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Abstract: This paper presents an economic interpretation of optimal stopping in a common class of 
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that at stopping the rate of return from delaying a project has fallen to the rate of interest. The return from 

delay is the sum of a capital gain on the project value and a capital loss on the option premium associated 

with waiting. The opportunity cost of delay is the short rate of interest. Prior to stopping the total rate of 

capital gain exceeds the short rate of interest. At stopping these forces are balanced. (b) Under uncertainty 

as well the expected rate of return from delaying a project exceeds the rate of interest prior to stopping.

The return from delay is again the sum of a rate of change in project value and a rate of change in the 

option premium associated with waiting. At stopping the expected rate of capital gain from delay has 

fallen to the rate of interest. Viewing stopping in this unified way reveals additional theoretical and 

practical insights that have been obscured and even misinterpreted in conventional treatments of stopping 

under certainty and uncertainty. In particular, we review and reinterpret the roles of project capital gains, 

uncertainty, irreversibility, and repeatability in motivating delay.
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1. Introduction

At any time in an industry certain distinct, irreversible economic actions may be perpetually available 

but not undertaken. The actions may be offensive (e.g., construction, expansion, acquisition, or re-

opening) or defensive (e.g., abandonment, contraction, divestiture, or temporary closure). Some 

would be profitable (would produce a positive discounted payoff) if implemented at the time, but are 

instead held “on the shelf” until some optimal stopping time. An example is Total SA’s April 2009 

announcement that it is weighing delaying the development of its C$9 billion Joslyn oil sands mine in 

northern Alberta in anticipation of lower future capital and operating costs.1

The mathematics of optimal stopping under uncertainty is unassailable. What is not well 

understood is the economics of stopping rules. Why is it optimal to stop irreversibly a perpetual 

random process at a given point? Two-period and other recursive stopping models based on 

finite decision horizons provide little guidance. Value-of-information explanations are 

ubiquitous and of some comfort, but why does waiting for more information at some point 

become ill advised? Sometimes intuitively plausible explanations from stopping problems 

under certainty – forestry or wine storage – are evoked, as are notions of opportunity costs

(e.g., Murto 2007). Our search is for a rigorous exposition of the economics of optimal 

stopping under uncertainty.

Continuing the “two-way street” between resource economics and the rest of economics 

(Heal 2007), we use insights from stopping problems in resource economics to show that 

stopping under uncertainty has the same economic interpretation as under certainty; stopping is 

optimal when the expected benefit to waiting, namely, the rate of capital gain on the project 

value plus the rate of capital gain on an option premium associated with waiting, falls to the 

                                                
1 Wall Street Journal, Tuesday April 7, 2009, p. B2.
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opportunity cost of waiting, the interest rate. This “r-percent rule” was first recognized by 

Martin Faustmann in the 1840s for forestry harvesting decisions under certainty (Gane 1968).

Modern resource economics provides the additional insights needed to extend the rule to the 

case of uncertainty. In developing this unified view of the economics of stopping problems, we 

bring out theoretical and practical insights about the roles of project appreciation, uncertainty, 

irreversibility, and repeatability in motivating delay that have been obscured and even 

misinterpreted in the conventional treatments of optimal stopping.

2. Stopping under Certainty

The results derived in this section provide a framework under which to investigate stopping under 

uncertainty. They also dispel some incorrect notions about waiting that are current in the profession. 

For example, in the absence of uncertainty it is often suggested that the simple NPV stopping rule 

applies. Fisher (2000, 203) unconditionally states that “…the option to postpone the investment has 

value only because the decision-maker is assumed to learn about future returns by waiting.” Hurn and 

Wright (1994, p. 363) are equally unequivocal: “…in the absence of new information, waiting to 

invest has no value.”2 We will show that waiting to invest can have value under certainty; in an 

example in Appendix 1.A, waiting generates 99% of an asset’s current value.

                                                
2 Similar statements abound in the literature. “The rule, ‘invest if the net present value of investing exceeds zero’ is only 

valid if the variance of the present value of future benefits and costs is zero…” (McDonald and Siegel 1986, 708). “The 

value of waiting is driven by uncertainty” (Amram and Kulatilaka 1999, 179). “…the simple NPV rule…is rarely optimal, 

since delaying can yield valuable information about prices and costs” (Moyen et al. 1996, 66). “The deferral option, or 

option of waiting to invest, derives its value from reducing uncertainty by delaying an investment decision until more 

information has arrived” (Brach 2003, p. 68).
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The irreversible, lumpy economic actions we consider throughout the paper involve an initial 

decision as well as an optimal plan that specifies outputs in future time periods and possible other 

choices.3 We stress actions that can be delayed indefinitely at no cost. The intensity of the action and 

the ensuing optimal production plan generally depend on the time of initial action, t0, and the future 

equilibrium price path of outputs and inputs, among other things. The firm need not be a price taker.

In limiting our attention to the more interesting case of an interior solution we assume that these 

equilibrium price and interest rate paths, along with the optimal production plan, initially yield a 

return to waiting that is at least equal to the rate of interest. For ease of exposition we assume that 

there is a unique strike point.

For concreteness we mainly consider projects involving offensive decisions, or call options. The 

discussion that follows could equally be applied to defensive decisions, or put options. We use the 

term “forward value” to describe the investment opportunity’s net present value (NPV) if initiated at 

time t0 > t, as differentiated from NPV if initiated at the current date t. Let ( )Y W  be the (forward)

value received by irreversibly sinking a known discrete investment cost C(t0)  0 at time t0 > t in 

return for a certain, incremental benefit from time t0 onward with time-t0 present value W(t0). We 

assume that W(t0) is generated by optimal actions subsequent to the initial action at t0, which, as in 

compound option analysis, can include subsequent timing options. To emphasize that the irreversible 

economic action need not entail investment we assume that C(t0) = 0, so that Y(W) = W(t0).
4 We also 

assume that W(t0) is time-varying and differentiable, and that W(t0) > 0 for at least some non-

                                                
3 Bar-Ilan and Strange (1999) have reviewed stopping when investment is incremental, identifying that this is not so much 

a stopping problem as an investment intensity problem, with intensity at times being zero. To isolate timing from intensity 

we focus on lumpy one-shot investments.

4 The optimal timber harvesting literature often assumes costless harvesting. If C(t0) > 0, the analysis applies to Y(t0) = 

W(t0) – C(t0).
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degenerate interval of time. The discount-factor approach of Dixit et al. (1999) defines D(t,t0) = 

0

exp[ ( ) ]
t

t

r s ds > 0 to be the (riskless) deterministic discount factor, integrated over the short rates of 

interest r(s) that represent the required rate of return to all asset classes in this economy. The current 

value of the investment opportunity at time t if initiated at time t0 is

0 0 0( , ) ( , ) ( )t t D t t W t  . (1)

Traditional or “Marshallian” NPV analyses presume that the project should be initiated as soon as 

W(t0) > 0 (Dixit and Pindyck 1994, 4-5, 145-47). Marglin (1963) was among the first to point out that 

this timing rule is not necessarily optimal. Maximizing the present value of the investment 

opportunity by choosing the optimal time of action 0̂t , and assuming an interior solution 0̂ ( , )t t  ,5

we find from (1) that

0 00 0 0 0 0

0 0 0 0 0

0 0 0 0

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( , ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( )

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )

0

t tt t D t t W t D t t W t

r t D t t W t D t t W t

D t t W t r t W t

  

  

   


. (2)

The solution to (2) yields 0̂t  and the critical forward value threshold 0̂( )W t . The time t market or 

option value of the (optimally managed) investment opportunity is then

0 0 0
ˆ ˆ ˆ( , ) ( , ) ( )t t D t t W t  . (3)

The economics of optimal stopping can be gleaned from analysis of the solution mechanics. By 

equation (3), prior to stopping the market value of the opportunity is rising at the rate of interest:

0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , )t tt t D t t W t r t D t t W t r t t t     . (4)

                                                
5 For example, an interior solution is guaranteed if W(t0) is initially positive and rising at greater than the discount rate, 

but rises at less than the discount rate as of some future date.
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Furthermore, by definition of an interior solution 0̂t t the market value 0̂( , )t t  is greater than the 

project value W(t). In keeping with the literature on stopping under uncertainty, we define the

difference,

0 0
ˆ ˆ( , ) ( ) ( , ) 0t t W t O t t   , (5)

as the option premium at time t from waiting until 0̂t  to initiate the project. Accordingly, the value of 

the investment opportunity, 0̂( , )t t , can be described as having two components: the current, 

underlying project value W(t) (identified simply as the “project value” hereafter); and an option 

premium 0̂( , )O t t . Given (3) and 0 0
ˆ ˆ( , ) 1D t t  , equation (5) yields that, at stopping, 0 0

ˆ ˆ( , ) 0O t t  . Prior 

to stopping

0 0
ˆ ˆ( , ) ( ) ( , ) ( )tO t t r t t t W t   , (6)

which is of indeterminate sign in general. However, for t in some neighborhood 1 0̂( , )t , it must be 

negative as 0̂( , )O t t is continuous and falls to zero at stopping.

The most obvious rationale for delayed stopping is seen in equation (5), where the value of the 

investment opportunity, if kept alive, is greater than the value of the underlying project NPV. 

Another approach is to view the delay decision intertemporally, comparing the opportunity cost of 

waiting with the capital gains from waiting. This will reveal important similarities and differences 

between stopping under certainty and uncertainty that are not evident via comparisons of option value 

with underlying asset value. For W(t) > 0, which by continuity is guaranteed at least within a

neighborhood 2 0̂( , )t , 2 1  , the opportunity cost of waiting is the interest foregone by not 

immediately and costlessly realizing project value W(t). In what follows we delimit the time domain 

to 2 0̂( , )t and select W(t) as the numeraire such that we can isolate r(t) as the opportunity cost of 

waiting.
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We now calculate the capital gains from waiting. Using (6), the option premium’s rate of change, 

as a fraction of W(t), while waiting is

0 0
0

ˆ ˆ( , ) ( ) ( , ) ( )ˆ( , ) ,
( ) ( )

tO t t r t t t W t
t t

W t W t


 
  (7)

which is negative in the neighborhood 1 0̂( , )t . The rate of change in project value is 
( )

( )

W t

W t


. 

