictive assumption of Gaussian increments [Painter, 2001; Meerschaert et al., 2004]. Second, a more serious drawback of simple fBm is its functional, or scaling isotropy, in which the self-similarity parameter is the same in all directions [Bonami and Estrade, 2003]. There is no physical reason that a sedimentary aquifer should have the same scaling properties in the vertical and horizontal directions. Evidence for different scaling in different directions at several sites is presented by Hewitt [1986], Molz and Boman [1993], Liu et al. [1997], Deshpande et al. [1997], Tennekom et al. [2003], and Castle et al. [2004], among others. In this paper we provide a brief re-analysis of the data collected by the latter researchers. Techniques have been developed that can handle this anisotropy in the scaling or the Hurst coefficients [Dobrushin, 1978; Hudson and Mason, 1982; Schertzer and Lovejoy, 1985, 1987; Kumar and

Figure 1. Braided stream channels from above.

Figure 2. Approximate measure $M(\theta)$ of the directional proportion of the wet portions in Fig. 1. Angles are in degrees.
a statistical model of that site. In this paper we construct random fields based on a convolutional formula that allows a general degree of statistical dependence in any given direction. In this example, only the direction of the channel was measured; therefore, the measure in Figure 2 is symmetric with the addition of 180°. When measuring actual K values, the dependence may be non-symmetric with respect to the downstream direction, since a disturbance in the water flow would be expected to deposit a fining-downstream sequence of gravel and sand. For supercritical flow, no random disturbance should be reflected in the sediments in the upstream direction at all. We investigate the influence of directional “causality” in a subsequent section.

Aside from the deposition of sediment grains of various sizes, aquifers may gain permeability structure through deformation. This is particularly important in low permeability rock, which may acquire fractures that convey essentially all of the groundwater flow. This scenario takes on increased importance, since most of the nations that produce high-level nuclear waste plan to store it within fractured, low permeability host rock (hence the numerous studies of Yucca Mountain in the United States [Bodvarsson and Tsang, 1999; Bodvarsson, 2003], and the Aspö repository in Sweden [SKB, 2001]). Studies of the suitability of these sites [e.g., Outters and Shuttle, 2000; Stigsson et al., 2000; BSC 2004a,b] have endeavored to map the locations of all important fractures and faults that intersect tunnels and drifts. For the initial buildout of the repositories will uncover multitudes of new, as yet unknown fractures, and the regions of rock between the repository and potential receptors will always remain uncharacterized. Some sort of statistical representation of the aquifer (fracture) properties is still needed to supplement the mapping information [SKB, 2001, Chapter 8]. Real fracture networks are almost universally observed to possess fractal structure (see the extensive review by Bonnet et al. [2001]). Permeability measurements in fractured rock also show scale effects and may support fractal models [Hysen et al., 2002; Neuman and Di Federico, 2003; Martinez-Landa and Carrera, 2005]. The specifics of the more subtle fracture statistics have a large bearing on the transport characteristics of the networks [Bour and Davy, 1998; Bour et al., 2003; Darcel et al., 2003a,b; deBreszy et al., 2004].

When simulating flow through fracture networks, several approaches can be adopted (see the recent review by Neuman, 2005a). The first treats the network, or a subset of the network (e.g., BSC, 2004a; Carrera and Martinez-Landa, 2000), as an equivalent porous medium (EPM), and derives or measures an effective upscaled K tensor based on the contributions of “subgrid” fractures. The EPM is justified in highly fractured media where the fracture spacing is small compared to some region of interest, say a numerical grid block or the distance between observation points [Snow, 1969; Long et al., 1982; Endo et al., 1984; Hsieh and Neuman, 1985; Hsieh et al., 1985; Neuman et al., 1984; Neuman, 2005b]. However, when the fracture spacing is large compared to the region of interest, then an effective parameter does not reasonably represent the subgrid features, and individual fractures (and perhaps as importantly the intervening impermeable rock) may need to be explicitly represented. This can be done using discrete fracture networks [Adler and Thovert, 1999; Benke and Painter, 2003; Cvetkovic et al., 2004], or by accepting as an approximation a continuous random field, preferably with conditioning on the locations of fractures. One must accept that a continuous random field might assign some regions of impermeable rock a positive-definite K tensor, which assumes sufficiently dense subgrid fractures. In the case of fractal networks, there may not be a convenient separation of scales such that individual fractures can be ignored in favor of an equivalent porous medium [Long et al., 1982]. In this paper, we show that a random field, based on an extension of fBm, can represent fractal fracture permeability and preserve fracture orientations and unique scaling properties in different directions. As a result, no separation of scales is invoked to divide the domain into large mappable fractures and subgrid features that constitute an equivalent porous medium. Furthermore, if fractures orientations are concentrated in a few directions, the generation of a continuous random field should be able to restrict the continuity of high-K areas to those directions, as opposed to the more isotropic prior definitions of fBm.

To expand the capabilities of current generators of continuous random fields including classical fBm, we introduce operator-scaling scalar random field generators based on multidimensional fractional integration. The random fields have “operator scaling” that is described by a matrix of values—the linear operator—instead of a single scalar Hurst coefficient. The matrix-valued, or operator rescaling properties mean that the scaling indices (for example, Hurst coefficients for Gaussian fields) can be different in each coordinate. For maximal generality, we choose a fractional integration based on the inverse of the recently defined anisotropic fractional Laplacian [Meerschaert et al., 2001]. The fields we describe in this paper allow all of the following: 1) self-similar structure at all scales, particularly when the scaling rates are unique in different directions, 2) arbitrary strength of statistical dependence along discrete directions, and 3) generality in choosing the statistical distribution of the scalar random field, including non-stationarity. Finally, in Section 3, we investigate the influence of simple operator-scaling K structure in synthetic aquifers on the transport of solutes and compare the results to previous stochastic analytic predictions.

2. Mathematical Background

The first d-dimensional fBm $B_H(x)$ was defined as an isotropic special case of the moving average

$$B_H(x) = \left\{ \phi(x-y) - \phi(-y) \right\} B(dy)$$

with $B(dy)$ the increment of a Brownian random field, $\phi(y) = \|y\|^{H-d/2}$, and Hurst index $0 < H < 1$ [Samorodnitsky and Taqqu, 1994; Cushman, 1997]. The first term in the integral is the kernel convolution, which mathematically spreads the random value at each point over space. The second term centers the motion so that $B_H(0) = 0$. The stochastic integral $I(f) = \int f(y)B(dy)$ is the distributional limit of approximating sums $\sum f(y_j)B(\Delta y_j)$ where Δy_j is a small d-dimensional Δy_j and f is a normal random variable with mean zero and variance equal to the volume of that rectangle, and these normal random variables are independent for disjoint rectangles. A finite sum gives a faithful approximation so long as the area covered spreads over entire space as the mesh of the partition tends to zero. The integral $I(f)$ is a mean zero normal random variable with variance proportional to $\int f^2(dy)$, and the integrand exists so long as $\int f^2(y)\Delta y < \infty$ [e.g., Yaglom, 1987]. In this case we say that the function $f(y)$ is square integrable.
Brownian field, $G_{H}(j) = B_{H}(j) - B_{H}(j-1)$ in 1-dimension or the corresponding analogue in d-dimensions: $G_{H}(i,j) = B_{H}(i,j) - B_{H}(i,j-1) - B_{H}(i-1,j) + B_{H}(i-1,j-1)$ in 2-dimensions and so forth. The noise process inherits the same scaling: $G_{H}(x) = c_{H}^2 G_{H}(x)$.

