Super-Resolution of Complex Exponentials from Modulations with Unknown Waveforms
Dehui Yang, Gongguo Tang, and Michael B. Wakin
Department of Electrical Engineering and Computer Science, Colorado School of Mines

Super-Resolution

Enhancing the resolution limit of sensing systems
- single-molecule microscopy
- medical imaging
- radar imaging
- astronomy

Motivation
1. Super-resolution with unknown point spread functions
 \[y(t) = \sum_{j=1}^{J} c_j \delta(t - \tau_j) * g_j(t) \]
2. Parameter estimation in radar imaging
 \[y(t) = \sum_{j=1}^{J} c_j e^{2i\pi n_j t} g_j(t) \]
3. 3D single-molecule microscopy
4. Non-stationary blind deconvolution of seismic data

New Model
Consider the observation model:
\[y(n) = \sum_{j=1}^{J} c_j e^{2i\pi n_j t_j} g_j(n), \quad n = -2M, \ldots, 2M. \]
Given samples \(\{y(n)\}, \) the goal is to
- super-resolve \(\{\tau_j\} \)
- recover \(\{c_j\} \)
- recover samples of the unknown waveforms \(\{g_j(n)\} \)

This problem is severely ill-posed
- number of samples \(N := 4M + 1 \)
- number of unknowns \(JN + 2J \)

Subspace Model and Atomic Norm Minimization
- A subspace model for \(g_j \)
 \[g_j = B h_j, \quad B = [b_{-2M}, \ldots, b_{2M}]^H, \quad b_n \in \mathbb{C}^{K \times 1} \]
- Rewrite the observation
 \[y(n) = \sum_{j=1}^{J} c_j a(\tau_j)^H e_n b_n^H h_j \]
 \[= \langle \sum_{j=1}^{J} c_j h_j a(\tau_j)^H, b_ne_n^H \rangle \]
 \[= \langle X_o, b_n^H e_n^H \rangle \]
where \(a(\tau) = [e^{2i\pi(-2M)t} \ldots 1 \ldots e^{2i\pi(2M)t}]^T. \)
- Lift the non-convex problem into a convex program
 Define the atomic norm associated with the set of atoms
 \(A = \{ h a(\tau)^H : \tau \in [0, 1], \|h\|_2 = 1, h \in \mathbb{C}^{K \times 1} \} \)
 \[\|X\|_A = \inf \{ t > 0 : X \in tconv(A) \} \]
 \[= \inf_{c_k, a_k, \|h\|_2 = 1} \left\{ \sum_k |c_k| : X = \sum_k c_k h_k a(\tau_k)^H \right\}. \]
We solve
\[
\begin{align*}
\text{minimize} & \quad \|X\|_A \\
\text{subject to} & \quad y(n) = \langle X, b_n^H e_n^H \rangle, \quad n = -2M, \ldots, 2M.
\end{align*}
\]
Denoting \(q(\tau) = \sum_{n=-2M}^{2M} \lambda(n) e^{2i\pi n \tau} h_n \) as the dual polynomial with \(\lambda \) being the dual optimizer, \(\{\tau_j\} \) are localized by selecting out the corresponding values of \(\tau \) such that \(\|q(\tau)\|_2 = 1. \)

Main Result
If the following conditions are satisfied,
\[1. \Delta_2 = \min_{k \neq j} |\tau_k - \tau_j| \geq \frac{1}{3\pi}, \quad M \geq 64, \]
2. \(b_n \) are i.i.d. samples from a distribution \(F \) satisfying
 i) \(\mathbb{E}[b b^H] = I_K; \)
 ii) \(\max_{1 \leq p \leq K} |b(p)|^2 \leq \mu \) for \(b \in F, \)
3. \(h_j \) drawn i.i.d. from the uniform distribution on the complex unit sphere \(\mathbb{C}^{K-1}, \)
are satisfied, then there exists some some \(C \) such that
\[M \geq C \mu K \log \left(\frac{MJK}{\delta} \right) \frac{\log^2 \left(\frac{MK}{\delta} \right)}{\delta} \]
is sufficient to guarantee that we can recover \(X_o \) with probability at least \(1 - \delta. \)

Numerical Simulations
1. A simple example
 - we use CVX to solve the optimization problem (SDP)
 - set \(N = 64, \quad J = 3 \) and \(K = 4, \)
 - randomly generate the locations of \(J \) spikes on \([0, 1]\) under the minimum separation condition \(\Delta_2 = \frac{1}{3\pi} \)
 - build \(B \) with entries generated randomly from the standard Gaussian distribution
 - \(h_j \) is also generated using i.i.d. real Gaussian random variables and is then normalized

2. Phase transition

3. A practical example
 - set \(J = 3 \) and generate the locations of \(\{\tau_j\} \) uniformly at random between 0 and 1 under the minimum separation \(\Delta_2 = \frac{1}{3\pi} \)
 - \(g_j(n) \) are samples of the Gaussian waveform \(g_j(t) = \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{t^2}{2\sigma_j^2}} \)
 - with unknown variance \(\sigma_j^2 \in [0, 1] \)
 - \(B \) is a rank-5 approximation of the dictionary \(D_g, \)

\[D_g = [g_{\sigma_j=0.1}, g_{\sigma_j=0.11}, g_{\sigma_j=0.12}, \ldots, g_{\sigma_j=0.1}] \]

Reference