Conditions (4), (5) and (7) imply that the total return to waiting is

0 0
0

ˆ ˆ( , ) ( ) ( , )( ) ˆ( , ) ( )
( ) ( ) ( )

t t t r t t tW t
t t r t

W t W t W t


   
    

 
: (8)

prior to stopping the rate of capital gain associated with the investment opportunity, which equals the 

rate of capital gain or loss on the project value plus the rate of capital gain or loss on the option 

premium, exceeds the opportunity cost of waiting, the short rate of interest. For the neighborhood 

1 0̂( , )t  the project value appreciates at rate

0
( ) ( ) ˆ( , ) ( )
( ) ( )

W t W t
t t r t

W t W t


  
   
 

. (9)

Extending Mensink and Requate’s (2005) two-period analysis of stopping to the continuous case, we 

define 
( )

( )
( )

W t
r t

W t


  as the rate of pure postponement flow. It is positive immediately prior to 

stopping, though it may be negative at other times if ( )W t  is not monotone.

What happens at stopping, where t = 0̂t ? From (3), since 0 0
ˆ ˆ( , ) 1D t t  , there is a value matching 

condition, 0 0 0
ˆ ˆ ˆ( ) ( , )W t t t  . Inserting this result into (3), differentiating, and substituting the result 

into (4) generates a smooth pasting condition, 0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( , ) ( , )tW t r t t t t t     . Applying these 

conditions to (6) and (7) yields 0 0 0 0
ˆ ˆ ˆ ˆ( , ) 0 ( , )tO t t t t  . Therefore,
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0 0 0 0
0 0 0

0 0 0

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )ˆ ˆ ˆ( , ) ( )
ˆ ˆ ˆ( ) ( ) ( )

W t W t r t t
t t r t

W t W t t


  
   


. (10)

The total rate of rise of the two asset components has fallen to the rate of interest, and the rate of pure 

postponement flow has fallen to zero.

Equations (8) through (10) constitute the economics of optimal stopping under certainty. The 

following proposition is a generalization of Wicksell’s analysis of serving wine to all stopping 

problems under certainty.

Proposition 1. Wicksell’s r-percent rule under certainty. The total, instantaneous

rate of return from delaying investment is equal to the instantaneous rate of change of 

project value plus the instantaneous rate of change in the option premium. In an 

interior solution it is greater than the short rate of interest r(t) prior to stopping. Near 

stopping the rate of change of project value is greater than the short rate and the rate 

of change in the option premium is less than zero. At stopping,(i) the rate of capital 

gain on the project value has fallen to the short rate, (ii) the rate of capital loss on the 

option premium has risen to zero, such that (iii) the total rate of return on holding the 

investment opportunity has fallen to the short rate.

Wicksell’s “r-percent rule” is consistent with the ubiquity of such rules, often remarked upon, in 

optimal control problems involving present value maximization of natural resources. Indeed, we 

ought to be surprised if we did not find such a rule associated with optimal stopping. Proposition 1 is 

clearly very general, holding for all types of projects, including projects with subsequent timing 

options (compound options), and in all market structures, competitive and non-competitive. It 

provides a useful alternative way of understanding the general stopping problem under certainty.
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Contrary to some interpretations, waiting is not valuable solely because of deferment of a fixed cost 

of investment; in the derivation of our stopping rule investment cost is zero. Nor is waiting only 

valuable under uncertainty, or at least “driven by uncertainty.” In this model there is no uncertainty. 

Growth in project value at a rate greater than the rate of interest, a positive rate of pure postponement 

flow, induces waiting. Only if the growth rate of project value is forever less than r-percent does the 

traditional NPV “now or never” corner solution hold.

Proposition 1 is a logical starting point from which to proceed to the search for a comparable r-

percent rule associated with stopping under uncertainty.

3. Stopping under Uncertainty

The typical optimal stopping rule under uncertainty is to strike as soon as the now stochastic project 

value W reaches some endogenously determined trigger value or hitting boundary Ŵ  (Brock et al. 

1989, Dixit and Pindyck 1994):

 0 0 0
ˆˆ inf ( )t t W t W  . (11)

The derivation of the stopping trigger is conducted in the value, rather than the time domain. Even so, 

the optimal stopping literature, and particularly that originating in resource economics problems, has 

increasingly mentioned both the rate of growth of project value and opportunity cost as being of 

relevance to the stopping calculation (e.g., Malchow-Møller and Thorsen 2005, Alvarez and Koskela 

2007, Murto 2007). This no doubt comes from the experience that resource economists have with 

harvest timing problems under certainty. None, however, have derived an r-percent rule similar in 

both concept and form to the rule under certainty. In this section we reveal that the standard 

mathematical treatment of optimal stopping under uncertainty supports such a rule. Our approach is 
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to continue to focus on the time domain, even though stopping calculations and valuations are 

perforce conducted in the value domain since this is the source of randomness.

Let W be described by a density function of which the moments are assumed to be known. To 

facilitate closed-form solutions we represent changes in W as the one-dimensional, autonomous 

diffusion process in stochastic differentiable equation form,

   0 0 0( ) ( )dW b W t dt W t dz  (12)

over any short period of time dt0, where dz is a Wiener process. As above, ( )Y W  is the (forward)

value of an offensive investment project if initiated at time (t0 > t) t0 = t for a known investment C(t0) 

 0. Any subsequent options, including partial or total reversibility of the stopping decision, are 

permissible, and these are assumed to be priced into ( )Y W . Initially, to make the problem more 

transparent we assume that the investment cost is instantaneous and fixed in scale at C  0.6

Of most interest are situations that yield an interior stopping point 0̂t  > t. At project starting time

t0, t < t0  0̂t , the investment opportunity’s market (option) value has the same discount factor form as 

the stopping problem under certainty (equation 3),7

        0 0 0ˆ( )
0 0 0 0 0 0

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ,   ( ) ( ) 0,
W t t t

WW t W t E e W t W t W t W t
        

   (13)

                                                
6 If investment is continuous over a finite interval, C represents the present value of the total investment if all investment 

must be spent once investment is irreversibly initiated, or it represents the present value of the minimum discrete lump of 

irreversible investment needed to initiate subsequent investment options.

7 The notation now includes a tilde because of the change in domain from time to value.
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where    0 0 0
ˆ ˆ ˆ( ) ( ) ( )W t W t Y W t C    and (W) > 0 is the appropriate, possibly state-dependent 

risk-adjusted discount rate. To reduce notational clutter we hereafter condense  0 0̂( ) ( )W t W t  to 

( )W ,  0 0
ˆ ˆ( ) ( )W t W t  to ˆ( )W ,  0̂( )Y W t  to ˆ( )Y W , and  0 0̂( ) ( )W W t W t  to ( )W .

Since (W) is difficult to compute and even conceptualize, several alternative approaches to 

discounting the investment payoff are employed. In the first, which is an approximation used by 

practitioners and in most of the dynamic programming-based literature that we cite and build upon, 

is taken to be a constant risk-adjusted discount rate. Some of the literature we cite either explicitly or 

implicitly assumes risk neutrality on the part of the decision maker, in which case  = r. Others

perform the analysis via contingent claims, using risk-adjusted expectations over the date of drift of 

the stochastic process and again set  = r.

Given that our paper seeks to explain the real-world economic intuition of results derived in 

previous stopping models, our preference is to stay with the assumptions of these previous models. 

That means that we will for the moment assume that  is a known constant. As noted in Insley and 

Wirjanto (2008), this is likely to be a correct assumption only when W has a constant rate of volatility 

and where the investment option has the form 2
1( ) KW K W  , where K1 and K2 are non-zero

constants (see also Sick and Gamba 2005). As it happens, this is the solution to several of the 

examples that we examine.

As with the case of certainty, let

( )W - ( )Y W ( )O W  > 0 (14)

be the option premium prior to stopping. Once again one could seek to explain the motive for waiting 

by noting via (14) that the value of the investment opportunity is greater than the value of the project 

if initiated immediately. We instead examine waiting in a dynamic context. For the broad class of 
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functions ( )W  and ( )Y W  to which Ito’s lemma can be applied, and given (12), the expected 

change in project value associated with delay is

21
2

0

[ ( )]
( ) ( ) ( ) ( )

E dY W
b W Y W W Y W

dt
   . (15)

The expected change in option premium is

21
2

0

[ ( )]
( ) ( ) ( ) ( )

E dO W
b W O W W O W

dt
  


  . (16)

The Hamilton-Jacobi-Bellman equation associated with this particular stopping problem is

21
2( ) ( ) ( ) ( ) ( )b W W W W W         . (17)

It implies that

0

[ ( )]
( )

E d W
W

dt


 


 . (18)

As in the case of certainty, the market value of the investment opportunity is expected to rise at the 

rate of interest prior to stopping. Equations (14) and (18) imply that

0 0 0

[ ( )] [ ( )] [ ( )]
( )

E d W E dY W E dO W
W

dt dt dt


   


 . (19)

The benefit of delayed project initiation is expected capital gains comprising changes in project value 

and the option premium.

The opportunity cost of delayed initiation of the project is lost proceeds on the investment of 

realized project value Y(W). For comparability across risky investment opportunities this investment 

opportunity must be in the same asset class as the stopping opportunity that is being delayed, which 

garners rate of return .  The total opportunity cost of waiting is then ( )Y W .