The spectral representation of the Brownian random field (1) is given by

$$B_{H}(x) = \int e^{i k \cdot x} \hat{\varphi}(k) B^{(dk)}$$

where $\hat{\varphi}(k) = (2\pi)^{-d/2} e^{-|x|^2/2} \varphi(x) dy$. In the isotropic case, $\varphi(x) = C_{H}/|x|^{-H-d/2}$ and $C_{H} > 0$ is a constant depending only on H and d. The stochastic integral $\int g(k) B^{(dk)}$ is the distributional limit of approximating sums $\sum_{k} g(k) B^{(dk)}$ where Δk is a small d-dimensional rectangle in wave space, and the complex-valued random measure $\hat{B}(\Delta k) = m_{1}(\Delta k) + im_{2}(\Delta k)$. The real and complex parts $m_{1}(\Delta k)$ and $m_{2}(\Delta k)$ are independent random variables with mean zero and variance equal to half the volume of the rectangle Δk, independent for disjoint rectangles, except that $m_{1}(\Delta k) = m_{1}(-\Delta k)$ and $m_{2}(\Delta k) = -m_{2}(-\Delta k)$ [Samorodnitsky and Taqqu, 1994]. The random measure \hat{B} is the Fourier transform of the random measure B in the sense that

$$\hat{B}(\Delta k) \approx \frac{1}{N} \sum_{y} e^{-i k \cdot y} B(\Delta y)$$

where N is the total number of grid points, the distributional approximation becoming exact as the mesh of the partition tends to zero. The conditions on m_{1} and m_{2} follow from (3), since this formula implies that the complex conjugate of $\hat{B}(\Delta k)$ equals $\hat{B}(\Delta k)$. Then both the integrand and the increment process in (2) are Fourier transforms of the respective terms in (1). The restriction $0 < H < 1$ is also shown in the requirement that the integrand in (2) is square-integrable, and the distributional equality of the two forms (1) and (2) is a result of the Parseval identity (compare Proposition 7.2.7 in Samorodnitsky and Taqqu, 1994).

The fractional Brownian field (1) can be simulated using discrete Fourier transforms. Using the spectral representation (2) we approximate $B_{H}(x) \approx \hat{B}_{H}(x) - \hat{B}_{H}(0)$ where

$$\hat{B}_{H}(x) = \sum_{k} e^{i k \cdot x} \hat{\varphi}(k) B(\Delta k)$$

which is evidently the inverse discrete Fourier transform of the product $\hat{\varphi}(k) B(\Delta k)$. Then in order to simulate \hat{B}_{H} we can begin by simulating $B(\Delta y)$, as iid random variables on a regular grid y_{j}, take discrete Fourier transforms to obtain $\hat{B}(\Delta k)$ on a regular grid k_{i}, multiply by the Fourier filter $\hat{\varphi}(k_{i})$, and invert the discrete Fourier transform. Then subtract the result at grid point $x = y$ from the result at grid point $x = 0$ to obtain $B_{H}(x) \approx \hat{B}_{H}(x) - \hat{B}_{H}(0)$. The discrete Fourier (and inverse Fourier) transforms can be efficiently computed using fast Fourier transforms. While we have described this simulation procedure for Gaussian random fields, a variety of stochastic integrals can be used, allowing a flexible and realistic tool for simulating K fields. For example, $\ln(K)$ increments at several field sites are well modelled by a Laplace distribution [Meerschaert et al., 2004], which is essentially a double-sided exponential. A different method for simulating only Gaussian processes, starting in Fourier space [Voss, 1989; Peisgen and Saube, 1988; Gelhar, 1993; Ruan and McGlaughlin, 1998; Dieker and Mandjes, 2003] will not be pursued here.

2.1. Fractional Integration

Although the stochastic (convolution) integral

$$\tilde{B}_{H}(x) = \int \varphi(x-y) B(dy)$$

(5)

does not exist because the function $\varphi(x-y)$ is not square integrable, we can heuristically write $\tilde{B}_{H}(x) = \tilde{B}_{H}(x) - \tilde{B}_{H}(0)$, the convergent difference of two divergent stochastic integrals. Since the form (5) represents a stationary process, the theory of linear filters can be applied, and it turns out that these filters correspond to certain fractional integrals. For a simple example, consider fractional Brownian motion (fBm) in one dimension. Mandelbrot and van Ness [1968] defined a one dimensional fractional Brownian motion (fBm) using

$$\tilde{B}_{H}(x) = \frac{1}{1/(H+1/2)} \int_{-\infty}^{x} (x-y)^{H-1/2} B(dy)$$

(6)

In this formulation, the stochastic integral depends only on the values of $B(dy)$ for $y < x$ (the past, if x represents time) and hence is termed “causal.” When x represents a spatial variable, this restriction may not be needed, and Mandelbrot [1982] introduced a symmetric, bilateral version of fBm using

$$\tilde{B}_{H}(x) = \frac{1}{1/(H+1/2)} \int_{-\infty}^{\infty} (y-x)^{H-1/2} B(dy)$$

(7)

The convolutions in (6) and (7) take values of $B(dy)$ and spread them according to the respective power-law kernels. From the point of view of fractional calculus (see Samko et al., 1993 for a comprehensive exposition), these integrals can be viewed as fractional-order integrals of the “white noise” $B(dy)$ [Meyer et al., 1999; Pipiras and Taqqu, 2000; Chechkin and Gonchar, 2001]. Fractional derivatives and integrals are natural extensions of their integer-order counterparts, easily understood in terms of their Fourier transforms. Given a function $f(x)$ with Fourier transform $\hat{f}(k)$ and compact support (i.e., $f(x) = 0$ for $|x|$ large), it is well known that the n^{th} derivative of $f(x)$ has Fourier transform $(ik)^{n} \hat{f}(k)$, and hence the n-fold integral has Fourier transform $(ik)^{-n} \hat{f}(k)$. Fractional derivatives and integrals replace the integer exponent n with a rational number α. A computation using generalized functions shows that $\int_{\infty}^{x} f(x-y) dy = \left\{ (1/(\alpha)) e^{x^{-\alpha}} \right\}$ is the Fourier transform of the function $x^{1-\alpha} f(x)$ on $x > 0$ [Samko et al., 1993]. Hence the α-order fractional derivative of f is the convolution of $f(x)$ with a power law:

$$\frac{d^{\alpha} f(x)}{dx^{\alpha}} = \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{x} (x-y)^{-\alpha-1} f(y) dy$$

