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Abstract. So-called spreadsheet programs are forerunners of
new general software from which the ground-water engineer
is likely to benefit—no more special programs each capable
of fulfilling just that single task it was explicitly designed
for, but programs suitable to do almost any job, where

only the fantasy of the user limits the possibilities. More-
over, this new software shows us what user friendliness
looks like and proves that it is completely superfluous to be
a computer specialist to use it.

With a spreadsheet you can build a simple finite-
difference model from scratch within one or two minutes.
With some extra time a wide versatility of problems can
be solved as the multiaquifer, three-dimensional, phreatic
and transient ground-water flow examples prove. This way
any hydrologist should be able to solve diverging ground-
water models himself without depending on special
numerical models. All he needs beyond a microcomputer
and a spreadsheet program is a good knowledge of the
water balance.

Introduction

The use of special ground-water computer
programs, capable of doing just those tasks they
were explicitly designed for (many of them only
run well when managed by a specialist) will be
forced into the background more and more. The
reason for this is the tremendous explosion of the
capabilities of general purpose software. The soft-
ware I refer to will be as useful to the local grocer
as 1t is to the nuclear specialist or anyone else who
has to deal with numbers. The ground-water
specialist may just as well benefit; I will show you
how any hydrologist can build his own ground-
water models using the same piece of general soft-
ware he may have been using to do the bookkeep-
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ing of his golf club. Moreover, if the model is not
too complex, it will run from scratch in just a
couple of minutes. There is no need to get either a
Master’s degree in computer science or numerical
analysis to do it; all you need is a good spreadsheet
program and a microcomputer, as well as a good
sense of water balances.

Spreadsheets, Forerunners of Future Software

A spreadsheet or electronic worksheet is a
computer program for general use. With it you can
specify any relations you want in a simple and
user-friendly way. The large software houses make
their popular spreadsheets run on almost any
“micro.” The most popular ones like “visicalc” and
“multiplan” will run on a great variety of personal
computers. Their price is normally about $300, for
which you receive a thick manual together with the
program on a floppy disk that will run right away
on your computer. Of the visicalc program alone,
over 300,000 copies have been sold. (‘“Visicalc”
and “multiplan’ are trademarks of VisiCorp and
MicroSoft Corporations, respectively.)

The possibilities of spreadsheets are so
extensive and versatile that it is often stated that
they alone justify the purchase of a microcom-
puter. The calculation work for reports which
usually takes several days even with the program-
mable calculator is now fixed in a matter of hours
with the spreadsheet.

A spreadsheet gives you a matrix of compart-
ments (cells) on the screen lined up in rows and
columns. The total number of cells exceeds many
times the number that will fit on your screen at
one time. However, with the “arrow-keys’’ on the
keyboard, you can move to any part of the work-
sheet and with the windowing features you can
have different parts of the worksheet on the screen
at the same time.

With a spreadsheet you can do the following:

1. Place a piece of text in any cell (for
instance, “pi=" in one, ‘“r=""in another one, and
“circumference=""in the third cell).

2. Place a number in any cell (for instance
“3.1415965” next to the cell holding the text
“pi=""and “7” next to “r="").

3. Put an equation in any cell that connects
any number of compartments in any way to the
cell which keeps the equation. The number that
comes out of the equation then becomes visible in
the cell you put the equation into. In this example:
to obtain the value of the circumference, you will
not calculate 2*pi*r on your calculator and fill the
result into the cell next to “circumference=,” you
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say: “what [ want in this cell is 2 times the value
next to ‘pi=’ times the value in the cell next to
‘r="."" This “saying” is accomplished in an
extremely simple way using the arrow keys on the
keyboard and the multiplication key. After this,
the result appears. If you change the value next to
“r="" the equation is automatically and instantly
recalculated, yielding the new circumference in the
compartment where the equation has been
specified.