As under the case of certainty we normalize changes in asset values by Y to isolate  as the 

opportunity cost of delay. Let the normalized expected rate of change in the option premium be
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0

[ ( )]
( )

( )

E dO W
W

Y W dt
 


 , (20)

for Y(W)  0.  From (19), (14), (15), and (16),

   21
2

0 0

( ) ( ) ( ) ( ) ( ) ( )[ ( )] [ ( )]
( )

( ) ( ) ( )

b W Y W W W W Y WE d W E dY W
W

Y W dt Y W dt Y W




       
  

 
 , (21)

which is again of indeterminate sign. Nevertheless, when (i) Y(W) > 0, which by continuity must hold 

in some neighborhood (W, Ŵ ), and (ii) waiting is optimal, then  (W) > Y(W) and

0 0

[ ( )] [ ( )] ( )
( )

( ) ( ) ( )

E dY W E d W W
W

Y W dt Y W dt Y W

  
   

 
 . (22)

As under certainty, prior to stopping the total expected rate of capital gain on the investment 

opportunity, consisting of sum of the expected rates of change of the project value and of the option 

premium, exceeds the opportunity cost of waiting, the risk-adjusted rate of interest.

At the interior free boundary the value matching and smooth pasting conditions are

 (Ŵ ) = Y(Ŵ ) > 0 (23)

and 

 (Ŵ ) = ˆ( )Y W . (24)

From equations (21), (23), and (24), at the stopping point Ŵ ,8

0

ˆ ˆ[ ( )] ( )ˆ( )
ˆ ˆ( ) ( )

E dY W W
W

Y W dt Y W

 
  


 . (25)

The expected rate of total capital gain on delay has fallen to the risk-adjusted rate of interest.9

                                                
8 Equation (25) can also be derived from equation (17) by imposing the value matching and smooth pasting conditions, 

equations (23) and (24), adding and subtracting 21
2

( ) ( )W Y W   on the left-hand side of the equality, and rearranging to 

put   on the right-hand side.  
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Equations (22) and (25) constitute an r-percent rule that parallels the intuition of the rule under 

certainty, as expressed in equations (8) and (10). Since by equations (21), (23) and (24),

 21
2

ˆ ˆ ˆ( ) ( ) ( )
ˆ( )

ˆ( )

W W Y W
W

Y W




  




 , (26)

this r-percent rule appropriately subsumes the rule under certainty when  = 0.

With the aim of explaining stopping problems in terms of rates of asset growth, previous analyses 

of stopping rules for diffusion processes (including jump processes) have been able to determine that

the expected rate of pure postponement flow,
0

ˆ[ ( )] ˆ( )
ˆ( )

E dY W
W

Y W dt
     , is negative at the stopping 

point (e.g., Brock et al. 1989, Mordecki 2002, Alvarez and Koskela 2007). By (26),

 21
2

ˆ ˆ ˆ( ) ( ) ( )
ˆ( ) 0

ˆ( )

W W Y W
W

Y W




   
  



 (27)

is an algebraic expression for the rate to which the expected rate of pure postponement flow, 

0

ˆ[ ( )]
ˆ( )

E dY W

Y W dt
 , falls at stopping.

While the r-percent rule under uncertainty parallels that under certainty, equations (25) and (27) 

reveal that there are differences in the rates of growth of the project value and option premium

components of the investment opportunity between the two cases. i) The expected rate of change in 

                                                                                                                                                                    
9 It is important to distinguish this result from a result pointed out by Shackleton and Sødal (2005) in their effort to 

supplant traditional stopping rules with an additional stopping algorithm. They show that at stopping the required rate of 

return on the underlying project is equal to the expected rate of return on holding the call option. We are interested in the 

expected rate of return on holding the underlying project, 
0

[ ( )]

( )

E dY W

Y W dt
, and investigate its properties prior to and at 

stopping in an effort to explain the economics of optimal stopping.
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project value is less than the rate of interest at stopping under uncertainty, whereas it is equal to the 

rate of interest at stopping under certainty. ii) By continuity (i.e., ruling out large jumps in the process

for W in relation to dt0), the expected rate of change of the option premium, ( ),W immediately prior 

to stopping is positive under uncertainty, whereas it is negative under certainty.

4. The Economics at Stopping Under Uncertainty

While stopping under certainty and uncertainty both obey r-percent rules, the expected rate of pure 

postponement flow, 
0

ˆ[ ( )]
ˆ( )

E dY W

Y W dt
 , is negative at the stopping point for diffusion processes because

ˆ( )W  > 0, whereas it is zero at stopping under certainty. In this section we evaluate some possible

interpretations of this difference.

One interpretation is that ˆ( )W  is an adjustment to the expected rate of return on the project due 

to uncertainty (as in equation 15).10 This cannot be the case, as from (26) ˆ( )W  > 0 even when 

project value is linear in the stochastic variable and ( ) 0Y W  . Another interpretation is that ˆ( )W

as a risk adjustment to the calculus of stopping under certainty, where  1
2

ˆ ˆ ˆ( ) ( ) ( )W Y W Y W   > 0 

is the per unit price of risk and 2 ˆ( )W > 0 is the quantity of risk. Arnott and Lewis (1979), for 

example, propose that the forward value ˆ
MW defined by the solution to

0

ˆ[ ( )]
ˆ( )

M

M

E dY W

Y W dt
 (28)

                                                
10 See Malchow-Møller and Thorsen (2005, pp. 1034-1035) and our discussion of their paper in Appendix 2.
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is the appropriate stopping point for irreversible land development under uncertainty when the 

investor has rational expectations and is risk-neutral.11 This, too, is incorrect. If the analysis is 

conducted in a risk-neutral context, equation (25) still holds, not equation (28), only with r  .

Equation (28), which implicitly takes ˆ( )MW to be zero, does hold in some circumstances. It has 

been called an infinitesimal look-ahead stopping rule (Ross 1970), a stochastic Wicksell rule (Clarke 

and Reed 1988), and a myopic-look-ahead stopping rule (Clarke and Reed 1989, 1990a). It is a rule 

for open-loop decision making, comparing investment now with a commitment now to invest next 

period. Stopping is proposed when the two choices create the same discounted payoff. Under 

irreversible investment strategies, open-loop decision making is optimal when the process for the 

state variable is monotone (Malliaris and Brock 1982, Brock et. al. 1989, Boyarchenko 2004, Murto 

2007) or more generally when, once a stopping point is reached, the state variable cannot deviate 

back into the continuation region after a vanishingly small period of length dt (Ross 1970, pp. 188-

190). When the stopping problem is framed as an absorbing barrier on rate of return rather than on 

value, via an r-percent rule, one can view 
0

[ ( )]

( )

E dY W

Y W dt
 as the relevant state variable, and (28) is the 

stopping rule if 
0

[ ( )]

( )

E dY W

Y W dt
falls monotonically to . Wicksell’s rule also applies to this type of 

problem.

Proposition 2. The stochastic, myopic Wicksell r-percent rule. When the expected 

rate of change of project value is monotone, at stopping the expected rate of pure 

                                                
11 Prior to stopping 

0

[ ( )]
.

( )

E dY W

Y W dt

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postponement flow is zero and the expected rate of capital gain on the project value 

falls to the instantaneous, risk-adjusted rate of interest.

When 
0

[ ( )]

( )

E dY W

Y W dt
 is instead a diffusion process it is not optimal to irreversibly stop the process 

when (28) holds. Rather, the appropriate closed-loop decision is to compare investment now with 

conditional investment next period. This decision rule is clearly superior to an irreversible 

commitment strategy when the stochastic process can move disadvantageously prior to receiving the 

payoff from stopping. Stopping condition (25) reflects this decision rule: stop once 
0

[ ( )]

( )

E dY W

Y W dt
 falls 

to  ˆ( )W    .

The derivation of (25) shows ˆ( )W to be an additional expected return to holding the investment 

opportunity beyond the stopping point. In a two-period irreversible stopping problem for a diffusion 

process, the adjustment to the closed-loop decision rule has been defined as Arrow-Fisher-

Hanemann-Henry (AFHH) quasi-option value (Hanemann 1989). Conrad (1980) shows quasi-option 

value to be the expected value of information from delayed decision making given imperfect 

information updating in a discrete, stochastic environment. We maintain the AFHH tradition and 

refer to ˆ( )W  as the rate of quasi-option flow. To the extent that the adjustment term ˆ( )W is only 

effective when 2(W) > 0, applying this same interpretation to quasi-option flow is appropriate; 

ˆ( )W  is the instantaneous rate of information flow at stopping.

Fisher and Hanemann (1987) and Kennedy (1987) complain that because quasi-option value 

cannot be estimated separately as an input to the analysis, it is conceptual and not useful as a tool for 

inducing optimal stopping behavior in resource economics problems. This is also true for the 
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calculation of the rate of quasi-option flow, ˆ( )W , since it evaluated at Ŵ . Nevertheless, the 

concepts of expected pure postponement flow and quasi-option flow are useful in understanding the 

economics of any perpetual stopping problem under uncertainty, in resource economics or otherwise.

The discussion thus far supports the following proposition.

Proposition 3: The stochastic, non-myopic Wicksell r-percent rule. For all 

stochastic processes defined in (12), all market structures, and all project values Y(W) 

and investment opportunity values ( )W  to which Ito’s lemma applies, if the optimal 

stopping point is an interior solution the expected rate of return from waiting to invest 

is equal to the risk-adjusted rate of interest at that stopping point. The expected rate of 

return from waiting to invest is the sum of the expected rate of capital gain or loss on

the project value and the expected rate of capital gain on the option premium. The later 

is a rate of quasi-option flow associated with irreversibility of the investment. For 

positive project values, prior to the stopping point the total rate of return from waiting 

to invest, the sum of positive or negative capital gains on project value and positive or 

negative capital gains on the option premium, is expected to exceed the risk-adjusted

rate of interest.