(8)

where this integral is to be understood in terms of generalized functions. If $0 < \alpha < 1$ this formula defines a fractional integral of order α. Now the one-sided fBm formula (6) can be viewed as an $A = H + 1/2$ fractional integral of white noise. One also defines a negative-direction fractional derivative

$$\frac{d^{\alpha} f(x)}{d(-x)^{\alpha}} = \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{x} (y-x)^{-\alpha-1} f(y) dy$$

(9)

and then the two-sided fBm formula (7) is seen as a combination of positive- and negative-direction fractional integrals of white noise with the same order $A = H + 1/2$. Since $0 < H < 1$, this means that heuristically fBm can be written $B_{H}(x) = \tilde{B}_{H}(x) - \tilde{B}_{H}(0)$ where $\tilde{B}_{H}(x)$ is a white noise fractional integral of order $1/2 < A < 3/2$. One-sided fBm can be simulated using the Fourier filter $\hat{\varphi}(k) = (ik)^{-\alpha}$ in (4). Two-sided fBm results from using the equally weighted forward and backward fractional integrals, hence the symmetric filter $\hat{\varphi}(k) = (ik)^{-\alpha} + (-ik)^{-\alpha} = 2 \cos(A\pi/2)|k|^{-\alpha}$

References

- [Samko et al., 1993]
- [Meyer et al., 1999]
- [Pipiras and Taqqu, 2000]
- [Chechkin and Gonchar, 2001]
- [Mandelbrot and van Ness, 1968]
- [Dieker and Mandjes, 2003]
where again \(A = H + 1/2 \) is the order of fractional integration. Using the filter \(\hat{\varphi}(k) = |k|^{-A} \) multiplies the resulting fBm by a constant.

We note here that the causal function (6) was originally intended for time series, since the present cannot influence the past. A similar treatment, in multiple dimensions, must be considered for the deposition of sediment in supercritical flow, since a disturbance in the flow is not propagating upstream. Therefore, a convolution kernel that mathematically transmits fluctuations in the \(K \) field should not necessarily have equal (or any) weight in certain directions. In 1–dimension, a simple extension of the symmetric kernel in formula (7) incorporates a weight function \(M(\theta) \), where \(\theta = \pm 1: \hat{\varphi}(k) = M(1)(ik)^{-A} + M(-1)(-ik)^{-A} \), where again \(A = H + 1/2 \) is the order of fractional integration. This concept of weights on the unit circle extends to 2– and 3–dimensions (below). It is also worth noting here that the one-sided and symmetric fBm are models of different processes and have noticeably different traces, even though the correlation structure of the increments (i.e., the spectral density functions) are identical.

Fractional Gaussian noise (fGn) \(G_{\alpha}(x) = B_{H}(x) - B_{H}(x - 1) \) is the increment process of fractional Brownian motion, hence we can simulate one-sided fGn using the Fourier filter \(\hat{\varphi}(k) = (1 - e^{-ik})/H - 1/2 \) in (4). Using a Taylor series approximation we can simplify this to \(\hat{\varphi}(k) = (ik)^{-H+1/2} \). Similarly we can simulate two-sided fGn using the filter \(\hat{\varphi}(k) = |k|^{-A} \) where now \(A = H - 1/2 \). This extends the simulation procedure through the interval \(-1/2 < k < 1/2\), where again \(A \) indicates the order of fractional integration. For simplicity, we will continue to use this notation, since using \(H \) becomes somewhat confusing when referring to both fGn and fBm.

Symmetric fBm in one dimension (1-D) is a special case of an isotropic Brownian random field. The d-dimensional isotropic version can be simulated using the Fourier filter \(\hat{\varphi}(k) = |k|^{\alpha-d/2} \) in (4), which corresponds to (1) with \(\varphi(x) = |x|^{\alpha-d/2} \) for some constant \(C \) depending only on \(H \) and the dimension \(d \) of the variable \(x \). A stretching of the random field, resulting in greater strength or weight of correlation of the increments in some direction, but still decaying with the same power law (i.e., the same Hurst coefficient in all directions), is achieved by a scalar multiplication of the orthogonal vector components in the Fourier filter [Rajaram and Gelhar, 1995; Zhan and Wheatcraft, 1996; Di Federico et al., 1999]:

\[
\hat{\varphi}(k) = |\lambda| \cdot |k|^{-A} = (\lambda_1 k_1)^2 + (\lambda_2 k_2)^2 + (\lambda_3 k_3)^2)^{-A/2}. \tag{10}
\]

This approach does not address the possibility that the decay of statistical dependence in any direction may fall off according to a different power law. Hence, in contrast to previous researchers, we call this stretched version with scalar \(H \) “functionally isotropic,” since the power law is the same except for a prefactor, in all directions. Real aquifers may show different fractal scaling properties in the horizontal direction than the vertical [Hewitt, 1986; Molz and Bowman, 1993; Liu and Molz, 1996]. Other aquifer characteristics that may serve as surrogates to \(K \), such as sonic velocity, may also show differences in the scaling exponent in the direction of strike versus dip [Deshpande et al., 1997]. Molz et al. [1997] suggest a scheme to change the order of integration in one direction via an expression similar to:

\[
\hat{\varphi}(k) = (\lambda_1 k_1)^2 + (\lambda_2 k_2)^2 + (\lambda_3 k_3)^2)^{-A/2}. \tag{11}
\]

In a subsequent section, we investigate the scaling properties of the random field generated by this and more general anisotropically scaling filters.

In a subsequent section, we investigate the scaling properties of the random field generated by this and more general anisotropically scaling filters.

In a subsequent section, we investigate the scaling properties of the random field generated by this and more general anisotropically scaling filters.

In a subsequent section, we investigate the scaling properties of the random field generated by this and more general anisotropically scaling filters.
a greater distance than the scale of the largest heterogeneity present. If the particles stop experiencing new scales of heterogeneity (either through truncation of the \(K \) field heterogeneity or by subsampling to do advective mixing) the plume will transition to an asymptotic, or Fickian, growth rate \((a_L = \text{constant}) \). Finally, Di Federico and Neuman [1998] reason that a plume travelling in fractal material is continually sampling larger scales of heterogeneity that are, on average, the same size as the growing mean travel distance. Such a plume is permanently pre-asymptotic and has a longitudinal macrodispersivity \((a_L) \) that grows according to [Di Federico and Neuman, 1998]:

\[
a_L \equiv \frac{1}{2} \frac{d}{dX} \text{VAR}(X) \propto X^{1+2H},
\]

where VAR(\(X \)) is the variance of the particle travel distance, \(X \) is the mean travel distance, and \(H \) refers to the Hurst coefficient in the direction of travel.

