A–1 The hypothesis implies \((b \ast a) \ast b = b\) for all \(a, b \in S\) (by replacing \(a\) by \(b \ast a\)), and hence \(a \ast (b \ast a) = b\) for all \(a, b \in S\) (using \((b \ast a) \ast b = b\)).

A–2 Let \(P_n\) denote the desired probability. Then \(P_1 = 1/3\), and, for \(n > 1\),
\[
P_n = \left(\frac{2n}{2n+1}\right) P_{n-1} + \left(\frac{1}{2n+1}\right) (1 - P_{n-1})
\]
The recurrence yields \(P_2 = 2/5\), \(P_3 = 3/7\), and by a simple induction, one then checks that for general \(n\) one has \(P_n = n/(2n+1)\).

A–3 By the quadratic formula, if \(P_m(x) = 0\), then \(x^2 = m \pm 2\sqrt{m+2}\), and hence the four roots of \(P_m\) are given by \(S = \{\pm\sqrt{m} \pm \sqrt{2}\}\). If \(P_m\) factors into two nonconstant polynomials over the integers, then some subset of \(S\) consisting of one or two elements form the roots of a polynomial with integer coefficients.

First suppose this subset has a single element, say \(\sqrt{m} \pm \sqrt{2}\); this element must be a rational number. Then \((\sqrt{m} \pm \sqrt{2})^2 = 2 + m \pm 2\sqrt{2m}\) is an integer, so \(m\) is twice a perfect square, say \(m = 2n^2\). But then \(\sqrt{m} \pm \sqrt{2} = (n \pm 1)\sqrt{2}\) is only rational if \(n = \pm 1\), i.e., if \(m = 2\).

Next, suppose that the subset contains two elements; then we can take it to be one of \(\{\sqrt{m} \pm \sqrt{2}\}, \{\sqrt{2} \pm \sqrt{m}\}\) or \(\{\pm(\sqrt{m} \pm \sqrt{2})\}\). In all cases, the sum and the product of the elements of the subset must be a rational number. In the first case, this means \(2\sqrt{m} \overset{?}{\in} \mathbb{Q}\), and \(m\) is a perfect square. In the second case, we have \(2\sqrt{2} \in \mathbb{Q}\), contradiction. In the third case, we have \((\sqrt{m} \pm \sqrt{2})^2 \in \mathbb{Q}\), or \(m = 2 + 2\sqrt{2m} \in \mathbb{Q}\), which means that \(m\) is twice a perfect square.

We conclude that \(P_m(x)\) factors into two nonconstant polynomials over the integers if and only if \(m\) is either a square or twice a square.

Note: a more sophisticated interpretation of this argument can be given using Galois theory. Namely, if \(m\) is neither a square nor twice a square, then the number fields \(\mathbb{Q}(\sqrt{m})\) and \(\mathbb{Q}(\sqrt{2})\) are distinct quadratic fields, so their compositum is a number field of degree 4, whose Galois group acts transitively on \(\{\pm\sqrt{m} \pm \sqrt{2}\}\). Thus \(P_m\) is irreducible.

A–4 Choose \(r, t\) so that \(EC = r BC, FA = s CA, GB = t CB\), and let \([XYZ]\) denote the area of triangle \(XYZ\). Then \([ABE] = [AFE]\) since the triangles have the same altitude and base. Also \([ABE] = (BE/BC)[ABC] = 1 - r\), and \([ECF] = (EC/BC)(CF/CA)[ABC] = r(1 - s)\) (e.g., by the law of sines). Adding this all up yields
\[
1 = [ABE] + [ABF] + [ECF] = 2(1 - r) + r(1 - s) = 2 - r - rs
\]
or \(r(1 + s) = 1\). Similarly \(s(1 + t) = t(1 + r) = 1\).

Let \(f : [0, \infty) \to [0, \infty)\) be the function given by \(f(x) = 1/(1 + x)\); then \(f(f(r))) = r\). However, \(f(x)\) is strictly decreasing in \(x\), so \(f(f(x))\) is increasing and \(f(f(x)))\) is decreasing. Thus there is at most one \(x\) such that \(f(f((x))) = x\); in fact, since the equation \(f(z) = z\) has a positive root \(z = (-1 + \sqrt{5})/2\), we must have \(r = s = t = z\).

We now compute \([ABF] = [AF/AC][ABC] = z\), \([ABR] = (BR/BF)[ABF] = z^2/2\), analogously \([BCS] = [CAT] = z^2/2\), and \([RST] = |[ABC] - [ABR] - [BCS] - [CAT]| = 1 - 3z/2 = 2 - 3\sqrt{2}/4\).