In this way any cell may be connected with
several other cells in any way. You are not limited
to adding and multiplication;.there are a great
number of special functions directly on hand (In,
sin, square root, etc.). Equations, numbers, and
text that you need elsewhere in the sheet are not
retyped; they are simply copied into the new
fields. In this way you can build your own model
on the screen of your personal computer and calcu-
late your way through a hydraulic installation or
whatever. The result will always be a neat report
you can readily printout and publish and, of
course, store on a ‘“floppy” disk to refine your
work at a later time. With the more advanced
spreadsheets you can also use conditional
equations and iterate. At this point it will be clear
to any engineer that such a means will extend his
personal capabilities, and the purchase of a micro
really pays.

A Ground-Water Model Within Two Minutes

Such an electronic worksheet (I use ‘“‘multi-
plan”), makes it possible to build and run a
ground-water model from scratch within a couple
of minutes. A special ground-water program is not
necessary. By way of illustration, consider the
most simple case: a steady-state two-dimensional
one-layer ground-water model having the same
transmissivity all over. Adopt a square mesh of
points in which to calculate ground-water-head
values, since such a mesh fits naturally in the row-
and-column pattern of the sheet. These starting
points lead to the Laplace equation in two
dimensions which after discretization changes to
the relationship that the value in any mesh point is
one-fourth of the sum of the values in the four
surrounding points. (This is the most simple form
of the finite-difference method, also called relaxa-
tion method; see Verruijt, 1970).

To achieve this you send the cursor, this is the
flashing rectangle on the screen showing just where
you are, to the cell where you want the top-left
corner of the model. This is done using the arrow
keys. Here we say that the value in this cell must

382

equal “(his right neighbor + his upper neighbor +
his left neighbor + his lower neighbor)/4.” With
five keystrokes we copy this equation into all of
the other cells that are going to be part of the
model area, and the model is ready! No more than
a minute has passed. Of course, we left an open
row on all sides to place the boundary conditions.
If this room is not available, simply insert as many
rows and columns as you need by just a couple of
keystrokes. If the head at the boundary should be
zero, you don’t have to specify anything as the
program will interpret any empty cell as zero. If
you need something else, fill it in and copy it into
all other cells that should have the same value. The
only thing left to be done is to specify internal
boundaries like rivers, wells, etc. The simplest way
to do this is to fill some fixed head into one or
more of the inner points of the model area.
Touching the exclamation point of your keyboard
suffices to start the iteration process. After this
you will notice the numbers start changing on the
screen. The program stops automatically when the
greatest change in one iteration is less than 0.001;
if you want some other criterion, it may be
specified easily.

The number of nodes that will fit into the
64k memory of my Apple //e computer is approxi-
mately 1000 and may be called reasonable. With
any one of the 16-bit machines that are becoming
less expensive and which can have a megabyte of
memory or more, the number of possible nodes
will be an order of magnitude higher!

Leaky aquifer conditions, simultaneous flow
in a number of aquifers, three-dimensional flow,
even transient and purely phreatic flow are just
some of the many possibilities that can be directly
calculated with a good spreadsheet, without the
need of a special ground-water program.

Simple Situation

We start with a simple situation, namely a
single-layer aquifer in two dimensions with the
same transmissivity throughout, and a network
that consists of squares. The equation already given
is valid for any point, provided it is fully sur-
rounded by water. This equation and all that
follow are easily and straightforwardly dervied
from a simple water balance around the point
under consideration. For Figure 1A, this is done as
follows:

Continuity states that:

Qi+ +qs+qs=Q

in which q, [L¥t] is the specific ground-water flow



Q
0513020 &)/ 1

b1 04397 z¢ ¢,. kDV ©

| 3

2

RNVA

1
33 ¢ ¢¢7kD)/h

Fig. 1. Single-aquifer model: calculation of the head in a
meshpaoint from the values in the surrounding points for
various situations,

from the node under consideration to the sur-

rounding nodes as given in Figure 1A, and Q [L%/t]

is a flow from the outside world into this node.
Now, applying Darcy’s law:

qi = kD L (¢o— ¢1)/L

in which ¢, is the head in the node under consider-
ation and ¢ is the head in one of the surrounding
nodes [L], L is the width of one square of the mesh
of nodes [L], and kD [L%t] is the transmissivity
of the aquifer, being the product of its perme-
ability k [L/t] and its thickness D [L].