In a unified theory of optimal stopping, the myopic Wicksell r-percent stopping rule of Proposition 2

and Wicksell’s r-percent rule under certainty, Proposition 1, are special cases of Proposition 3.

Appendix 1 illustrates the applicability of Proposition 3 or its special cases to four canonical stopping 

problems.
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The first example, costless stopping under certainty, is based on Wicksell’s original insights for 

the simple point-input, point-output problem of serving wine. This example illustrates that Wicksell’s

r-percent rule under certainty is applicable to stopping involving any concept of value – consumption 

providing utility as well as action providing monetary gain. Figure 1 plots for a range of serving 

times the rate of change of the forward value of the wine and the rate of change of the option 

premium associated with waiting. In accordance with the r-percent rule the wine is served when the 

total rate of appreciation of the consumption opportunity falls to the rate of interest from above. Note 

that the rate of change of the option premium, 0 0̂( , )t t , is initially positive but then becomes 

negative near the stopping point and rises to zero at the stopping point.

The second case illustrates the stochastic, non-myopic Wicksell r-percent rule when stopping a 

Brownian motion process. It is conducted in a contingent claims framework since this is a case where 

a constant discount rate  cannot be used. The third case illustrates the stochastic, non-myopic 

Wicksell r-percent rule when stopping a geometric Brownian motion, depicted in Figure 2. Here the 

program optimally continues for ˆ 2W W  , even in cases where the expected rate of pure

postponement flow, 
0

[ ( )]

( )

E dY W

Y W dt
 , is negative. Waiting occurs because of the positive expected 

return on the option premium. Investment is made only once the rate of return on the sum of the 

project value and option premium components falls to the rate of interest. There is a strong similarity 

between the stopping rule depicted in Figure 2, in the value domain under uncertainty, and the 

stopping rule depicted in Figure 1, in the time domain under certainty. In each case the program is 

stopped once the rate of change of the value of the investment opportunity falls to the opportunity 

cost of waiting, the rate of interest.



The Economics of Optimal Stopping

20

The final example in the Appendix illustrates stopping a geometric Brownian motion with

unsystematic jumps.

Our analysis and examples thus far have been for a specific single-factor stochastic process. More 

general single-factor stochastic processes allow time to enter as a variable, via a finite option 

termination date T, a time-dependent stopping cost C(t0) or discount rate (t0), or a component of the 

drift or variance terms in the stochastic process for the underlying variable,

0 0 0 0 0( ( ), ) ( ( ), )dW b W t t dt W t t dz  . (29)

There may also be an exogenous flow 0( , )W t  associated with delay, such as costs paid

( 0( , )W t <0) or receipts accrued ( 0( , )W t >0) while keeping the option alive. Using the same 

derivation as previously, the stopping condition for an interior stopping point is now

   0 0

21
0 0 0 0 020 0

0
0 0 0 0 0

ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ) ( , ) ( , ; ) ( , )ˆ ˆ[ ( , )] ( , )
( ).

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )

t t WW WWW t T Y W t W t W t T Y W tE dY W t W t
t

Y W t dt Y W t Y W t Y W t




   
   
 

(30)

The partial derivatives 
0t

 and 
0t

Y  are typically taken to be depreciation (
0t

 ,
0t

Y  < 0) or 

appreciation (
0t

 ,
0t

Y  > 0) due to worsening or improving project economics with the pure passage 

of time (Dixit and Pindyck 1994, 205-207). In the case of a finite-lived option, 
0t

  also includes the 

decay in the value of the option as the time to expiry draws nearer. The first two terms in (30) are 

thus the total capital gains or losses from waiting to invest, coming from both changes in W and time.

The third term is the net dividends received or costs paid by the option holder while waiting to invest.

The fourth term is the information flow from waiting to invest. Equation (30) shows that at an interior 

stopping point, even for finite-lived options, the rate of return from delaying action, inclusive of 

expected capital gains or losses and any dividend flows, equals the rate of interest.
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Corollary 1. If the stopping problem is not autonomous in time, the stochastic Wicksell 

rule applies but with the sum of the rate of expected capital gains, dividend yield from 

net payments, rate of project appreciation with time and rate of quasi-option flow at 

stopping being equal to the risk-adjusted rate of interest.

5. Discussion: Theoretical Issues

Under certainty Wicksell’s r-percent stopping rule shows the decision maker waiting until the rate of 

rise of project value falls to the rate of interest before initiating the investment opportunity. An 

identical rule explains the economics of stopping monotone processes under uncertainty. In non-

monotone processes a more general, non-myopic Wicksell r-percent rule shows the decision maker 

waiting until the total rate of return from delay, namely the expected rate of change of the project

value plus the expected rate of change of the option premium, falls to the rate of interest. The rule 

applies to economic actions that can include any number of market structures and subsequent options 

to act.

There are theoretical and practical benefits to seeing stopping under uncertainty as a condition 

involving opportunity costs and benefits akin to the problem under certainty. We use comparisons of 

the simple NPV stopping rule, the stochastic, myopic Wicksell r-percent stopping rule, and the 

stochastic, non-myopic Wicksell r-percent rule to reexamine several common intuitive notions about 

stopping under uncertainty presented in the academic and practitioner literature.

A. The Distinction Between the Myopic and Non-myopic Stopping Rules

We first return to the often cited notions that uncertainty delays investment in stochastic timing 

problems, and clarify when this is indeed the case. In Section 2 we noted that uncertainty was not 

necessary for delayed stopping. Nor was it necessary for delayed stopping in Section 3. In some 
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problems the myopic rule is the appropriate stopping rule, where stopping is warranted as soon as the 

expected rate of pure postponement flow falls to zero. Consequently, the rule is a simple 

generalization of the rule under certainty. Uncertainty plays no role in the delay of investment in 

these types of problems other than through its impacts on the calculation of the expected rate of 

change in project value and on the level of .

For example, consider Clarke and Reed’s (1989) well-known single-stage problem of costlessly 

and irreversibly harvesting a perpetually growing forest whose logarithm of value behaves according 

to

 0 0( )dW b g t dt dz   . (31)

In this problem b is the drift in the logarithm of the price of wood and g is a deterministic time-

dependent drift in the logarithm of forest size. Growth in the forest size is decreasing in t0 and

satisfies 21
2( ) (0)g r b g     , where r is the constant risk-free discount rate on the harvest 

payoff.12 Since Y(W) = eW, 
0

[ ( )]

( )

E dY W

Y W dt
 = 21

0 2( )b g t    by Ito’s lemma. It is non-stochastic and 

monotone.

The NPV rule would have the trees harvested immediately given ( ) 0Y W W  . But the expected 

rate of growth of project value is initially 21
2(0)b g r   , and waiting is optimal because of a 

positive expected rate of pure postponement flow. With the state variable 
0

[ ( )]

( )

E dY W

Y W dt
monotonically 

                                                
12 Clarke and Reed conduct the analysis under risk-neutrality and under risk aversion with isoelastic utility of value. Both 

allow for a constant discount rate, as does the form of the option value per Insley and Wirjanto (2008). We relate the risk-

neutral analysis.
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declining, the myopic Wicksell r-percent stopping rule applies, with 0̂t  the solution to 

21
0 2
ˆ( )b g t r   .

The current value of the investment opportunity is

0

0

ˆ
ˆ( ) 21

0 2
ˆ( , , ) exp ( )

t
r t t W

t

W t t e e b g s ds 
        
  
 . (32)

Given the functional forms of Y(W) and 0̂( , , )W t t , at the optimal stopping time 0̂t , 

0 0
ˆ ˆ( , , ) ( )WW W t t Y W  , 0̂( , )W t  = 0, and stopping rule (25) collapses to (28).13 Uncertainty is not 

crucial to delay, and has no impact on the structure of the problem other than through its influence on 

the level of 
0

[ ( )]

( )

E dY W

Y W dt
. While this example is taken from a natural resource problem, the result is

applicable to any costless stopping problem driven by the stochastic process in (31).

Now we turn to a problem that is non-myopic to bring out when uncertainty drives delay. Let the 

stochastic variable be W and the project value be Y(W), ( ) 0Y W  . Assume that 
0

[ ( )]

( )

E dY W

Y W dt
 is a 

diffusion process with optimal stopping point Ŵ . Let ˆ
MW < Ŵ correspond with myopic stopping 

condition (28). We select two intervals of W for analysis. The first is [ ˆ
MW , Ŵ ). In this interval, 

statements about uncertainty being the cause of delayed investment are correct, since the expected 

                                                
13 In this case, with time being one of the arguments in the value function, the derivation of the rate of drift in the option 

value leads to 
    0

21
0 0 0 0 0 0 02

0

ˆ ˆ ˆ( ) ( ) ( , , ) ( , , ) ( ) ( , , ) ( )
( , )

( )

W t WWb g t Y W W t t W t t W W t t Y W
W t

Y W




       


  

 .  Time 

also introduces the additional optimality condition 
0 0 0

ˆ ˆ( , , ) 0t W t t  . This gives 

 21
0 02

0

ˆ ˆ( ) ( , , ) ( )
ˆ( , ) 0.

( )

WWW W t t Y W
W t

Y W




 
 




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rate of pure postponement flow is negative. The second interval is (W, ˆ
MW ) where the expected rate 

of pure postponement flow is positive. Here, one needs observe nothing more than 
0

[ ( )]

( )

E dY W

Y W dt
  to 

understand why waiting occurs. Figure 2 provides the results from the version of this model 

discussed in Appendix 1.C, where uncertainty drives delay in the interval [ ˆ
MW , Ŵ ) = [1.56, 2.00), 

and positive expected pure postponement flow drives delay in the interval (W, ˆ
MW ) = (1, 1.56).