Note: the key relation \(r(1 + s) = 1\) can also be derived by computing using homogeneous coordinates or vectors.

A–5 Suppose \(a^{n+1} - (a + 1)^n = 2001\). Notice that \(a^{n+1} + [(a + 1)^n - 1]\) is a multiple of \(a\); thus \(a\) divides \(2002 = 2 \times 7 \times 11 \times 13\).

Since 2001 is divisible by 3, we must have \(a \equiv 1\) (mod 3), otherwise one of \(a^{n+1}\) and \((a + 1)^n\) is a multiple of 3 and the other is not, so their difference cannot be divisible by 3. Now \(a^{n+1} \equiv 1\) (mod 3), so we must have \((a + 1)^n \equiv 1\) (mod 3), which forces \(n\) to be even, and in particular at least 2.

If \(a\) is even, then \(a^{n+1} - (a + 1)^n \equiv -(a + 1)^n\) (mod 4). Since \(n\) is even, \(-(a + 1)^n\) \equiv -1 (mod 4). Since 2001 \equiv 1 (mod 4), this is impossible. Thus \(a\) is odd, and so must divide 1001 = 7 \times 11 \times 13. Moreover, \(a^{n+1} - (a + 1)^n \equiv a\) (mod 4), so \(a \equiv 1\) (mod 4).

Of the divisors of 7 \times 11 \times 13, those congruent to 1 mod 3 are precisely those not divisible by 11 (since 7 and 13 are both congruent to 1 mod 3). Thus \(a\) divides 7 \times 13. Now \(a \equiv 1\) (mod 4) is only possible if \(a\) divides 13.
We cannot have \(a = 1 \), since \(1 - 2^n \neq 2001 \) for any \(n \). Thus the only possibility is \(a = 13 \). One easily checks that \(a = 13, n = 2 \) is a solution; all that remains is to check that no other \(n \) works. In fact, if \(n > 2 \), then \(13^{n+1} \equiv 2001 \equiv 1 \pmod{8} \). But \(13^{n+1} \equiv 13 \pmod{8} \) since \(n \) is even, contradiction. Thus \(a = 13, n = 2 \) is the unique solution.

Note: once one has that \(n \) is even, one can use that \(2002 = a^{n+1} + 1 - (a + 1)^n \) is divisible by \(a + 1 \) to rule out cases.

A–6 The answer is yes. Consider the arc of the parabola \(y = Ax^2 \) inside the circle \(x^2 + (y - 1)^2 = 1 \), where we initially assume that \(A > 1/2 \). This intersects the circle in three points, \((0,0)\) and \((\pm \sqrt{2A - 1}/A, (2A - 1)/A)\). We claim that for \(A \) sufficiently large, the length \(L \) of the parabolic arc between \((0,0)\) and \((\sqrt{2A - 1}/A, (2A - 1)/A)\) is greater than 2, which implies the desired result by symmetry. We express \(L \) using the usual formula for arclength:

\[
L = \int_0^\sqrt{2A - 1}/A \sqrt{1 + (2Ax)^2} \, dx
= \frac{1}{2A} \int_0^{\sqrt{2A - 1}} \sqrt{1 + x^2} \, dx
= 2 + \frac{1}{2A} \left(\int_0^{\sqrt{2A - 1}} (\sqrt{1 + x^2} - x) \, dx - 2 \right),
\]

where we have artificially introduced \(-x\) into the integrand in the last step. Now, for \(x \geq 0 \),

\[
\sqrt{1 + x^2} - x = \frac{1}{\sqrt{1 + x^2} + x} \geq \frac{1}{2\sqrt{1 + x^2}} \geq \frac{1}{2(x + 1)};
\]

since \(\int_0^\infty dx/(2(x + 1)) \) diverges, so does \(\int_0^\infty (\sqrt{1 + x^2} - x) \, dx \). Hence, for sufficiently large \(A \), we have \(\int_0^{\sqrt{2A - 1}} (\sqrt{1 + x^2} - x) \, dx > 2 \), and hence \(L > 2 \).

Note: a numerical computation shows that one must take \(A > 34.7 \) to obtain \(L > 2 \), and that the maximum value of \(L \) is about 4.0027, achieved for \(A \approx 94.1 \).