If one assumes that particles are free to roam a domain with a fixed large-scale fractal cutoff (for example, a finite domain), then at early time the mean travel distance may be much smaller than both the possible particle trajectories (due to the large heterogeneity of the flowpath velocities), and the large-scale \(K \) cutoff. Furthermore, as time progresses, and a plume grows around its mean position, the mean distance becomes smaller relative to the increasing proportion of large excursions, which dominate the plume variance. Hence the mean position may be much smaller than either the plume or \(K \) large-scale cutoff and the plume may be approximately “early preasymptotic”. In any case (early pre-asymptotic, permanently pre-asymptotic, or asymptotic), Di Federico and Neuman [1998] predict the plume dynamics based only on the Hurst coefficient in the direction of travel.

Rajaram and Gelhar [1995] use a two-particle, relative dispersion approach to calculate the macrodispersivity in a plume-specific (not ensemble) manner that corresponds most closely to Di Federico and Neuman’s [1998] permanently pre-asymptotic results. Rajaram and Gelhar [1995] compute the macrodispersivity in an fBm \(K \) field with a single value of \(H \) as:

\[
a_L \propto X^H
\]

The common feature of the analytic results on transport through fractal porous media is the isotropic scaling according to a single scaling parameter \(H \). Liu and Mols [1996] posit that a different \(H \) in the direction transverse to flow may influence transport, since lateral mixing is determined by the layered structure of the aquifer material. Larger values of \(A \) or \(H \) correspond to greater persistence of the random increments, hence thicker layering of similar material. The thicker, more extensive layers should contribute to less mixing and more Mercedo-type [1967] (ballistic) dispersion. Less extensive layering, characteristic of smaller values of \(A \) or \(H \), should promote more mixing and perhaps more Fickian-type dispersion. In Section 5 we investigate Liu and Mols’ [1996] forecast that knowledge of \(H \) in the direction of transport alone is inadequate to predict plume growth.

4. Operator-Scaling Random Fields

A functionally isotropic fractional Brownian random field \(B_H(x) \) in the space results from applying the Fourier filter \(\hat{\phi}(k) = |k|^{-A} \) to a Gaussian white noise in the spectral representation (2), where the scalar exponent \(A = H + d/2 \) is used. Using the scaling relations \(\hat{\phi}(ck) = c^{-A} \hat{\phi}(k) \) and \(\hat{B}(c dk) = c^{d/2} \hat{B}(dk) \) we get

\[
B_H(cx) = \int \left[e^{i c k x - \frac{1}{2}} \hat{\phi}(k) \hat{B}(dk) \right]
= \int \left[e^{i k x - \frac{1}{2}} \hat{\phi}(c^{-1} k) \hat{B}(c^{-1} dk) \right]
= \int \left[e^{i k x - \frac{1}{2}} c^{-d/2} \hat{\phi}(k) c^{-d/2} \hat{B}(dk) \right]
\]

and the last integral equals \(c^H B_H(x) \) since \(H = A - d/2 \). Hence the scaling property \(B_H(cx) = c^H B_H(x) \) also follows directly from the scaling of the Fourier filter. The stretched Fourier filter in (10) also satisfies \(\hat{\phi}(ck) = c^{-A} \hat{\phi}(k) \), hence the process (2) with this filter has the same scaling property \(B_{\phi}(cx) = c^H B_{\phi}(x) \) as a fractional Brownian field.

The Fourier filter (11) proposed by Mols et al. [1997] has a more complicated scaling \(\hat{\phi}(ck_1, c_{x_2}) = c^{-A} \hat{\phi}(k) \) most conveniently handled using matrix powers [see, e.g., Section 2.2 of Meerschaert and Scheffler, 2001]. The matrix power \(c^Q \) is defined by a Taylor series

\[
c^Q = \exp(Q \ln c) = 1 + Q \ln c + \frac{(Q \ln c)^3}{2!} + \frac{(Q \ln c)^5}{3!} + \cdots
\]

where \(I \) is the \(d \times d \) identity matrix. Using this notation, the scaling for the Fourier filter (11) can be written as \(\hat{\phi}(c^Q k) = c^{-A} \hat{\phi}(k) \) where \(Q^A = \text{diag}(1,1, \beta) \). In this respect, we see that the matrix \(Q \) denotes deviations from the overall order of integration \(A \). Then the random field of Mols et al. [1997] satisfies

\[
B_{\phi}(c^Q x) = \int \left[e^{i c^Q k x - \frac{1}{2}} \hat{\phi}(k) \hat{B}(dk) \right]
= \int \left[e^{i k x - \frac{1}{2}} \hat{\phi}(c^{-Q} k) \hat{B}(c^{-Q} dk) \right]
= \int \left[e^{i k x - \frac{1}{2}} c^A \hat{\phi}(k)c^{-Q} \hat{B}(dk) \right]
\]

where \(|c^{-Q}| = c^{-1-1-\beta} \) is the determinant of the matrix \(c^{-Q} \). Hence this random field satisfies the scaling relation \(B_{\phi}(c^Q x) = c^{A-1-\frac{\beta}{2}} B_{\phi}(x) \). Recalling that \(A = H + 3/2 \) for a 3-dimensional field, we can also write this in the form

\[
B_{\phi}(c^{H+1-\frac{\beta}{2}} x) = c^{H+\frac{1}{2}-\frac{\beta}{2}} B_{\phi}(x)
\]

which reduces to the familiar scaling for a fractional Brownian field if \(\beta = 1 \).

A wide variety of multi-scaling random fields can be obtained in this manner (using eq. (2)), so long as the integrand in (14) is square integrable. Another suitable choice of Fourier filter yields a random field with \(B_{\phi}(c^{1/H_1} x_1, c^{1/H_2} x_2, c^{1/H_3} x_3) = \phi_{\phi}(x) \) so that a different Hurst index \(H_i \geq 1 \) applies to each coordinate. For example, the random field of Mols et al. [1997] has Hurst coefficient \(H_1 = H + \frac{A}{2} - \frac{d}{2} \) for coordinates \(i = 1 \) and \(H_3 = \beta(H + \frac{d}{2} - \frac{1}{2}) \). A more general form of the filter comes from the theory of multivariable fractional differentiation where the generalized fractional derivative of a suitable function \(f(x) \) is defined as the inverse Fourier transform of \(\psi(k)f(k) \) and \(\exp[\phi(k)] \) is the Fourier transform of an operator stable density function [Meerschaert, et al., 2001]. Using an example from section 2, the unstrretched, isotropic Laplacian operator has the Fourier symbol \(\psi(k) = \frac{|k|^2}{2} \), corresponding to the Fourier transform of a zero mean multiGaussian density \(\exp[-|k|^2] \). The general form of the Fourier symbol \(\psi(k) \), given by the Lévy representation [Meerschaert and Scheffler, 2001; Schomer et al., 2003a] is somewhat complex, but for our purposes it suffices to note that this function always satisfies a matrix scaling relation \(\psi(c^Q k) = \psi(c^Q k) \). Then the filter corresponding to a
fractional integration, \(\hat{\psi}(k) = \psi(k)^{-A}\), where \(A = H + d/2\), scales according to \(c^A \hat{\psi}(k) = \hat{\psi}(c^{-Q} k)\). Once again a change to polar coordinates splits the function into the weight function \(M(\theta)\) and a scaling function \(r^2\); however, since \(Q\) may specify a different power law in any direction, a modified polar coordinate system is needed. A procedure for calculating this filter is listed in the appendix.