B. The Impact of Increasing Uncertainty on the Stopping Trigger

Another intuition is that uncertainty creates a stricter investment hurdle Ŵ .14 Stopping conditions

(25) and (28) show that this is not so. While increasing uncertainty is usually held to increase 

0

ˆ[ ( )]E dY W

dt
and ˆ( )W via the second order terms multiplying 2, it can also increase . Even where a 

contingent claims analysis is warranted, though the rate of interest will not be affected there will be 

an adjustment to the risk-adjusted expectation, denoted by 
*

0

ˆ[ ( )]E dY W

dt
. There may also be impacts 

on the level of Y(W) where project value includes the present value of subsequent options. The net 

result is an indeterminate effect on Ŵ  in both the myopic and non-myopic stopping rules.

For the call option example depicted in Figure 2, in the limit as uncertainty goes to zero the 

discount rate on the asset falls to the riskless rate, 6%, and Ŵ rises from 2 to 6 when all else is held 

constant. For 2  W < 6 the program is continued under certainty, whereas under uncertainty it is 

stopped immediately since Ŵ  = 2 under uncertainty. Sarkar (2003), Lund (2005), and Wong (2007) 

show for a specific case that uncertainty may increase or decrease the investment hurdle. Stopping 

                                                
14 Alvarez and Koskela (2007) and Wong (2007) are the latest in a recent surge in papers examining the uncertainty-

stopping relationship.
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conditions (25) and (28) show that the indeterminacy is general, possibly explaining why empirical 

tests of irreversible investment behavior fail to find a strong statistical relationship between the level 

of uncertainty and the stopping point (e.g., Hurn and Wright 1994, Holland, Ott, and Riddiough 2000,

Moel and Tufano 2002).

C. Reversibility and the Optimality of the NPV Stopping Rule

Stopping conditions (25) and (28) also provide insights into the role of irreversibility in delaying 

stopping. Abel et al. (1996) have noted that the introduction of reversibility endows the investment 

problem with a put option that diminishes the incentive to wait. It is frequently stated that when 

investment is completely reversible the standard NPV investment timing rule is optimal (e.g., Dixit 

and Pindyck 1994, 6; Holland et al. 2000, 34; Adner and Levinthal 2004, 76; Demont, Wesseler, and 

Tollens 2005, 116). We show in Appendix 2 that this latter inference is unfounded. Define the degree 

of reversibility, , by the ability to undo any investment decision after period dt with the receipt of k

= 0̂( )C t  upon reversal, where - <   1 is the discount factor upon selling capital. For 0̂( ) 0C t 

complete irreversibility is induced via  = -, and complete reversibility via  = 1.15 Partial 

reversibility obtains for - <  < 1. Appendix 2 shows that when a canonical stochastic investment 

problem is not completely reversible, there is a positive rate of quasi-option flow at the stopping 

point, ˆ( )W (see Figure 3). As investment becomes more reversible ˆ( )W  falls. Under complete 

reversibility ˆ ˆ( ) ( )W Y W   = 0, ˆ( )W  = 0, and the myopic Wicksell r-percent stopping rule, not 

the standard NPV stopping rule, obtains.

                                                
15 We note that there is no recovery of the opportunity cost of the invested capital, and as such the investments are not 

truly reversible.
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This finding leads to two Corollaries to Propositions 2 and 3. They hold for certainty and 

uncertainty, monotone and diffusion processes, and reversible investment and irreversible 

investment:

Corollary 2: An investment timing problem will not be optimally stopped if the 

expected rate of capital gain on the project value while waiting exceeds the opportunity 

cost of waiting, .

Corollary 3: The traditional NPV investment timing trigger prematurely stops any 

uneconomic project whose expected rate of drift is always in a favorable direction.

Corollary 2 implies that even under reversibility, the NPV stopping rule is optimal only when 

0

[ ( )]
( ) 0

( )

E dY W
Y W

Y W dt
   . Dixit and Pindyck (1994, 27-28), for example, use this “pessimistic” 

case to argue that reversible investment should generally obey the NPV stopping rule. Corollary 3

comes from the fact that for any process where 
0

[ ( )]
0

E dY W

dt
 , 

0 0

[ ( )]
lim

( )Y

E dY W

Y W dt
  .

D. Reversibility versus Repeated Options to Invest

Appendix 2 also shows that an infinitely repeatable option to invest can reduce the investment 

trigger compared with a single option to invest. Malchow-Møller and Thorsen (2005, 1036), on 

noting this, “intuitively” suggest that repeated options to invest have the same effect on an investment 

trigger as making the single-stage decision less irreversible. That is, repeated options and reversibility 

are suggested to be substitutes. Appendix 2 uses the non-myopic r-percent rule to show that this 

intuition is incorrect; the rate of quasi-option flow at stopping is the same under a single option to 

invest as it is under infinitely repeatable options to invest. Infinitely repeatable options lower the 
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investment trigger due to reduced benefits to waiting, but this is because of increased forward project 

value, not decreased irreversibility.

E. Irreversibility and Equilibrium

Considerations of reversibility in optimal stopping have implications for intuitive perceptions of 

equilibrium. For example, a ranking of heterogeneous discount rates, i, where i indexes the project, 

has been proposed as being sufficient to order the timing of mineral production (Malliaris and Stefani 

1994). The proposal is in line with the economic intuition under certainty that higher discount rates 

are a result of higher opportunity costs of waiting (Stiglitz 1976). But the r-percent rule (25) shows 

that heterogeneity in the expected value of information flow from delay, ( )i W , also comes into play 

in timing entry. Chavas (1994) has qualitatively noted that heterogeneity in irreversibility across 

firms affects information flows from waiting, and through these their entry and exit decisions.

Equation (25) expresses the impact precisely, via the term ( )W , which we show in Appendix 2

varies in a systematic way with the degree of irreversibility. Yet the expected value of information 

flow will also vary with the non-linearity of the underlying project and the nature of the options 

available to the project manager, as described by iY  and i
  respectively in (26). The determination 

of investment timing is thus the outcome of a complex sectorial equilibrium involving price paths, 

interest rates, and the expected value of information flow, with expected rates of capital gain from 

waiting being compared against (i - ( )i W ) rather than i.
16 Stopping condition (25) is endogenous 

                                                
16 The true net opportunity cost of an irreversible decision, i - ( )i W , may induce substantially different entry timing 

decisions from those predicted by models in which investment is taken to be completely reversible and ( )i W = 0 (e.g., 

Gaudet and Khadr 1991).
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to that equilibrium for certainty and uncertainty, perfect competition and imperfect competition, and 

indeed all cases for all assets where the assumptions in Section 3 are satisfied.

Finally, since 
0

ˆ[ ( )]
ˆ( )

E dY W

Y W dt
 <  in closed-loop settings with interior stopping points, stopping 

condition (25) supports the notion that irreversible projects must at some point exhibit a rate-of-return 

shortfall for new investment to be forthcoming under uncertainty (Davis and Cairns 1999).

Litzenberger and Rabinowitz (1995) find that backwardation in oil markets is an equilibrium 

condition that induces irreversible production from existing reservoirs. Our analysis complements 

theirs, showing that price backwardation also serves to induce irreversible investments in new fields 

by reducing the expected rate of pure postponement flow. During high prices there is greater 

backwardation (Litzenberger and Rabinowitz 1995), which from (25) increases the incentive to 

irreversibly invest.17 During low prices contango decreases the incentive to invest due to an increased 

expected rate of pure postponement flow.

F. What We Need to Know When Deciding When to Act

Luehrman’s (1998) practical guide to investment timing under uncertainty suggests that investors 

should plot their investment opportunities in NPV space (or Y space in our notation) and volatility 

space (or 2 space). Provided that project NPV is positive, if project volatility is low investors should

invest immediately, whereas if volatility is high they should wait. Adner and Levinthal (2004) 

suggest that the NPV rule is satisfactory as a stopping decision tool when there are low irreversibility 

and low volatility. Corollary 2 makes clear that current NPV and volatility are not sufficient statistics 

for timing investment, even when 2 = 0 and the investment is completely reversible.

                                                
17 There is also more volatility during high oil prices (Litzenberger and Rabinowitz 1995), which, as we noted above, may 

either support or diminish this incentive for increased investment.
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6. Discussion: Issues in Practice

The r-percent stopping rule and the intuition that it reveals may also influence practice. Practitioners 

have been slow to adopt explicit optimal stopping algorithms when timing their investment decisions 

(Triantis 2005). Timing rules are presented in the economics and finance literatures as an upper or 

lower boundary on project value or state price (e.g., Dixit and Pindyck 1994) or present value index 

(Moore 2000). Copeland and Antikarov (2005, 33) note, however, that relying on such presentations 

is unsatisfactory:

The academic literature about real options contains what, from a practitioner’s point of 

view, is some of the most outrageously obscure mathematics anywhere in finance. Who 

knows whether the conclusions are right or wrong? How does one explain them to the top 

management of a company?

One does not use what one does not understand. Practitioners themselves suggest that optimal 

stopping rules will only be adopted if they can be seen as a complement to, rather than a 

replacement of, traditional NPV analysis (e.g., Woolley and Cannizzo 2005). To this end, 

Berk (1999) derives an NPV-based optimal stopping rule for the special case of stochastic 

interest rates and cash flows that are riskless or where there is no resolution of uncertain cash 

flows by waiting. Boyarchenko (2004) derives an adjusted NPV stopping rule that applies

when waiting updates information about future cash flows that are geometric Lévy processes.

The representation of stopping under uncertainty as an r-percent rule supports these advances by 

providing a link to the intuition many practitioners already have from related timing rules under 

certainty. For example, the intuitive attractiveness of pure postponement flow is already leading to 
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comparisons of expected change in project NPV with the opportunity cost of capital when deciding 

when to develop a mine or harvest a stand of trees, as in myopic Wicksell rule (28) (e.g., Torries 

1998, 44, 75; Yin 2001, 480). Empirically, land owners also appear to recognize and time 

development according to the rate of expected pure postponement flow (Arnott and Lewis 1979, 

Holland et al. 2000).