B–1 Let \(R \) (resp. \(B \)) denote the set of red (resp. black) squares in such a coloring, and for \(s \in R \cup B \), let \(f(s)n + g(s) + 1 \) denote the number written in square \(s \), where \(0 \leq f(s), g(s) \leq n - 1 \). Then it is clear that the value of \(f(s) \) depends only on the row of \(s \), while the value of \(g(s) \) depends only on the column of \(s \). Since every row contains exactly \(n/2 \) elements of \(R \) and \(n/2 \) elements of \(B \),

\[
\sum_{s \in R} f(s) = \sum_{s \in B} f(s).

Similarly, because every column contains exactly \(n/2 \) elements of \(R \) and \(n/2 \) elements of \(B \),

\[
\sum_{s \in R} g(s) = \sum_{s \in B} g(s).

It follows that

\[
\sum_{s \in R} f(s)n + g(s) + 1 = \sum_{s \in B} f(s)n + g(s) + 1,
\]

as desired.

B–2 By adding and subtracting the two given equations, we obtain the equivalent pair of equations

\[
2/x = x^4 + 10x^2y^2 + 5y^4
1/y = 5x^4 + 10x^2y^2 + y^4.
\]

Multiplying the former by \(x \) and the latter by \(y \), then adding and subtracting the two resulting equations, we obtain another pair of equations equivalent to the given ones,

\[
3 = (x + y)^5, \quad 1 = (x - y)^5.
\]

It follows that \(x = (3^{1/5} + 1)/2 \) and \(y = (3^{1/5} - 1)/2 \) is the unique solution satisfying the given equations.

B–3 Since \((k - 1/2)^2 = k^2 - k + 1/4 \) and \((k + 1/2)^2 = k^2 + k + 1/4 \), we have that \(\langle n \rangle = k \) if and only if \(k^2 - k + 1 \leq n \leq k^2 + k \). Hence

\[
\sum_{n=1}^\infty 2^{\langle n \rangle} + 2^{-\langle n \rangle}/2^n = \sum_{k=1}^\infty \sum_{n=k^2-k+1}^\infty 2^k + 2^{-k}/2^n
= \sum_{k=1}^\infty (2^k + 2^{-k})(2^{-k^2+k} - 2^{-k^2-k})
= \sum_{k=1}^\infty 2^{-k^2} - 2^{-k} - 2^{-k}(k+2)
= \sum_{k=1}^\infty 2^{-k(k-2)} - \sum_{k=3}^\infty 2^{-k(k-2)}
= 3.
\]

Alternate solution: rewrite the sum as \(\sum_{n=1}^\infty 2^{\langle n \rangle} + 2^{-\langle n \rangle} = \sum_{m=1}^\infty 2^{m^2} + 2^{-m^2} \). Note that \(\langle n \rangle \neq \langle n + 1 \rangle \) if and only if \(n = m^2 + m \) for some \(m \). Thus \(n + \langle n \rangle \) and \(n - \langle n \rangle \) each increase by 1 except at \(n = m^2 + m \), where the former skips from \(m^2 + 2m \) to \(m^2 + 2m + 2 \) and the latter repeats the value \(m^2 \). Thus the sums are

\[
\sum_{n=1}^\infty 2^{-n} - \sum_{m=1}^\infty 2^{-m^2} = \sum_{n=0}^\infty 2^{-n} + \sum_{m=1}^\infty 2^{-m^2} = 2 + 1 = 3.
\]
B–4 For a rational number \(p/q \) expressed in lowest terms, define its height \(H(p/q) \) to be \(|p| + |q|\). Then for any \(p/q \in S \) expressed in lowest terms, we have

\[
H(f(p/q)) = |q^2 - p^2| + |pq|;
\]

so by assumption \(p \) and \(q \) are nonzero integers with \(|p| \neq |q|\), we have

\[
H(f(p/q)) - H(p/q) = |q^2 - p^2| + |pq| - |p| - |q| \\
\geq 3 + |pq| - |p| - |q| \\
= (|p| - 1)(|q| - 1) + 2 \geq 2.
\]

It follows that \(f^{(n)}(S) \) consists solely of numbers of height strictly larger than \(2n + 2 \), and hence

\[
\cap_{n=1}^{\infty} f^{(n)}(S) = \emptyset.
\]

B–5 Note that \(g(x) = g(y) \) implies that \(g(g(x)) = g(g(y)) \) and hence \(x = y \) from the given equation. That is, \(g \) is injective. Since \(g \) is also continuous, \(g \) is either strictly increasing or strictly decreasing. Moreover, \(g \) cannot tend to a finite limit \(L \) as \(x \to +\infty \), or else we’d have \(g(g(x)) = \alpha g(x) = bx \), with the left side bounded and the right side unbounded. Similarly, \(g \) cannot tend to a finite limit as \(x \to -\infty \). Together with monotonicity, this yields that \(g \) is also surjective.