4.1. Examples

To illustrate the effect of the weight function alone, we generated several 2-D random fields (Fig. 5) with identical “random” Gaussian input fields but with four different functions \(M(\theta)\). The fields are all isotropic with respect to the scaling coefficient \(H = 0.3\). These realizations are typical for this scaling parameter. The first field uses the measure estimated by the directions of the braided stream in Figure 1 without respect to flow direction (Fig. 5a). We then assume that the \(K\) values can only be influenced by upstream perturbations by zeroing upstream weights and adding them to those in the downstream direction (Fig. 5b). Finally, we approximate the measure using a classical elliptical stretching (Fig. 5d) and a simple “cross” of four weights on the \(x\)- and \(y\)-axes (Fig. 5c). The plots clearly show the effect of generalizing the description of weights. The “downstream” measure develops much more continuity in the \(x\)-direction than any other measure, while the classical elliptical measure shows the least. The latter is due to the unavoidable and possibly unrealistic placement of convolution weight transverse to the prevailing stream flow direction. The simple 4-point “cross” measure develops a random field (Fig. 5c) that bears a closer resemblance to the “downstream” measure. In section 5, we use this simple “cross” measure to construct fields with operator scaling (\(H\) different in the transverse and longitudinal directions) to investigate the impact of transverse \(H\) values on plume migration.

In general, the eigenvalues of the scaling matrix \(Q\), and the overall order of integration \(A\), define the Hurst index in each coordinate. The eigenvectors of \(Q\) specify those coordinates, and the weight function \(M(\theta)\) indicates the importance of each direction in determining the dependence structure. The primary scaling directions (eigenvectors of the matrix \(Q\)) need not be orthogonal, and the various directions can be given unequal weight of overall correlation.

Because of the multiple scaling directions, these fields have the property of “generalized scale invariance” [Scherzer and Lovejoy, 1989], but do not have the multiple scaling dimensions associated with multiplicative cascades [Mandelbrot, 1974; Frisch and Parisi, 1983; Benzi et al., 1984; Lovejoy and Schertzer, 1985; Gupta and Waymire, 1990; Boufadel et al., 2000; Veneziano and Essam, 2003]. However, we note one serious consequence of the operator scaling relationship: In general, the random process is distributionally self-similar along curves in physical space (Fig. 3) unless one samples along the eigenvectors of the scaling matrix \(Q\). Sampling the process along straight lines between the eigenvectors will not follow a single power law (for any measure), and the observed scaling (Hurst) coefficient will change. For some measures used to distinguish multiplicative multifractals [see Schertzer and Lovejoy, 1987; Boufadel et al., 2000; Tenekoon et al., 2003], such as the structure function and spectral methods, the perceived fractal dimension will change unless care is first taken to find the eigenvectors of the scaling process.

A closed form expression for \(\psi(k)\) or \(\hat{\psi}(k)\) can only be written in certain instances. For a simple example of a filter that can be written in closed form, specify an order of integration \(A\), and let the deviation matrix \(Q\) be diagonal in 2-D with eigenvalues \(Q_1\) and \(Q_2\). Furthermore, let there be 4 weights on the unit circle of 0.45 on the \(\pm x\)-axis and 0.05 along the \(\pm y\)-axis. Then the orders of integration in the two coordinates are \(A_1 = A/Q_1\) and \(A_2 = A/Q_2\), and the kernel can be built from the Fourier symbol of the fractional derivative:

\[
\psi(k) = 0.45C_1(\{ik_1\}^{1/Q_1} + (-ik_1)^{1/Q_1}) + 0.05C_2(\{ik_2\}^{1/Q_2} + (-ik_2)^{1/Q_2})
\]

where \(C_1 = \Gamma(1 - 1/Q_1)\). A plot of \(\hat{\psi}(k) = (\psi(k))^{-A}\)—the convolution kernel—with \(A_1 = 1.2\) and \(A_2 = 0.2\) (Fig. 4) shows the different decay rates in the two directions and the discrete weights that transfer correlation in the chosen directions. In Section 5, we use (15) to fractionally integrate Gaussian noise and create a series of random fields, each with an identical \(A_1\) but a different value of the parameter.

Figure 3. Ellipses of the operator rescaling of 2-D space \(\hat{c}^A x\) for various rescaling values \(c\) and \(Q = \text{diag}(0.6, 1.4)\). The dashed line corresponds to the remapping of the point on the 45° angle for \(c = 1\) (heavy circle) onto other ellipses.

Figure 4. One possible convolution kernel leading to an operator self-similar random process: 2-D kernel representing \(A_x = 1.2, A_y = 0.5\) with total weights concentrated on the \(x\)- and \(y\)-axes of 0.9 and 0.1, respectively. Note both the slower decay due to larger order of integration, and the greater convolution weight, in the \(x\)-direction.
The resulting operator–fractional Gaussian fields are then used to investigate the effect of the order of aquifer scaling, transverse to mean flow, on contaminant migration.

The possibility of non-orthogonal eigenvectors makes an operator-fractional field a good candidate for simulating physical properties of structurally deformed rock, since the fracture sets formed by stress relief are rarely orthogonal (e.g., Davis, 1984). Presently, geostatistical simulation is used primarily to simulate undeformed sedimentary rock. Notable exceptions are Ando et al.’s (2003) non-parametric simulation of the densely fractured Fanay-AugPres site.
and Tsang et al.’s [1996] sequential simulation and addition of fracture sets as an equivalent porous medium. In these studies, the scaling properties of the simulated fields were not fractal. In the latter study, individual fields were generated for each of the correlation structures and recombined, potentially altering the overall statistical properties of the fields. Using operator-fractional random fields, realistic self-similar permeability structures can be generated in one pass by varying the principal scaling directions in \(d \)-dimensional space and their corresponding Hurst coefficients, as well as their relative weights.