Stopping condition (25) shows that the expected value of information from waiting must also be 

taken into account, and that comparisons of expected changes in project value with the opportunity 

cost of capital will not always yield sufficient patience in cases where the action is irreversible. The 

adjustment for the rate of quasi-option flow, however, is a generalization of a rule involving 

opportunity cost of capital that is already widely used and understood, rather than a completely new 

way of viewing stopping.

The r-percent rule is also helpful in understanding why waiting should at some point stop.

Explanations of scrapping options are particularly awkward in this regard, since under optimal 

stopping decision makers are expected to incur operating losses prior to stopping. The intuition given 

is that by waiting the payoff to scrapping, Y(W), even if positive now, is expected to increase, and by 

the nature of the perpetual option the agent cannot be forced to accept a lower value of Y(W) than its 

current value (McDonald and Siegel 1986). But why, then, ever scrap the project? In Appendix 3 we 

illustrate the intuition for scrapping provided by the stochastic r-percent rule using an oil well

abandonment example. In that example the payoff to abandonment is indeed always expected to rise, 

yet at a slower and slower rate. Taking the opportunity cost of waiting into account reveals that the 

expected rate of pure postponement flow eventually becomes so negative as to overwhelm any 

information flow benefits from further waiting.
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7. Conclusions

While the mathematics of optimal stopping under uncertainty is well developed, the economic 

conceptualization of the stopping rule is not. In this paper we present the economics of optimal 

stopping under certainty and uncertainty for a common class of problems. We use the concept of an 

“r-percent stopping rule” to show that a deferrable action is taken only once the expected rate of 

return from waiting to act falls to the rate of interest. Under certainty, and under uncertainty when the

process is monotone or when the action is reversible, the return from waiting is capital gains on the 

project. In other cases the gains from waiting are augmented by a flow of information called quasi-

option flow. Eventually, the expected rate of capital gain less the rate of interest, which we call the 

expected rate of pure postponement flow, becomes so negative as to more than outweigh the expected 

flow of information benefits from continued delay, and stopping is optimal.

Seeing the stopping condition under uncertainty as having close parallels to the case under 

certainty reveals that the theory of investment under uncertainty is an incremental generalization of, 

not a qualitative break from, the traditional theory of investment under certainty. The weighing of 

opportunity costs and benefits of acting are as germane to stopping problems under uncertainty as 

they are under certainty, a concept that is not surprising, but that has not been explicitly brought out 

in traditional analyses to date. For the type of stopping problem examined in this paper, the stopping 

rule under certainty is simply the limiting case of uncertainty as volatility goes to zero.
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Figure 1: Wicksell’s r-percent rule under certainty, Appendix 1.A, comparing the rates of 
growth of the project value, the option premium, and the total investment opportunity with the 
risk-free rate of interest r = 0.05. The stopping point is 0̂t  = 100.
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Figure 2: The non-myopic Wicksell r-percent rule for geometric Brownian motion, Appendix 1.C, 
comparing the expected rates of growth of the project value, the option premium, and the total 
investment opportunity, given a risk-adjusted rate of return   = 0.14 on the call option, investment 
cost C = 1, risk-free rate r = 0.06, required rate of return on the unlevered asset W, u, = 0.10, drift 

parameter b = 0.05, and volatility parameter  = 0.20. In this example Ŵ = 2 and ˆ
MW  = 1.56.
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Figure 3: The rate of quasi-option flow 1 2ˆ ˆ( , )s s  for the Brennan and Schwartz model in Appendix 2, 

given start-up investment cost k2 = $1 million, shut-down receipt of k1 = k2, output rate q = 10 
million units/period, average production cost a = $0, shut-down maintenance cost f = $0, inflation 
rate  = 0%, commodity rate of return shortfall  = 1%, commodity volatility 2 = 8%, no taxes, and 
risk-free rate of return  = 10%. The figure demonstrates that as reversibility becomes complete ( = 
1.0) the rate of quasi-option flow at stopping goes to zero and the myopic Wicksell r-percent stopping 
rule becomes applicable.
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Appendices

Appendix 1. Four Illustrations of the r-percent Rule.

A. Serving Wine, Certainty. Suppose that a connoisseur has a bottle of wine that can provide one util 

if served immediately or can be stored costlessly and served at time t0 > t to yield  0exp ( )t t

utils. Let the instantaneous utility discount rate be constant at r = 0.05 and let t = 0. The current value 

of the wine is

0 0 0(0, ) (0, ) ( )t D t W t   = 0 0exp( )exp( )rt t  > 0. (1)

Optimization via equation (2) implies that the connoisseur waits until period 0̂t  = 1/(4r2) = 100 to 

serve the wine, even though serving it now would provide a positive benefit of 1 util. Under optimal 

stopping the wine has a current value of

0 0 0
ˆ ˆ ˆ(0, ) (0, ) ( )t D t W t   = 0 0

1ˆ ˆexp( )exp( ) exp
4

rt t
r

    
 

 = 148.4 utils. (3)

At time 0t < 0̂t  the option premium is

 0 0 0 0 0 0 02

1 1ˆ ˆ( , ) ( , ) ( ) exp exp exp 0
24

O t t t t W t r t t
rr

               
    

. (5)

At 0t  = t = 0 the option premium is 147.4 utils, over 99% of the wine’s current value.

We confirm the r-percent rule in Proposition 1 by observing that prior to stopping the rate of 

change of the option premium is

0

0.5
0 0 02

0 0 0 0 0
0 0

0 0 0

1 1
exp exp 0.5( ) exp( )ˆ( , ) ˆ 2( , ) ( ) 4ˆ( , ) .

( ) ( ) exp( )

t
r r t t t

O t t rr t t W t r
t t

W t W t t


                   (7)

The rate of change in consumption utility is 
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0.5
0 0 0.50

0 0 2
0 0

0.5( ) exp( )( ) 1
0.5( )   ,

( ) 4exp( )

t tW t
t r t

W t rt




     (9)

reflecting a positive rate of pure postponement flow over the life of the consumption option. Adding 

(7) and (9), the total rate of change of the utility of the consumption opportunity while waiting is

 
0

02
0 00 0 0

0
0 0 0 0

1 1
exp expˆ( , ) ˆ 2( ) ( , ) 4

( )
( ) ( ) ( ) exp

t
r r t

t t rW t r t t r
t r

W t W t W t t


                     
 

. (8)

As the connoisseur waits the utility associated with the consumption opportunity is rising at a rate 

that is greater than the force of interest, the opportunity cost. At 0̂t , the rate of growth of the utility of 

the consumption opportunity has fallen to r (See Figure 1).

B. Stopping an Arithmetic Brownian Motion. Consider a perpetual irreversible call option on W, 

0dW bdt dz  . (12)

Without loss of generality let stopping be costless (C = 0) and Y(W) = W. Also let r be the constant 

risk-free discount rate used to discount the payoff Ŵ  in a risk-neutral contingent claims analysis.18

The market value of a perpetual opportunity to invest in W satisfies the second-order differential 

equation

21
2( ) ( ) ( ) 0r W b W W         . (17)

The solution to (17) is of the form

1 2( ) W WW A e A e    , (A1)

where  > 0 and  < 0 are roots of the characteristic equation

                                                
18 Dixit and Pindyck (1994) perform this same analysis using a constant rate of discount, , without comment.
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2 21
2 0b r     . (A2)

In the absence of any holding costs and coerced stopping at a finite lower bound, lim ( ) 0
W

W


  . 

From this, A2 = 0. If the program is voluntarily stopped at Ŵ , ˆ ˆ( )W W  so that 
ˆ

1
ˆ WA We   and

ˆ( ) ˆ( ) W WW e W   . (13)

The smooth pasting condition,

ˆ ˆ( )ˆ ˆ ˆ ˆ( ) ( ) 1W WW e W W Y W        , (24)

produces 

1
2 2

1
2

2ˆ b b r
W







     
 
 

.

The economics of stopping are laid bare by the stochastic, non-myopic Wicksell r-percent rule in 

Proposition 3. Consider the domain where W > 0 and stopping is feasible. The expected rate of 

change in project value is 
0

[ ( )]

( )

E dY W b

Y W dt W
 , which could be positive, negative, or zero, depending on 

the parameterization of drift term b. Where the expected rate of change of project value is greater 

than r, the expected rate of pure postponement flow, 
0

[ ( )]

( )

E dY W
r

Y W dt
 , is positive and waiting is 

intuitive. Where the expected rate of pure postponement flow is negative, waiting is still optimal 

when the total rate of return on holding the investment opportunity is greater than the interest rate: 

0

[ ( )]
( ) ( )

( )

E dY W b
W W r

Y W dt W
      . By (21),
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 

ˆ ˆ( ) 2 2 ( )1
2

ˆ( ) 2 21
2

ˆ( )

ˆ
ˆ( ) (1 )

ˆ

ˆ

W W W W

W W

W W

b b b W
W e W e

W W W W

W
e b

W

W
e r

W
r

 





   

  

   

 

 

 
      

 

 







. (A3)

for ˆ1W W   . If b < 0, for instance, the expected rate of pure postponement flow is negative for 

all ˆ 0W W  , but ( )
b

W r
W

  , and waiting is still optimal.

The program is stopped when the expected return from delay falls to

2 21
2

0

ˆ[ ( )] ˆ( )
ˆ ˆ( )

E dY W b
W r

Y W dt W
      , (25)

which happens when W rises to 1/. At this point the expected rate of pure postponement flow is 

negative regardless of the parameterization of the rate of drift term b, having fallen to 

2 21
2

ˆ( )W      < 0, where ˆ( )W  is the expected value of information about W from further 

delay.

