Reassessing the Prebisch-Singer Hypothesis: Long-Run Trends with Possible Structural Breaks at Unknown Dates

John T. Cuddington, Rodney Ludema, and Shamila A Jayasuriya
Georgetown University

October 2002

Abstract:

This paper reconsiders the Prebisch-Singer hypothesis regarding long-run trends in commodity prices by considering trend and difference stationary models with up to two possible break points at unknown dates. We show that rather than a downward trend, real primary prices over the last century have experienced one or more abrupt shifts, or “structural breaks,” downwards. The preponderance evidence points to a single break in 1921, with no trend, positive or negative, before or since.
1. INTRODUCTION

Since the publication of the Grill-Yang (1987) paper and associated long-span (1900-86) dataset, there has been a resurgence in empirical work on long-term trends in commodity prices.\(^1\)\(^2\) The search for a secular trend à la Prebisch and Singer has shifted from the issue of data quality to econometric issues involved in estimated growth rates or trends in nonstationary time series.

Modern time series econometrics, however, has taught us that it is potentially misleading to assess long-term trends by inspecting time plots or estimating simple log-linear time trend models. Although the GY series (see Fig. 1 below) does not appear to be mean stationary, it is critical to determine the source of nonstationarity before attempting to make inferences about the presence of any trend. Possible sources of nonstationarity are:

- A deterministic time trend
- A unit root process, with or without drift
- One or more ‘structural’ breaks in the mean or trend of the univariate process
- General parameter instability in the underlying univariate model.

The key econometric issues are, in short, the possible presence of unit roots and parameter instability in the univariate models being estimated. To facilitate a discussion of these issues and to put the existing literature into context, we first specify a general log-linear time trend model that may or may not have a unit root. Second, we describe three

\(^{1}\) The MUV-deflated GY series has recently been extended through 1998 by IMF staff economists. We thank Paul Cashin of the IMF Research Department for proving the data.

\(^{2}\) To construct their nominal commodity price index, GY weighted the 24 nominal prices by their respective shares in 1977-79 world commodity trade. To get a real index, GY divided their nominal commodity price index by the a manufacturing unit value index (MUV), which reflects the unit values of manufactured goods exported from industrial countries to developing countries. This is a natural choice of deflators, given PS’s concern about the possibility of a secular deterioration in the relative price of primary commodity exports from developing countries in terms of manufacturing goods from the industrial world. (GY also considered a U.S. manufacturing price index as a deflator and concluded that their results were not much affected by the choice of deflator.)
types of structural breaks in this framework, where there are sudden shifts in model parameters. A more general type of parameter instability, where parameters are hypothesized to follow random walks, is also considered. Third, we present a chart or matrix showing the relationship among various univariate models that have appeared in the literature. Also included are logical extensions of what has already appeared.

2. TREND STATIONARY VS. DIFFERENCE STATIONARY MODELS

Attempts to estimate the long-term growth rate or trend in an economic time series typically begin with a log-linear time trend model:

\[
\ln(y_t) = \alpha + \beta \cdot t + \epsilon_t
\]

(1)

In the PS literature, \(y = P_C/P_M \) is the ratio of the aggregate commodity price index to the manufacturing goods unit value. The coefficient \(\beta \) on the time index \(t \) is the (exponential) growth rate; it indicates the rate of improvement (\(\beta > 0 \)) or deterioration (\(\beta < 0 \)) in the relative commodity price \(y_t \). It is important to allow for possible serial correlation in the error term \(\epsilon_t \) in (1). Econometrically, this improves the efficiency of the parameter estimates; economically, it captures the often-pronounced cyclical fluctuations of commodity prices around their long-run trend.

The error process in (1) is assumed to be a general autoregressive, moving average (ARMA) processes:

\[
(1 - \rho L) A(L) \epsilon_t = B(L) u_t
\]

(2)

It will be convenient in what follows to factor the autoregressive component of the error process in a way that isolates the largest root in the AR part of the error process; this root is
denoted denoted ρ. The terms $(1-\rho L)A(L)$ and $B(L)$ are AR and MA lag polynomials, respectively. The innovations u_t in (2) are assumed to be white noise.