To illustrate, we chose two fracture sets (scaling eigenvectors) oriented \(\pm \pi/8 \) radians from the \(x \)-axis. The weight function \(M(\theta) \) is zero everywhere except for the \(\pi/8 \) and \(7\pi/8 \) directions (polar plots, Fig. 6). Along those directions, the weights were made equal along both fracture sets (Fig. 6, left side), and three times greater on one of the fracture sets (Fig. 6, right side). The input uncorrelated noise (with no conditioning) was chosen to be Gaussian. The output field was normalized to have a standard deviation of 0.9 and exponentiated. The darker areas shown in Fig. 6 are those with higher value of \(K \). Note the fracture-like sparse and linear regions of connected high permeability. The positions of known fractures can be placed in the input noise, and the variability of effective \(K \) in individual fractures (or zones) is explicitly represented. Flow through such a limited “network” would strongly depend on both the scale of simulation and the specifics of both the weight function \(M(\theta) \) and the fractal dimensions (power laws of the convolution) in various fracture directions. Such behavior is a hallmark of DFN simulations (e.g., Bour and Davy, 1998; Bour et al., 2003; Darcel et al., 2003a,b; deDreuzy et al., 2004). In a future study, we will investigate the correspondence of flow and transport through these random fields to DFN. In the next section, we investigate transport through operator-fractional granular aquifers and the applicability of mono-fractal analytic theories.

To motivate the numerical experiment in the next section, we re-examine the gas mini-permeameter data that was collected near Escalante, Utah, and presented by Castle et al. [2004]. Point permeability data were collected along several horizontal and vertical transects in 1) an undisturbed upper shoreface cross-bedded sandstone and 2) an underlying bioturbated (disturbed) lower shoreface sandstone. The researchers calculated Hurst coefficients for a mixture of all horizontal transects (two in the disturbed and one in the undisturbed facies) and four vertical transects that span both facies. We calculated the rescaled range statistic (R/S) for each horizontal line (with 110, 132, and 135 data points spaced 15 cm apart) and found that the lower two in the bioturbated facies do not show fractal structure. We assume that the extensive reworking of the sediments by burrowing animals altered any fractal structure that might have been present. Therefore, we used only data from the upper cross-bedded unit, which left one horizontal and the upper portion of two vertical transects (with only 16 and 18 data points with spacing of 15 cm). While the vertical transects are severely shortened, the R/S statistics show reasonably fractal structure indicative of \(fBm \) with \(H \approx 0.33 \) over a small range (Fig. 7a).

On the other hand, the horizontal R/S plot shows fractal structure indicative of \(fBm \) with \(H \approx 0.45 \) over a wider

Figure 6. Operator–fractional Brownian fields (unconditional) for non-orthogonal scaling directions and weight functions. High \(K \) values are depicted by darker colors. The Hurst coefficient is isotropic with a value of \(H = 0.3 \). The dots on the lower polar plots illustrate the weights used in the upper simulations, i.e., the right field has three times more weight along the \(\pi/8 \) radian direction.
range of scales (Fig. 7a). The R/S statistic is only valid for larger lags [Molz et al., 1997]. Dispersional analysis of the deviations of means taken over different partitions [Caccia et al., 1997] is a less biased measure than the R/S variogram for fGn, and indicates slightly different structure—fBm with \(H \approx 0.6 \) at smaller partitions (Fig. 7b). This points to either a multifractal structure, or that the measurement transects were not aligned with the principal scaling directions.

One of the principal directions may, in fact, coincide with the cross-beds [e.g., Ritz et al., 2004], which dip at low angle [Castle et al., 2004]. Given the wide confidence intervals associated with the R/S statistic, and all other measures including the semivariogram and structure functions of various order [see, e.g., Tennekoon et al., 2004], a number of different dependence models cannot be ruled out. For the purposes of our numerical experiment, we simply acknowledge that the statistics for this site support a model of ln(\(K \)) that is an operator-fBm with horizontal \(H > 0.5 \) and a lower \(H \) in the vertical. We have not attempted to find the principal directions of the scaling process.

Numerous \(K \) measurements, like those from the Escalante site, very seldom are taken in the horizontal direction. One exception is Desbarats and Bachu’s [1994] large-scale (up to 100 km) analysis of aquifer transmissivity, which is consistent with an fBm with \(H \approx 0.26 \). Further evidence for fractal structure in the horizontal direction comes indirectly by inference from tracer data [Neuman, 1995; Benson, 1998]. Using the asymptotic assumption and (12) applied to apparent dispersivity data from a large number of sites, Neuman [1995] argues that \(H_{\text{horiz}} \) should be on the order of 0.25 for an fBm.

More extensive vertical \(K \) data from boreholes have been analyzed to estimate the vertical Hurst coefficient [Molz and Boman, 1993; Liu et al., 1997]. Very often, surrogate data are used to infer long-range dependence, such as gamma ray, spontaneous potential, or porosity logs from borehole geophysical surveys. Reported values of vertical \(H \) from a variety of these surrogates measured in sediments from various depositional environments span a very large range that includes both fGn and fBm [Hewett, 1986; Tulman and Crane, 1995; Pelletier and Turcotte, 1996; Deshpande et al., 1997]. The latter study also directly looked at the anisotropy of fractal structure of fluvial and deltaic sediments on the multi-kilometer scale using well logs and seismic reflection data. Using reflection amplitude from two planes extracted from distinct sandy horizons, they analyzed N-S and E-W transects for fractal structure. They concluded that the fluvial sediments (with high amplitude channels trending in the northern horizon) were consistent with fBm with \(H \approx 0.4 \) to 0.65 in roughly the direction of channels (along dip) and \(H \approx 0.05 \) transverse to the channels (along strike). Deshpande et al. [1997] found less striking evidence of horizontal anisotropy in the deltaic sediments, with different \(H \) values of 0.26 versus 0.4. All of their vertical data was in the fBm range, with \(H \approx 0.3 \) to 0.5. To sum up the \(K \) and surrogate data from many studies using different data types and different scales, vertical measurement may show a large range of the order of integration, consistent with both fGn and fBm, while horizontal sediments typically are consistent with an fBm with \(H \approx 0.25 \) to 0.65. Also note that these studies do not always test the assumption that the increments are normally distributed. Many studies have shown that the \(K \) and/or ln \(K \) data from a particular site are distinctly nonGaussian.

5. Solute Transport in Granular Aquifers

To examine the effect of the difference of the Hurst coefficients in different directions, we conducted a numerical experiment. \(K \) fields were created that are identical in every way, except for the Hurst coefficient in the direction transverse to the mean flow. The fields were created using the same input Gaussian noise, so only the Fourier filter \(\hat{\phi}(k) \) was different. The 2-dimensional Gaussian noise consisted of a 1024×1024 array of independent and identically distributed standard normal random variables. The noise was fast Fourier transformed, multiplied by the Fourier filter, and inverse fast Fourier transformed. The middle \(1/4^\text{th} \) of the field (now 512×512) was removed for flow and transport simulation.