Combination yields as the end result the
relaxation equation already given but now
extended with the flow Q:

Q
= + +—)/4
$o= (@1 + ¢+ 03+ ¢4 kD)
(note that Figure 1 only shows one single node

with its immediate surroundings; it is a so-called
calculation molecule).

We also need equations for special points in
the model area such as points near impermeable
walls, corners and the like. These equations and the
cases for which they are valid are given in Figure 1.

It will be clear that these relations permit the
use of a given flow as a boundary condition instead
of a given head. On the other hand, the flow into
or from points with a given head may be calculated
directly with these equations. For a node as in
Figure 1A, this becomes:

szD [4‘150'" (¢1 + ¢ +¢3+¢4)]

which may be placed anywhere in the spreadsheet.
It is also possible to incorporate precipitation.
Simply extend Q with the precipitation flow into
the node:

Q- Q +nlL?

in which n is the precipitation rate [L/t], and L? is
the area of influence of the node. As will be
shown, head-dependent fluxes may just as well be
used in this scheme.

If the transmissivity is not a constant, it may
be incorporated into the equations (Figure 2A).
Very often the transmissivity varies along a line
rather than randomly, so that the case of Figure 2B
applies, simplifying the equation.
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Fig. 2. A: Top view on heterogeneous aquifer. B: A
constant transmissivity along one line strongly simplifies
the equation. Omit terms containing the aquitard resistivity
c for fully artesian aquifers (and in vertical cuts like Figure
3, where permeabilities take the place of transmissivities).
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Fig. 3. Flow underneath a retaining wall in vertical cut.
Boundary conditions: heads —3 m and —15 m; calculated
total flow: 28.2 m%d.

With the equations derived thus far, a number
of interesting ground-water problems may already
be solved. Figure 3 gives an example of a vertical
cut through the ground-water flow underneath a
retaining wall, where the deepest part of the
aquifer has a permeability that differs from that of
the upper part. The total flow has been calculated
as explained above. This water balance has been
used here as the criterion to stop the iteration
process. (At the moment I broke off this process
the total outflow amounted to 28.27 m?%d and the
total inflow 28.08, the difference decreasing
further with every iteration step. It is clear that the
spreadsheet for such a problem can be stored on a
floppy disk so that similar situations arising in the
future can be solved by simply changing some of
the values on the sheet.

Speed of Convergence

If you apply the equations as given, you will
find that sometimes several hundreds of iterations
are needed. This may cost some time, a night for
instance. This problem occurs mainly if there is
only a small number of points with a given head, in
general, when the problem is poorly conditioned.
The number of iterations needed may, however, be
reduced effectively by so-called over-relaxation.

Over-relaxation works as follows: let the
difference of the head in a point between two
iterations be A¢. In that case, the old value ¢~ in
this point will be incremented by A¢ to obtain the
new value ¢*. If this process is too slow, don’t
increment the old value by A¢, but by a*A¢
instead, in which the overrelaxation coefficient «
is greater than 1. A value of 1.5 to 1.7 is often
capable of speeding up the iteration process by one
order of magnitude.

We can incorporate over-relaxation as follows.
The new value ¢* is derived from:

¢;=%(¢1+¢2+¢3+¢4)
384

Its change in one iteration, Ag,, therefore equals:
Apo=9¢"— ¢ ==¢o+ (¢, + ¢y + 3+ ¢4)/4

To obtain over-relaxation, we apply a* to this
change to calculate the new value:

¢" = ¢ +algg
Written out, this gives:
$o=(1—-a)¢s+a (¢, + ¢+ 63+ 04)/4

The new value in the cell considered is there-
fore obtained from the values in the surrounding
compartments as well as the over-relaxation coeffi-
cient and the value that was already in the cell. o is
placed somewhere else in the spreadsheet and is
used by all the equations. This technique is applied
in the same manner for all of the other equations.