A critical issue will be whether $|\rho|<1$, indicating that the error process is stationary, or whether $\rho=1$, indicating nonstationarity due to the presence of a unit over time. In this case, (1)-(2) is referred to a the **trend stationary (TS) model**, indicating that although y_t itself is nonstationary (unless $\beta=0$), fluctuations of y_t around its deterministic trend line are stationary.

If, on the other hand, y_t (or equivalently the error process in (2)) contains a unit root, estimating the TS model – with or without allowance for (supposed) structural breaks – will produce spurious estimates of the trend (as well as spurious cycles). An appropriate strategy for estimating the trend β in this case is to first-difference the model (1)-(2) to achieve stationarity. The result is the so-called **difference stationary (DS) model**, a specification in terms of growth rates rather than log-levels of the y_t series:

$$(1 - L) \ln(y_t) \equiv D \ln(y_t) = \beta + \nu_t$$

(3)

where L and D are the lag and difference operators, respectively. The error term in (3) follows an ARMA process:

$$A(L)\nu_t = B(L)u_t$$

(4)

In the DS model, a significant negative estimate of the constant term, β, supports the PS hypothesis.

It has long been recognized that estimated parameters in TS or DS models will be biased, or even meaningless, if the true parameters do not remain constant over time. Suppose, for example, that the true growth rate equaled -4.0% in the first half of the
sample, but +2.0% in the second half. An econometrician who ignored the shift in parameters might incorrectly conclude that the growth rate was a uniform -2.0 percent over the entire sample.

One way to assess the structural stability of the TS and DS models is to estimate each model, appropriately modeling any serial correlation in each case, then to calculate recursive residuals and the 2-standard error bands for the hypothesis that the recursive residuals come from the same distribution as the those from the estimated models. This is done for the TS model (with an AR(1) error process) in Fig. 4 (change number). The recursive residuals in 1921 and 1974 are ‘large’, suggesting structural breaks. Figure 4 also shows p-values for an N-step forecast test for each possible forecast sample. To calculate the p-value for 1920, for example, one would use data from 1900 through 1920 to estimate a TS-AR(1) model. This model is then used to forecast y(t) for the remaining N years of the sample: 1921-1998. A test statistic that incorporates the forecast errors, comparing the forecast with the actual value, for the N-steps ahead can be constructed to test the null hypothesis that such forecast errors could have been obtained from the underlying TS-AR(1) model with no structural break. The p-value for the null hypothesis of no structural break gives the probability of finding an even larger test statistic if the null is, in fact, true. If the p-value is smaller than the size of the test, typically .01 or .05, then one should reject the null hypothesis of no structural breaks.

As seen in Fig. 4, the p-values very near 0.00 in the 1910-20 period indicate that the test statistic is so large that the probability of finding a larger one under the null is virtually zero. That is, this graph clearly shows that if the model is fitted with pre-1921 data and used to forecast into the future, there is clear rejection of parameter stability. If instead
one uses data up through the 1940s, or 1950s, or 1960s, on the other hand, parameter stability is not rejected. If one uses data through the early 1970s to forecast commodity prices through the end of the 1990s, there is again instability – albeit somewhat less severe judging from the p-values on the left-hand scale in the graph.

This evidence certainly suggests that the issue of structural breaks or parameter instability (perhaps due to a unit root) must be taken seriously if one chooses the TS model for analyzing the long-term trends in primary commodity prices.

If one carries out the same exercise for the DS specification, the recursive residual and N-step ahead forecast analysis again suggests that there is a structural break in 1921. See Fig. 6. With the DS model, however, this appears to be the only troublesome episode.