C. Stopping a Geometric Brownian Motion. Consider an irreversible call option on a stochastic 

variable whose value follows a geometric Brownian motion with constant rate of drift b,

0dW bWdt Wdz  . (12)

Let the required rate of return on the unlevered asset W be represented by u and be constant and 

greater than b. Also let the risk-free rate be represented by r. With b constant the investment cost C

must be positive to avoid bang-bang now or never stopping solutions (Brock et al. 1989). Let the 

forward project value be
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( )Y W W C  . (A4)

The solution to the stopping problem yields investment opportunity value 

ˆ( )
ˆ

W
W Y

W


    
 

 , (13)

ˆ
1

W C






, where  > 1 is the positive root of the characteristic equation

21
2 ( 1) 0b        , (A5)

and where ( )r u r u      (Dixit et al. 1999, McDonald and Siegel 1986). In this case the use of 

a constant risk-adjusted discount rate is appropriate.

Again using the stochastic, non-myopic Wicksell r-percent stopping rule to reveal the economics 

of the problem, consider values of W for which Y > 0 and yet waiting is optimal. The expected rate of 

change in project value while waiting is 
bW

Y
. This can be positive, negative, or zero, depending on 

the drift parameter b. From (21) the expected rate of change in the value of the option premium is 

1 22 21
2

2

ˆ ˆ( 1)
( ) 1

ˆ ˆ ˆ ˆ
WbW W Y W Y

W
Y YW W W W

   
 

                          
 . (21)

The total return to waiting, 
0

[ ]
( )

( )

E dY
W

Y W dt
  , is defined and greater than the discount rate for 

ˆC W W  . The r-percent rule reveals that at stopping the expected return from delay has fallen to

2 21 1
2 2

0

ˆ ˆ[ ( )] ˆ( ) ( 1) ( 1)
ˆ ˆ( )

E dY W bW
W b

Y W dt W C
               


 . (25)

Figure 2 depicts this stopping problem for specific parameter values. Given these parameters the 

expected rate of change in project value is less than the interest rate for W > 1.56. More than 

offsetting this is a positive expected rate of change in the option premium, for a total rate of capital 
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gain on waiting that exceeds the interest rate. Waiting is thus optimal despite the negative expected 

rate of pure postponement flow. The expected total rate of capital gain falls to the discount rate at 

ˆ 2W  , at which point the program is stopped. The expected rate of pure postponement flow at 

stopping, equal to the negative of the rate of quasi-option flow from further waiting, is 

21
2 ( 1) 4.0%      .

D. Stopping a Combined Process. Extending Example C, if W follows a combined geometric 

Brownian motion with an independent downward Poisson jump of known percentage  and arrival 

rate  (Dixit and Pindyck 1994, pp. 167-173), the r-percent stopping condition can be shown to be

21
2

0

ˆ ˆ[ ( )] ( )ˆ( ) ( 1)
ˆ ˆ( )

E dY W b W
W

Y W dt W C

    
    


, (25)

where  is now the positive solution iteratively satisfying

21
2 ( 1) ( ) (1 ) 0b               (A6)

and (0)  = 0. In the absence of a jump process ( = 0) equations (25)and (A6) revert to (25) and 

(A5). When  > 0 the jump process is seen to lower the expected rate of increase of project value in 

equation (25) and thereby lower the expected rate of pure postponement flow. It also adjusts the 

value of  in the quasi option flow term. For example, for  = 1,  > 0 causes  to increase, and so 

causes the rate of quasi-option flow to rise. The reduced expected rate of pure postponement flow 

reduces the benefits of waiting, while the increased rate of quasi-option flow increases the benefits of 

waiting. In the examples given in Dixit and Pindyck (Table 5.1) the reduction in the expected rate of 

pure postponement flow wins out, and stopping is advanced as a result of the jump process.
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Appendix 2. Optimal Stopping, Reversibility, and Infinitely Repeated Options

This appendix first demonstrates for a canonical stopping problem that in the limit as investment 

becomes completely reversible, ˆ( )W  = 0 and the myopic Wicksell r-percent stopping rule is 

optimal. It then shows that repeated options to invest and reversibility are not substitutes.

Consider the investment opportunity in Section II of Brennan and Schwartz (1985). The firm has 

an option to invest in (start up) and then disinvest in (close) an infinitely lived project. The problem is 

autonomous. For finite start-up cost k2 > 0 the firm can enjoy a positive revenue stream with present 

value qs/, where q is the fixed (at capacity) per period output, s is the unit price, which follows a 

geometric Brownian motion, and  is the constant rate of convenience on the unit price. The firm can 

reverse the initial timing decision dt periods later by paying k1, re-start the project dt periods later by 

again paying k2, and so on. The investment is completely expandable since k2 is constant (Dixit and 

Pindyck 2000). It is completely irreversible when k1 = .

As in Dixit and Pindyck (2000) we eliminate the complication of operating options by assuming 

that there are no operating costs. We also set taxes and inflation to zero to simplify the analysis. 

Rather than paying k1 to disinvest, let there be a receipt of k1 = -k2 upon closing the project, where , 

0    1, is the price discount factor upon selling capital. Limiting  to a lower bound of zero does 

not reduce the generality of the problem, as no firm would disinvest from a positive, perpetual 

income stream if payment were required; irreversibility is induced via  = 0, and complete 

reversibility via  = 1. Partial reversibility obtains for 0 <  < 1.

Brennan and Schwartz conduct their analysis via contingent claims and a risk-adjusted rate of 

drift in the unit price. In Brennan and Schwartz’s notation (though maintaining our caret symbol for 

the price at stopping), and given our assumptions about maintenance and operating costs, the 

functional form for the value of the option to start the project is
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1
1 1 1( ) , 0, 1.w s s          (A7)

This functional form indicates that it would also have been valid to use a constant risk-adjusted rate 

of discount rather than contingent claims and a risk-free rate of discount.

The functional form for the forward project value at start-up is19

2
4 2 4 2

ˆ
ˆ ˆ( ) , 0, 0.

qs
v s s k      


     (A8)

The term 2
4 ŝ  is the value of any reversibility of the investment decision (the value of the put 

option that one obtains by investing), and 2
4 ŝ  > 0 when  > 0.

We now analyze investment timing under various degrees of reversibility using the r-percent 

stopping rule. Define 2ŝ  as the optimal stopping point for start-up and 1̂s  as the optimal stopping 

point for subsequent closure, 0  1̂s  2ŝ . When the start-up investment is completely irreversible it 

can be shown that 2ŝ  = 2 1

1( 1)

k

q

 
 

 > 1̂s  = 0.20 This is a stricter investment hurdle than the 

traditional NPV stopping hurdle, 2ˆ NPV
s  = 2k

q


. When investment is completely reversible it can be 

shown that 1̂s  = 2ŝ  = 2 1 2
2

1 2

ˆ 0
( 1)( 1) NPV

k
s

q

  
 

 
 

.21 Complete reversibility does not remove the 

                                                

19 There is a typographical error in the Brennan and Schwartz paper; the correct expression for 4 is 
2

*
1 1 1

*
2 1 1

( 1)

( )

ds e

s 

 
 

 


.

20 With complete irreversibility the invested capital is sunk and closure to avoid a positive perpetual income stream will 

not take place ( 1̂s  = 0).

21 The shut-down price 1̂s  is now positive because despite the absence of operating costs, the fixed output level means 

that at low prices it is optimal to close and recover the interest on invested capital rather than to produce.
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consideration of expected pure postponement flow given that a bad decision still ties up capital for 

period dt, and thus the NPV stopping trigger is again premature.

The rate of quasi-option flow 1 2ˆ ˆ( , )s s  can be calculated from equations (26), (A7), and (A8) for 

varying degrees of reversibility, , given a riskless return  = 0.10 and other parameter values taken 

from Brennan and Schwartz (see Figure 3). There is no closed-form solution for 2ŝ  and 1̂s  when 2ŝ  > 

1̂s  > 0 (i.e., when 0 <  < 1 and investment is partially reversible). Brennan and Schwartz provide the 

algorithm for an iterated solution. As seen in Figure 3, the greater the degree of irreversibility, the 

greater the rate of quasi-option flow at stopping. Under complete reversibility it can be shown 

algebraically that 2 2ˆ ˆ( ) ( ) 0w s v s   , 1 2ˆ ˆ( , )s s  = 0, and that the stopping trigger 2ŝ  under complete 

reversibility corresponds with the myopic Wicksell r-percent stopping rule, 
 2

2 0

ˆ( )
.

ˆ( )

E dv s

v s dt


We now show that even though repeated options to invest lower the investment trigger compared 

with a single option to invest, they do not reduce the irreversibility of investing. To illustrate this we 

use Malchow-Møller and Thorsen’s (2005) (hereafter MT) single-factor model of the option to 

repeatedly but irreversibly replace a stationary and certain existing productivity level, , with the 

productivity level of a stochastic exogenous technology, . Using MT’s notation, the exogenous 

technology evolves as a geometric Brownian motion 1 1 1d dt dz       with rate of drift 1  (0, 

r), where MT use a constant rate of discount r without comment. Choosing a constant discount rate is 

appropriate given the functional form of the option to invest in new technology (see equation A9 

below). Technology replacement, at cost c, 1 0r c  , is optimal each time ̂  , where  > 1 is 

the normalized investment trigger. Let w 
 . The value of the ongoing program, the sum of the 

option to invest in new technology and the value of ongoing activities, is MT equation (14):
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1
1( ) aV A w

r

   , (A9)

where a1 > 1 is the positive root of the quadratic equation and 
1

1
1(1 )

A
r a



 


 > 0.

MT discuss two cases. The first is a single option to irreversibly invest in the new technology. 

Here the forward project value is 1( ) ( )rY c   . The foregone flow upon investment is , with 

present value /r. In an interior solution the NPV rule, which is suboptimal, suggests investing the 

first time that ( ) rY   , or when   1ˆ 1 rc
    . From equation (30), given these formulations of 

( )V   and ( )Y  , the (optimal) stochastic, non-myopic Wicksell r-percent rule is to invest when22

1 11
2 1 1 11

1 121 1

ˆ( 1)
ˆ ˆ( ) ( )

a a

r r

a a A
r

c c

  
 


  

 
, (30)

or, after simplifying,

1
21

1 121 1
.