More Complex Situations

If you have several aquifers with simultaneous
ground-water flow interconnected via semiperme-
able aquitards, you have a more complex situation,
one which occurs often in practice.

Proceeding in the same manner as before we
obtain the following relationship for the situation
in Figure 4A:

Q
Go=(P1+P,+d3+ da+ 105+ 0 +k_D)/(4+§'1 +§2)

in which ¢, = L*(kDc,), ¢, = L¥(kDc,), and where
¢y, ¢; [t] are the resistances of the top and bottom
aquitards, respectively.

Of course, over-relaxation may be applied in
just the same way as before. Also, the relationships
for special points along boundaries, etc., may be
derived in a straightforward manner. The results
are given in Figure 4. Figure 5 gives an example of
simultaneous flow in two interconnected aquifers
calculated in this way with the spreadsheet.

It is clear that fluxes may be introduced
which depend on the head itself. You need to
extend the {-values in the equations with:

o=(... 4o+ M. +5+...)

in which §; = A;/(kDc;), and where A/c is the
entrance resistance for that point. A [L?] may be
thought of as the area of, for instance, a piece of
canal or river that is hung to that particular point,
and c [t] as the resistance of the sludge layer at the
bottom of this canal. An arbitrary number of
different canals, rivers, ditches, etc., each having its
own given head, area, and resistance, may in this
way be connected to a single mesh point, together
with semipermeable layers (being really the same),
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Fig. 4. Multilayer model: calculation of the head in a node
from values in the surrounding meshpoints for various
situations.

a flow Q into the node, and precipitation (the
latter being really the same as a flow Q).

Phreatic Water

Phreatic water may seem a problem, since the
aquifer thickness itself is now dependent on the
ground-water head, introducing nonlinearity
between the head and the ground-water flux. The
problem, however, proves not very serious when
the right “trick’ is applied, and convergence occurs
readily. By way of introduction we now derive the
equation. The only difference from the previous
equations is the necessity to connect the aquifer
thickness, D [L], to the head [L], and the floor
height, z [L], of the phreatic aquifer. To do this
we write for the thickness the average of the water
depth between two adjacent points, 1, j:

Dij = % (¢i + ¢j) — 2

Thus, the combination of continuity and Darcy’s
law yields:

K(po—0 1) [Ve(do+d1)=2] +K(Po—¢2) [Ya(@o+02)—2] +
K(po—03)[Va(@o+03)—2] +K(do—0a) [V2(do+0a)—2] +
(po—¢e) L¥c=Q +nl?

and after some ordering, we get:

2

L
205— 426+ Tobo” V(@] + 93 +¢3+ 03)

~z(¢+Pa+ 93+04) + L2 /(kc) + Q/k + nL?/k

Now this equation is linearized in an exact way in
order to apply iteration as usual:
L? nl? Q

b +_"‘+—]

[Ya(g3+. . +o3)—z(p, + +¢4)+k A

$o= L2
(2¢o— 4z +—)
ke

In other words: the new value ¢, (¢, at the left side
of the “="" sign) is obtained from the values in the
surrounding mesh points as well as the value that
was already in the cell considered (¢, in the denom-
inator of the right-hand side of the equation). In
this equation we also incorporated flow toward
another aquifer via a semipermeable layer as well

as precipitation and a flow Q from the outside
world into the node. You may, of course, remove
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Fig. 5. Simultaneous flow in two aquifers. The 0.0-head
boundary is fixed; the other boundaries are impermeable.
Withdrawal takes place at the left-hand corner in the lower
aquifer. For sake of presentation, both aquifers are shifted
with regard to each other,
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Fig. 6. One-dimensional simultaneous flow in two aquifers,
of which the upper one is truly phreatic. Precipitation:
0.001 m/d. Withdrawal from the lower aquifer is as shown.
Upper pair of head curves for zero withdrawal, middle pair
for 1200 m?%d withdrawal, lower pair for 2400 m%d with-
drawal. In the latter case, the phreatic aquifer dries up
partially and the flow towards the lower aquifer is switched
off automatically over this area. (The permeability of
phreatic aquifer = 10 m/d; the resistance between the
aquifers = 2000 d; the transmissivity of the lower aquifer =
500 m¥d).

from the equation those parts you don’t need or
extend it in the same way as before. Also, the
equations for special points are derived in a
straightforward way, whereas over-relaxation may
be applied as usual; the equations will then become
rather complex. Figure 6 gives an example (that
was kept one-dimensional for reasons of easy
presentation only) of a phreatic aquifer on top
with precipitation and a semiconfined aquifer with
a withdrawal at the line of symmetry (closed
boundary).