Pick \(x_0 \) arbitrary, and define \(x_n \) for all \(n \in \mathbb{Z} \) recursively by \(x_{n+1} = g(x_n) \) for \(n > 0 \), and \(x_{n-1} = g^{-1}(x_n) \) for \(n < 0 \). Let \(r_1 = (a + \sqrt{a^2 + 4b})/2 \) and \(r_2 = (a - \sqrt{a^2 + 4b})/2 \) and \(r_2 \) be the roots of \(x^2 - ax - b = 0 \), so that \(r_1 > r_2 \) and \(|r_1| > |r_2| \). Then there exist \(c_1, c_2 \in \mathbb{R} \) such that \(x_n = c_1 r_1^m + c_2 r_2^m \) for all \(n \in \mathbb{Z} \).

Suppose \(g \) is strictly increasing. If \(c_2 \neq 0 \) for some choice of \(x_0 \), then \(x_n \) is dominated by \(r_2^m \) for \(n \) sufficiently negative. But then there are arbitrary large positive \(x \) for which \(g(x) \) is negative, contradiction. Thus \(c_2 = 0 \); since \(x_0 = c_1 \) and \(x_1 = c_1 r_1 \), we have \(g(x) = r_1 x \) for all \(x \). Analogously, if \(g \) is strictly decreasing, then \(c_2 = 0 \) or else \(x_n \) is dominated by \(r_1^m \) for \(n \) sufficiently positive, so there are arbitrary large positive \(x \) for which \(g(x) \) is positive, contradiction. Thus in that case, \(g(x) = r_2 x \) for all \(x \).

B–6 Yes, there must exist infinitely many such \(n \). Let \(S \) be the convex hull of the set of points \((n, a_n)\) for \(n \geq 0 \).

Geometrically, \(S \) is the intersection of all convex sets (or even all halfplanes) containing the points \((n, a_n)\); algebraically, \(S \) is the set of points \((x, y)\) which can be written as \(c_1(n_1, a_{n_1}) + \cdots + c_k(n_k, a_{n_k}) \) for some \(c_1, \ldots, c_k \) which are nonnegative of sum 1.

We prove that for infinitely many \(n \), \((n, a_n)\) is a vertex on the upper boundary of \(S \), and that these \(n \) satisfy the given condition. The condition that \((n, a_n)\) is a vertex on the upper boundary of \(S \) is equivalent to the existence of a line passing through \((n, a_n)\) with all other points of \(S \) below it. That is, there should exist \(m > 0 \) such that

\[
a_k < a_n + m(k - n) \quad \forall k \geq 1. \quad (1)
\]

We first show that \(n = 1 \) satisfies (1). The condition \(a_k/k \to 0 \) as \(k \to \infty \) implies that \((a_k - a_1)/(k - 1) \to 0 \) as well. Thus the set \(\{(a_k - a_1)/(k - 1)\} \) has an upper bound \(m \), and now \(a_k \leq a_1 + m(k - 1) \), as desired.

Next, we show that given one \(n \) satisfying (1), there exists a larger one also satisfying (1). Again, the condition \(a_k/k \to 0 \) as \(k \to \infty \) implies that \((a_k - a_n)/(k - n) \to 0 \) as \(k \to \infty \). Thus the sequence \(\{(a_k - a_n)/(k - n)\}_{k>n} \) has a maximum element; suppose \(k = r \) achieves this maximum, and put \(m = (a_r - a_n)/(r - n) \). Then \(m \) is the smallest slope such that the line through \((n, a_n)\) of slope \(m \) has no points \((k, a_k)\) lying above it for \(k > n \). We are given that there is some line through \((n, a_n)\) with no points \((k, a_k)\) lying above it at all; the slope of that line must be at least \(m \). Thus the line through \((n, a_n)\) of slope \(m \) also has no points \((k, a_k)\) lying above it for \(k < n \). Since that line also passes through \((r, a_r)\), we conclude that (1) holds for \(n = r \) with \(m \) replaced by \(m + \epsilon \) for suitably small \(\epsilon > 0 \).

By induction, we have that (1) holds for infinitely many \(n \). For any such \(n \) there exists \(m \) such that for any \(i = 1, \ldots, n - 1 \), the points \((n - i, a_{n-i})\) and \((n + i, a_{n+i})\) lie below the line through \((n, a_n)\) of slope \(m \). That means \(a_{n+i} < a_n + m \epsilon \) and \(a_{n-i} < a_n - m \epsilon \); adding these together gives \(a_{n-i} + a_{n+i} < 2a_n \), as desired.