Based on the limited data in the horizontal direction, we specified an fBm with Hurst index of \(H_1 = 0.7 \) in the horizontal direction of flow, and varied the scaling index in the transverse direction, using orders of integration from \(\lambda_{\text{vert}} = 0.1 \) to 1.5, signifying fGn with \(H = 0.6 \) up to an fBm with \(H = 1.0 \). Four of these fields are shown in Figure 8. The weights in the horizontal are equal left to right for a total of 0.9, versus similarly symmetric weight in the vertical of 0.1. For reference, when the vertical order of integration \(\lambda_{\text{vert}} = A_{\text{horiz}} = 1.2 \), the field is similar to previous isotropic and stretched models of fBm [Rayaram and Gelbar, 1995; Zhan and Wheatcraft, 1996]. The only difference is our use of four discrete, rather than continuous (elliptical) weights. The output fields were adjusted to have zero mean and a standard deviation of 1.5, then exponentiated, so that each

![Figure 7](image-url)
Figure 8. Shaded plots of four of the ln(K) fields. The fields are identical except for the order of vertical integration: a) 0.1, b) 0.5, c) 0.9, and d) 1.3. The fields are fBm in the horizontal direction with $H = 0.7$, or an order of integration $A_{\text{horiz}} = 1.2$. For particle tracking, 10,000 particles were released from the right side between nodes 128 and 384 (brackets).

field is a lognormal operator-fractional field. The fields were tested for scaling properties in the two principal scaling directions by sampling all rows and columns from the field and applying both rescaled range and disperional analyses [Liu and Molz, 1996; Caccia et al., 1997]. These plots are not shown for brevity.

After solving the head field using MODFLOW (assuming an average hydraulic gradient of 0.01 and no-flow boundaries on the top and bottom), particles were placed on the high head side and tracked using Labolle et al.’s [1996] particle tracking code. To make the simulations representative of real-world conditions, we included a small local dispersivity (equal in longitudinal and transverse directions) of 0.1 times the constant grid size of 1 foot. Since this does not correspond exactly to Neuman’s [1995] and Di Federico and Neuman’s [1998] analytic results, we performed additional simulations with no local dispersion and found no noticeable differences. Cashman [1997] and Hassan et al. [1998] more fully discuss the influence of local and nonlocal fluxes on the accuracy of analytic methods in monofractal media.

Increased orders of vertical integration (A_{vert}) have a distinct effect on both the simulated aquifer structure and the plume statistics. Lower values have less persistence of aquifer layers and allow 1) more advective mixing, 2) less spreading from persistent preferential flow, and 3) a transition from Mercado (ballistic) to Fickian flow (Fig. 9). In contrast, as aquifer gains more vertical structure and layering from the increased order of integration, the plume spreads at a nearly Mercado-like (ballistic) rate over the entirety of the simulation. Even though the mean and variance of the overall K distribution are exactly the same in all simulations, greater orders of transverse integration (A_{vert}) lead to thicker layers of high and low K material, hence more
mass in the leading edge and trailing edges of the plume (Fig. 10). The duration of breakthrough is greater by over an order-of-magnitude for the most, versus least, layered aquifer. The contribution of early arrivals and late tailing are roughly equal. The lowest value of $A_{vert} = 0.1$ shows a near-Gaussian plume after 10,000 days (Fig. 11a). The plumes become progressively less Gaussian and multi-modal with greater transverse A_{vert}.

Our numerical K fields have a low wave number cutoff equal to twice the domain size, since we subsampled the original 1024×1024 field. The Nyquist high wave number cutoff corresponds to the size of an individual cell. Therefore, the mean positions of our numerical plumes are between the large and small cutoffs. According to the criteria of Di Federico and Neuman [1998], the plumes should be in a permanently pre-asymptotic state, where the apparent dispersivity should spread supralinearly (denoted by the steepest, solid line in Fig. 9). The K fields should not foster asymptotic (Fickian) growth, if the assumptions inherent to the analytic theories are applicable. Since the elimination of local dispersion had negligible effect, we conclude that the transition to a Fickian regime by plumes in the aquifers with the least persistent layering is due primarily to advective mixing. The particles do not experience the exact K correlation structure in the longitudinal direction prescribed by the value of H_{vert}, contrary to the assumption inherent to the analytic solutions [Neuman, 1995; Di Federico and Neuman, 1995; Rajaram and Gelhar, 1998]. The particles are free to “shortcut” between high-K zones and avoid the low-K zones, making the Lagrangian correlation structure different from the Eulerian K structure.

Only the fields that are nearly mono-fractal, with $A_{vert} = 0.9$ and 1.3, agree qualitatively with the analytic predictions of Rajaram and Gelhar (Fig. 9). In these cases the particles experience roughly the same Hurst coefficient along a trajectory no matter how much lateral mixing is taking place. Since these are single, not ensemble plumes, it is not surprising that Rajaram and Gelhar’s two-particle predictions are more accurate in the nearly mono-fractal cases. However, these plumes are far from Gaussian in shape (Figs. 11c and d). The plumes in the aquifers with the least persistent layering—with lower values of $A_{vert} = 0.1$ and 0.5—show convergence to a Fickian growth rate and an approximately Gaussian plume shape (Figs. 10, 11a and b), since we specified a finite-variance lognormal K distribution. However, all of the plumes have significant fractions that travel well ahead of the Gaussian best fit (Fig. 11). Because of the low VAR($\ln K$) variance, none of the plumes show as much rapid transport in the leading edge as an α-stable plume undergoing fractional-order dispersion [Di Federico and Neuman, 1998]. Dotted line indicates two-particle (single-plume) slope from Rajaram and Gelhar [1995]. Dashed line indicates Fickian motion.

Figure 9. (a) Apparent dispersivity versus mean particle distance for various orders of integration (A_{vert}) in the vertical direction. Solid and dash-dot lines indicate permanently pre-asymptotic and early preasymptotic (i.e. Mercado) solutions for monofractals [Di Federico and Neuman, 1998]. Dotted line indicates two-particle (single-plume) slope from Rajaram and Gelhar [1995]. Dashed line indicates Fickian motion.

Figure 10. Breakthrough of particles at the boundary $x = 512$ ft.
because their theory is developed for single, not ensemble plumes. A more extensive analysis of ensembles of operator-fractional plumes would be needed to confirm this. The breakthrough of plumes is drastically affected by the transverse scaling properties of the aquifer. The most stratified aquifer (fBm in the vertical with $H=0.8$) had particles arrive nearly an order of magnitude before and after the least stratified aquifer. We used a simplistic measure of directional K dependence in our approximation of a granular aquifer. Our measure of the directionality within the surface expression of a braided stream environment may show more complex structure and different plume mixing effects. We have not yet examined the effect of more complex directional measures $M(\theta)$, whether they represent granular (Fig. 5) or fractured media (Fig. 6).

6. Conclusions

1) A multi-dimensional operator-fractional Gaussian noise/Brownian motion, or combination of the two, can be created via Fourier transform by convolving an uncorrelated Gaussian noise with a function that has the correct matrix scaling relationship.

2) Many other distributions can be chosen for the uncorrelated noise in the numerical procedure, yielding a process with operator-self-similar increments. Furthermore, the input noise may be given non-stationary statistics to represent sequences of geologic material.