It is interesting that the relation holding for
the phreatic aquifer allows that aquifer to fall
completely dry over some area, when the with-
drawal from the lower aquifer is increasing.
Numerically no direct problems arise, since the
denominator of the equation does not normally
become zero when the head of the phreatic aquifer
equals its floor height, =z, that is, falls dry. You
can simulate this phenomenon by using conditional
equations, an option that is standardly available in
the spreadsheet I use (“multiplan”). Its form is
IF(A,B,C), meaning: If A is true, then we do B,
else we do C. In this case we take:

IF (¢, < z + 8, z, equation)
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The relationship before the first comma is true
when the aquifer falls dry (head under the aquifer
floor z; & is an arbitrary, small value that avoids
numerical problems. Take 8, for instance, one
inch). z between the commas tells that in that case
the head will be fixed at the floor height of the
phreatic aquifer. After the second comma we place
the equation for phreatic flow as given, which is
then evaluated if the phreatic aquifer is not dry.

Doing this, we introduce a hydrological
problem with the lower aquifer, since keeping the
head of the phreatic aquifer fixed means too great
an inflow into the lower aquifer. This problem is
solved by applying conditional equations in the
lower aquifer as well. These have the form:

IF(¢s <z + 8, equation 1, equation 2)

Thus, when the head ¢ in the point above the
considered node in the lower aquifer equals the
tloor height of the phreatic aquifer, which is there-
fore dry, equation 1 is evaluated and equation 2 is
not calculated. Now equation 1 is chosen to be the
relationship holding for completely confined flow,
that is without vertical seepage to or from adjacent
aquifers, and equation 2 is the one holding for
semiconfined flow, therefore receiving water from
or losing water to adjacent aquifers. This condi-
tional relationship therefore switches off the
seepage from the phreatic aquifer as soon as it falls
dry over the point considered. This solves the dry-
falling problem of the phreatic aquifer. Figure 6
shows what is obtained when the withdrawal in the
lower aquifer is increased from zero via 1200 to
2400 m%d.

Three-Dimensional Flow

Three-dimensional flow fits directly into the
method we have been following. Consider a point
in a network in space, consisting of equal cubes.
Figure 7A shows a single node of this network
together with the nodes directly surrounding it.
Continuity states:

Q1 +Q2+q3+Qa+tQs +qe=Q
while Darcy gives:
qo-i = kL? (¢ - $1)/L

so that in total, we have:

Go=(p1 + 0y +¢3+da+ s +¢6+']?_L)/6

Figure 7 gives the situation and the relations
for other nodes, i.e. nodes which are not entirely
surrounded by water.



In our spreadsheet we carry out the calcula-
tion of the three-dimensional network in the same
way as we did for problems with more than one
aquifer. That is, for every layer of nodes a field of
cells is reserved in the sheet, and these fields are
connected with each other. A regular spacing of
these fields allows you to copy entire fields, their
connections inclusive, to obtain as many as you
want, with only a couple of keystrokes. Figure 8
gives an example of a three-dimensional problem
that was calculated in this way.

Transient Ground-Water Flow

Transient, unstationary flow can be tackled
with the spreadsheet as well. This proves hardly
more complex than the flow in semiconfined
aquifers.