ˆ ˆ( ) ( )

a
r

r r

r
c c

 
 

  
 

(30)

The three terms on the left-hand side of (30) constitute the benefit of waiting: the expected rate of 

capital gain in project value plus the dividend yield from ongoing operations plus the rate of quasi-

option flow. The right-hand side of (30) is the opportunity cost of waiting. Making use of the 

fundamental quadratic equation (equation 11 with MT Corrigendum) to find substitutions of 2
1  and 

other terms for 1 , (30) can be solved for investment trigger

 
1

1
1

ˆ
(1 )(1 )a rc





    , (A10)

                                                
22 Equation (30) is used because the firm enjoys flow  while waiting to invest. By substituting (A10) into (30) it can be 

shown that (30) is the same as MT equation (24).
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the solution obtained by MT (equation 23). Note that given a1 > 1 the investment trigger is larger 

than that produced by the NPV rule.

Substituting (A10) into (30) yields

21
1 1 121

( 1)
ˆ( )r

a r
c

 


   


. (A11)

In their search for the intuition of this stopping problem MT alternatively express (A10) as 

1
1

ˆ( )r

r
r

ac




 


 (MT equation 24). They then interpret 
1

r

a
, which from (A10) is 

2
1 1 1 1

1
( 1)

2
a     , as the expected rate of capital gain in forward project value. They attribute the 

rate of growth beyond rate 1  to impacts of uncertainty (i.e., 2
1 0  ) on the expected rate of growth 

of project value. Since ( )Y   is linear in  this cannot be the case. By expressing the stopping 

condition as an r-percent rule, Equations (30) and (A11) reveal that the 
1

r
a  term instead includes 

expected capital gains in forward project value (3.00% using the base case parameter values in MT p. 

1036) and a rate of quasi-option flow associated with the irreversibility of the investment at stopping 

(0.08%). The rate of dividend yield, at 1.92%, rounds out the benefits of waiting to invest given r = 

5.00%.

The second case considered by MT involves infinitely repeated options to irreversibly invest in 

new levels of productivity. From MT equations (14) and (15) the forward value is now 

11 1
1 11

( ) ( ) ( )a
r rw

Y c A w c A    


      . The term 1( )r c   is the net value received upon 

adopting the new technology, as in the single-step option, and 1A  is the value of the infinite set of 

options to switch technologies again given that the current switch resets w to 1. Note that the forward 

value is higher than in the single option case due to the compound options embedded in underlying 
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project. The foregone flow upon investment is still , and the functional form of the option value is 

still as in (A9).

MT show that the solution to this stopping problem gives an iterated stopping trigger, , that is 

less than  
1

1
1(1 )(1 )a rc


  , which was the stopping trigger without repeated options. We found 

above that reversibility lowers the investment trigger. Does this mean that repeated options are akin 

to reduced irreversibility of the single stage investment option, as MT suggest? The r-percent 

stopping equation (30) reveals that at the stopping point,23

1
21

1 121 1
1 1

ˆ ˆ( ) ( )

a
r

r r

r
c A c A

 
 

  
   

. (30)

The expected rate of appreciation of project value is unchanged at 1. Yet both the dividend yield 

from current cash flows and the rate of quasi-option flow are smaller for any given   compared with 

(30). This is due to the strictly larger value of ( )Y  . Stopping therefore occurs at a lower value of ̂

because of the reduced benefits to waiting (or, equivalently, the increased opportunity cost of 

waiting). Repeated options do not, however, reduce the irreversibility of the investment, since they do 

not change the rate of quasi-option flow at stopping. Using the same baseline parameter as above and 

the resultant iterated solution for the stopping trigger, the rate of quasi-option flow is still 0.08% in 

(30).

Appendix 3. The Economics of Optimal Scrapping

Here we demonstrate the economics behind optimal scrapping. We use Clarke and Reed’s (1990b) 

model of the optimal time to irreversibly abandon a perpetually producing oil well with fixed 

                                                
23 Equation (30) provides the same unique iterated solution for stopping as MT equation (25).



The Economics of Optimal Stopping

52

operating costs, c, but declining production. We use their notation. Both the oil price P(t) and 

extraction rate Q(t) evolve as geometric Brownian motions. Letting ( ) log ( )t P t   and 

( ) log ( )q t Q t , 

d bdt dw    , b > 0 (A12)

q qdq dt dw    ,  > 0. (A13)

Let ( ) ( ) ( )z t t q t   be the logarithm of revenue. Then, by Ito’s lemma, z(t) is a Brownian motion 

with drift -d = b -  and variance 2 2 2 2q q       , where q  is the covariance between the 

logarithm of price and logarithm of the extraction rate. At abandonment time T the forward value of 

abandonment is

  ( )( ) z TR z T A Be  , A > 0, B > 0 (A14)

where 0
c
rA c   > 0 is the present value of perpetual operating costs avoided less the abandonment 

cost and 2
( ) ( )

/2

z T z T

r d
Be e

 
  > 0 is the after-tax expected present value of revenues foregone given 

a gross proceeds tax rate of (1 - ). The goal is to determine the revenue level ze  that induces optimal 

abandonment timing given a risk-free rate of interest of r.24

Clarke and Reed show that the value of the option to abandon when ( )z t z  is of the discount 

factor form

   ( )( ) ( )z t zW z t e R z  , (A15)

                                                
24 Clarke and Reed implicitly assume risk-neutrality, even though the functional form of the option (see equation A15) 

allows for a constant risk-adjusted discount rate.
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where 2 2 2[ 2 ] / 0d d r      .25 Invoking stopping condition (25) yields
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(25)

Solving,

2 21
2

2 21
2

( )

( -1)( )
z A r A

e
BB d r

  
 


 

 
. (A16)

This is equation (18) in Clarke and Reed, which they derive using the value-matching and smooth-

pasting conditions ( ) ( )W z R z  and ( ) ( )z zW z R z .

We now demonstrate the economics revealed by the r-percent stopping rule in (25). We use a 

gross proceeds tax rate (1 - ) of 16.5%, an abandonment cost c0 of 0, a fixed operating cost c of 

33.53, a rate of drift of revenues of -2.5% (d = 0.025), a revenue volatility 2 of 0.03, and an interest 

rate, r, of 4.00%, all taken from Table 3 of Clarke and Reed. The rate of drift of revenues, being 

negative, means that the forward value of abandonment, R(z), is expected to increase over time.

Table A3.1 summarizes three candidate stopping rules. The right-hand column shows that for any 

suboptimal stopping point the expected gains from waiting exceed the interest rate. The “now or 

never” NPV stopping rule, abandon as soon as it is profitable to do so, would have the project 

abandoned when the forward value of abandonment rises from a negative value to zero, at which 

                                                
25 The current value of the well is       0( ) ( ) ( )V z t W z t R z t c   , and the HJB equation is 21

2z zzdW W rW   . The 

fact that the HJB equation operates on the option to abandon, rather than on the current value of the well, obviates the 

need to take into account current expected operating cash flows in the r-percent stopping rule.
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Table A3.1: Stopping rules and their corresponding trigger values (in bold) for Clarke and Reed’s 
(1990b) oil well abandonment problem, r = 4.00%.

Economic variable at abandonment

Stopping 
(abandonment) 

rule

Revenue

ze

After-
tax 

income

ze c 

Forward 
value, option 

value of 
abandonment

R(z), W(z)

Expected 
rate of 

change in 
abandonment 

value

[ ( )]

( )

E dR z

R z dT

Expected 
rate of 
change 

of option 
premium
(eq. 21)

( )z

Total expected 
rate of return to 

waiting

[ ( )]
( )

( )

E dR z
z

R z dT
 

Simple NPV 
“now or never” 
rule

50.2 8.4 0.0, 209.6   

Myopic r% rule 40.2 0.0 167.7, 262.0 4.00% 2.25% 6.25%

Non-myopic r% 
rule (optimal)

25.1 -12.6 419.1, 419.1 1.00% 3.00%* 4.00%

*quasi-option flow, equation (26).

point after-tax net income is still positive, at 8.4. At that point, the forward value of abandonment is 

expected to rise at an infinite rate. As stated in Corollary 3, this stopping rule is not optimal, and 

should readily be rejected by practitioners given that they would not intuitively abandon a project 

while it is still earning positive after-tax profits.

Myopic stopping rule (28) gives revenue level

21
2

40.2
( )

Mz Ar
e

B d r 
 

 
(A17)

at stopping, at which point the forward value of abandonment is ( )MR z  = 167.7. It is expected to rise 

at r-percent. The revenue level of 40.2 is also the point where after-tax net income becomes zero. The 

myopic stopping point is therefore a natural stopping point that practitioners would find more 

intuitive than the NPV stopping point. We alluded to practitioners’ use of this myopic stopping rule 
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earlier. But there remains a positive option premium of 94.3, and from (21) continued waiting at the 

myopic stopping point provides an expected rate of gain on the option premium of

 ( ) ( )2 21
2( ) ( ) ( )

( ) 2.25%
( )

M M M Mz z z z z z

M
M

d Be e R z e R z Be
z

R z

   


      
  . (21)

Even if one ignores notions of an option premium, the expected payoffs to abandonment are rising at 

4% at this point, and this in itself has been offered as a reason to continue operating the well 

(McDonald and Siegel 1986, 714-15).

But that rate of increase is declining over time, and one must take into account the opportunity 

cost of waiting. From (25), when the expected rate of rise of the forward value of abandoning falls 

to 1.00%, the expected rate of pure postponement flow, at -3.00%, becomes great enough to offset the 

quasi-option flow from further waiting. At this point the after-tax income level is -12.6, and the well 

is optimally abandoned.