3) In d-dimensions, the d primary scaling directions of the self-similar random field need not be orthogonal. Furthermore, the weights assigned to the directional fractional integrals, i.e., the convolution kernel, are freely assigned to the d-dimensional unit sphere.

4) The longitudinal moments of a moving plume depend largely on the scaling (e.g., Hurst) coefficients in the directions transverse to flow. Prior analytic results do not account for this.

5) Smaller orders of integration, representing noise or motion with small Hurst coefficients, lead to less persistent aquifer layering and greater advective mixing of a plume. In contrast to previous analytic predictions, plumes in material with small orders of integration (i.e., noisy or less persistent layering) in the transverse direction may converge relatively quickly to Fickian-type transport, regardless of the K structure in the direction of transport.
7. Notation

\(a_z \) – longitudinal dispersivity \([L]\).

\(A \) – order of fractional integration.

\(B(dx) \) – uncorrelated (white) Gaussian noise.

\(B_H(x) \) – isotropic fractional Brownian motion.

\(B_\lambda(x) \) – (operator) fractional random field.

\(fBm \) – fractional Brownian motion.

\(d \) – number of dimensions.

\(H \) – Hurst coefficient.

\(I \) – identity matrix.

\(k \) – wave vector \([L^{-1}]\).

\(K \) – hydraulic conductivity \([LT^{-1}]\).

\(M(\theta) \) – measure of directional weight within \(\varphi(x) \).

\(Q \) – deviations from isotropy matrix.

\(\text{VAR}(Y) \) – variance of random variable \(Y \).

\(\bar{X} \) – mean particle longitudinal travel distance.

\(\theta \) – unit vector on the \(d \)-dimensional unit sphere.

\(\varphi(x) \) – scaling (convolution) kernel.

\(\psi(k) \) – log-characteristic function of operator-stable distribution.

Appendix A: Calculation of \(\varphi(k) \)

Recall that the Fourier filter \(\hat{\varphi}(k) = \psi(k)^{-A} \) where \(A = H + d/2 \) and \(\psi(k) \) is the log-characteristic function of some operator stable law with exponent \(Q \). It follows (e.g., Jurek and Mason, 1993) that \(\psi(k) \) has the representation

\[
\psi(k) = \int_{|\theta|=1} \int_0^\infty (e^{-ik \cdot (r \cdot \theta)} - 1 - ik \cdot (r \cdot \theta)) \frac{dr}{\pi^2} \lambda(d\theta)
\]
(A1)

if the real parts of the eigenvalues of \(Q \) are in the interval \((1/2, 1)\), whereas

\[
\psi(k) = \int_{|\theta|=1} \int_0^\infty (e^{-ik \cdot (r \cdot \theta)} - 1) \frac{dr}{\pi^2} \lambda(d\theta)
\]
(A2)

if the real parts of the eigenvalues of \(Q \) are greater than one. In the following we will only consider the latter case. The first case can be dealt with similarly. The measure \(\lambda \) on the unit sphere is called the mixing measure or the spectral measure of \(\psi \).

Let \(1 < a_1 \leq a_2 \leq \cdots \leq a_d \) denote the real parts of the eigenvalues of \(Q \). Then \(B_\lambda(x) \) defined by (2) exists, if \((d/2)(a_d - 1) < H < (d/2)(a_1 - 1) + a_d \) which is only possible if \(a_1 < 1 + (2/d)a_1 \), putting some restriction on \(Q \). It follows that

\[
B_\lambda(cQx) = c^{A - \text{trace}(Q)/2} B_\lambda(x)
\]
(A3)

distribution, where \(\text{trace}(Q) \) is the sum of the eigenvalues of \(Q \). Furthermore, the variance \(V(x) = \text{VAR}(B_\lambda(x)) \) has the scaling relation \(V(cQx) = c^{2A - \text{trace}(Q)}V(x) \). Note that in the isotropic fractional Brownian field case, corresponding to \(\psi(k) = ||k|| \), we have \(a_1 = a_d = 1 \), so our condition in this special case reduces to the standard \(0 < H < 1 \) condition on \(H \) and (A3) is just \(B_\lambda(cx) = c^H B_\lambda(x) \).

In order to compute \(\psi(k) \) we use a discrete mixing measure \(\lambda(d\theta) = \sum M(\theta_i) \delta_{\theta_i} \), a sum of point masses \(\delta_{\theta_i} \) with user-specified weights \(M(\theta_i) \) (indicating the strength of the directional dependence). For a continuous measure \(\lambda(d\theta) \) we use a discrete approximation.

An important special case, generalizing the example in eq. \((15)\) can be obtained in the following way (we only describe the case \(d = 2 \), higher dimensional examples are obtained similarly): Fix any two non-parallel vectors \(\theta_1 \) and \(\theta_2 \) on the unit sphere and any two numbers \(1 < a_1 < a_2 < 2a_1 \). Pick any weights \(M(\pm \theta_i) \) and define the spectral measure \(\lambda(d\theta) = M(\theta_1) \delta_{\theta_1} + M(-\theta_1) \delta_{-\theta_1} + M(\theta_2) \delta_{\theta_2} + M(-\theta_2) \delta_{-\theta_2} \).

Let \(Q \) be a \(2 \times 2 \)-matrix with eigenvectors \(\theta_1 \) and \(\theta_2 \) and corresponding eigenvalues \(a_1 \) and \(a_2 \), respectively, so that \(Q\theta_i = a_i \theta_i \). Then, by some calculations we get from (A2) for some constants \(C_1, C_2 > 0 \) only depending on \(a_1 \) and \(a_2 \) that

\[
\psi(k) = C_1 M(\theta_1)(ik \cdot \theta_1)^{1/a_1} M(-\theta_1)(-ik \cdot \theta_1)^{1/a_1}
\]
\[
+ C_2 M(\theta_2)(ik \cdot \theta_2)^{1/a_2} M(-\theta_2)(-ik \cdot \theta_2)^{1/a_2}
\]
which corresponds to a weighted fractional derivative of order \(1/a_1 \) in direction \(\pm \theta_1 \) and of order \(1/a_2 \) in direction \(\pm \theta_2 \). If we let \(\hat{\varphi}(k) = \psi(k)^{-1} \) for some \(a_2 - 1 < H < 2a_1 - 1 \) then \(B_\lambda(x) \) defined by (2) exists and scales as \(B_\lambda(cQx) = c^{H+1-(a_1^2+a_2^2)/2} B_\lambda(x) \).

Acknowledgments. This work is supported by NSF grants DMS-0417869, DMS-0417972, DMS–0139927, DMS–0139943, EAR–9980484, EAR–9980489, and US DOE grant DE-FG03–98ER14885. We thank the two reviewers, Shlomo Neuman and Brian Wood, and the associate editor, John Selker, for excellent review comments.

References