Consider the timespan or timestep t;, t; of
length At. Denote the heads at the beginning of
this timespan with ¢~ and those at the end of this
timestep with ¢*. Let ¢ (withouta “+” ora *“-”
mark) be the head at some intermediate time

0.=10:0;0:0:9:0 5 )/6

AT T a0, = @
¢1+ 7@; ;@;Qﬁhﬁ_l / 3/

©
® it

Ry N
@ ¢o-"[¢1+ 02+ [I);f Q/kL]/ &
Fig. 7. Three-dimensional model; calculation of the head in
a node from values in the surrounding nodes for various
situations,

Fig. 8. Calculated three-dimensional problem (6 x 6 x 6
nodes, 10 m mesh) in a piece of aquifer (50 m x 50 m x 50
m, permeability 10 m/d) that is closed at all sides. Shown
are the three-dimensional potential surfaces caused by the
flow between the ditch (given head = 0) and the well (two
nodes with given head of 10 m). The calculated total flow
equals 920 m%/d.

within the step for which the total flow at that
moment equals the average flow over the entire
timestep. From the mid-value proposition from
calculus, it follows that such a time exists.

With these definitions, you obtain the follow-
ing water balance for the node under considera-
tion:

(Qi+qQ2+qa+qQa)At+ (" —¢7) L?u +
2

L
(9o — ¢s)—At+...=QAt+nL*At
c

After applying Darcy’s law and dividing the
equation by the transmissivity, kD, and the
timestep, At, we have:
4o~ (B, +d2+ @3+ ¢a) + ("~ ¢ )y +

( ) L? Q N nL?
—Ps)—+ .. =
Pom 087 kD kD

in which:
v = L2u/(At kD)

and u is the storage coefficient (specific yield).

¢ can be expressed in the head at the beginning
of the timestep and the head at its end. Let 0 be
some value between 0 and 1, then:

o=¢ +0(¢"—9¢)
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so that
p-¢ =(p-9¢)/6
Filled in, this gives:

y L2 nl? Q
. _(¢1+--+¢4+'§¢0+ DC¢5+--E+EB)
0=
L2
@+le—)
6 kDc

With this relationship and given value of 6,
the head in the intermediate point within the
timestep can be calculated iteratively from the
heads at the beginning of the timestep and the
heads of the surrounding nodes. (You may have
noticed that the time-dependency enters this
equation in exactly the same way as the flow to
adjacent aquifers.) The heads at the end of the
timestep follow directly from those at the start of
the timestep and the calculated values at the
intermediate time:

9" =0 +(p-0)/0
(This method was published by Verruijt in 1972.)

By building up a field with the equations for
one timestep, and then copying the entire field to
other locations in the spreadsheet, the heads can be
calculated for a great number of timepoints in one
single run. (There are more ways in which this
effect can be achieved, for instance by switching
back and forth between fields and so having time
incremented automatically until some given point
in time is reached).

The value of 6 plays an important role. This
coefficient determines the amount of explicitness
of the calculation. 6 = 0 gives a fully explicit calcu-
lation; 6 = 1 is fully implicit, while 6 = 0.5 yields
the central difference method of Crank-Nicholson,
normally giving the highest accuracy. 8 > 0.5
guarantees stability of the solution, while § < 0.5
yields oscillating solutions if you have a poor ratio
between mesh width, transmissivity, storage
coefficient, and timestep; At kD/(uL?) should then
be smaller than 0.5. A value for 6 of 2/3 is
practical; it coincides with the finite-element
approximation of the time derivative according to
Galerkin. Figure 9 gives an example calculated in
this way.

Arbitrary Refinement of the Network

Arbitrary refinement of the network is some-
thing many a ground-water model user has been
longing for whenever he found himself bending
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Fig. 9. Calculated head at various points in time in a 10 km
x 10 km square area with fixed boundaries (head = 0),

which had a horizontal ground-water level equal to 0 at

t=0. (kD = 1500 m?d, storage coefficient = 0.25,
precipitation = 0.001 m/d.)
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Fig. 10. Calculation of head in marked (black) meshpoints
from values in surrounding nodes at the boundary of a fine
to coarse part of the network,
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Fig. 11. Example of network refinement and the effect of a retaining wall. The finer meshed inner part of the network
{mesh = 12,5 m) contains two aquifers that are connected together to one total aquifer at the boundary with the first
network coarsening. The upper aquifer is truly phreatic and falls dry within the dashed line {(—11.25 m), because of the
ground-water withdrawal from the lower aquifer only. The total withdrawal calculated is 880 m?/d; the permeability of the
top layer = 5 m/d; the resistance between the top aquifer and the lower one = 25 d; the transmissivity of the lower aquifer =
20 m?%d; the total transmissivity in the outer part of the network equals 50 m?%d. The coarsening of the network is the same
towards all sides and is partly visible in the lower left-hand side of the picture where —3 m marks the given head at the outer

boundary of the network.

over one of the many completely unsystematic-
looking triangular mesh patterns.

Now, consider a fine mesh of squares con-
nected to a mesh of squares with double side
length. (A mesh of squares and doubling the side
length makes life easy, but this is not a necessary
restriction). Figure 10 gives the situation. We may
now develop the water balance for the transition
from the fine to the coarse network, carefully con-
sidering the width of flow toward any of the
nodes. Only one of each of the nodes needing a
different equation has been made black in Figure
10. It suffices to consider only these nodes as the
equations in similar nodes will be the same and are
obtained by copying. The relationships you get are
given in Figure 10.

If the inner part of a network is to be refined

in this way, there will be too few free cells within
the coarser outer part. This can be solved by
placing this inner part elsewhere on the spreadsheet
and connecting it from there with the coarser part
of the network. You can repeat this as many times
as you want (as far as your computer memory will
allow you) in order to achieve a really impressive
refinement. For the problem in Figure 11, I worked
this way. You can, however, also start the other
way around, with the finest part of the network,
and work outwards. Doing this you will be able to
get an impressive model area in a very condensed
form onto your spreadsheet. Except for the results
themselves, Figure 11 shows part of the network
used. Figure 11 has some other specialties; the fine
inner area consists of two aquifers connected to
each other via a semipermeable layer. These two
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aquifers are combined to just one total aquifer at
the boundary of the fine inner part of the network.
Within the inner part of the network the top layer
contains truly phreatic water as described; more-
over, the withdrawals (from the lower aquifer
only) made the phreatic aquifer fall dry within the
dashed line (head = -11.25 m). Furthermore, the
lower aquifer contains a retaining wall around
which the ground water has to flow toward the
wells. This wall is made up from the special
equations given in Figures 1 and 4. The relation-
ships for this wall have been chosen so that it does
not have a thickness equal to the square size of the
local network, but zero thickness instead. Figure
1E shows how such relations can be derived in the
usual way. In fact, by adjusting the given equations
appropriately, you are able to have an impermeable
or a semipermeable wall run between the nodes of
your network in an arbitrary way, without the
need to move meshpoints to the wall or vice versa,
and still obtain an exact representation of the wall
itself.

Summary and Conclusions

This paper shows some of the possibilities the
electronic worksheet may offer to the engineer.
Electronic spreadsheets form the precursors of a
new way of working and a new generation of soft-
ware, not of specialists’ software capable of doing
only that specific job it was designed to do, but
software that can be used for a large variety of
problems, and that excels because of its user-
friendliness (i.e., behaves as you expect it to
intuitively), and for which computer knowledge is
completely superfluous. The creator of this soft-
ware could never have foreseen all the fields his
product will be used for. Its application is only .-
limited by the fantasy of the user. °

A modest show of the possibilities has been
given with various ground-water problems. It was
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easy to obtain a simple finite-difference model,
consisting of several hundreds of nodes, from
scratch, within just a couple of minutes and have it
run. In any case, with the means given, any
hydrologist should be able to solve a broad variety
of problems without a lengthy study to do it
analytically (only possible in a limited number of
cases, anyway ), and without depending on some
mystic ground-water models he might have been
forced to use until now. Notwithstanding the fact
that a good finite-element or finite-difference
program stays useful for extensive problems with a
lot of heterogeneity, the method presented here
will undoubtedly achieve its own place in daily
engineering practice. A good feeling of the water
balance is again becoming many times more
important than computer knowledge or program-
ing ability . . . and so it should be.
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