Fig. 6

![Evidence of Parameter Instability in DS Model](image)

What is clear up to this point? Regardless of whether the TS or DS specification is chosen, there is evidence that one or two breaks or parameter instability may be a problem.
From the work of Perron (1989) and others, it is clear that unit root tests, which help us choose between the TS and DS specifications, must take into account the possible presence of structural breaks.

3. STRUCTURAL BREAKS AND PARAMETER INSTABILITY

To consider the possibility of a change in parameters \((\alpha, \beta)\) in the TS model or \(\beta\) in the DS model, one typically constructs a dummy variable: \(DUM_{TB} = 0\) for all \(t < TB\) and \(DUM_{TB} = 1\) for all \(t \geq TB\) where TB is the hypothesized break date. Using this ‘level-shift’ dummy, as well as its first difference (a ‘spike’ dummy) and a dummy-time trend interaction term, yields the “TS with break” model and the “DS with break” model, respectively:

TS with Break Model

\[
\ln(y_t) = \alpha_1 + \alpha_2 DUM_{TB} + \beta_1 t + \beta_2 (t - TB) \times DUM_{TB} + \epsilon_t
\]

DS with Break Model

\[
D(\ln(y_t)) = \alpha_2 D(DUM_{TB}) + \beta_1 + \beta_2 \times DUM_{TB} + \nu_t
\]

These specifications are general enough to encompass the three types of breaks described in Perron (1989) classic paper on testing for unit roots in the presence of structural breaks (which will be discussed below). His model A (“Crash” model) involves only an abrupt shift in the level of the series; i.e. \(\alpha_2 \neq 0, \beta_2 = 0\). In model B (the ‘breaking trend’ model), there is a change in the growth rate, but no abrupt level shift: \(\alpha_2 = 0, \beta_2 \neq 0\). Finally, the ‘Combined Model’, model C, has change in both the level and growth rate: \(\alpha_2 \neq 0, \beta_2 \neq 0\).

3 It is also possible to allow for shifts in the model parameters that describe the error process, its serial correlation and variance, but we do not consider this extension here.
Suppose that one knows *a priori*, or decides on the basis of unit root testing, whether the TS or DS specification is appropriate. Then, if the break date, TB, is assumed to be known, it is straightforward to test for the presence of structural breaks by examining the t-statistics on α_2 and/or β_2. A test for a break of type C could be carried out using an $\chi^2(2)$ test for the joint hypothesis that $\alpha_2=0$ and $\beta_2=0$.

The latter is equivalent to (one variant of) the well-known Chow test for a structural break. More recent work on tests for parameter stability warns against arguing that the break date TB is known. Andrews (1993), Ploberger, Kramer, and Kontrus (1989), and Hansen (1992), for example, develop methods for testing for the presence of a possible structural break at an unknown date using algorithms that searches over all possible break dates.

4 Andrews (1993) considers tests for parameter instability and structural change with unknown breakpoints in nonlinear parametric models. He tests the null of parameter stability subject to three alternative hypotheses: a one-time structural change either with a known change point, with an unknown change point in a known restricted interval, and with an unknown change point where no information is available regarding the time of the change. The data in the estimated model must be stationary or driftless random walks; they can not be series with deterministic or stochastic time trends. He derives the asymptotic distributions of three test statistics based on the Generalized Method of Moments (GMM) estimators – Wald, Lagrange Multiplier, and Likelihood Ratio-like statistic – under the null hypothesis of constant parameters and provides the respective critical values for each.

5 Ploberger, Kramer, and Kontrus (1989) propose a ‘fluctuations test’ for the null hypothesis of parameter constancy over time in a linear regression model with non-stochastic regressors. Their test is based on successive parameter estimates and does not require the location of possible shifts to be known. They derive the asymptotic distribution of the ‘fluctuation test’ statistic and determine the rejection probability of this test statistic based on the magnitude of fluctuations in the recursive coefficient estimates. They also show how their tests is related to earlier CUSUM and CUSUM squared tests.

6 Hansen (1992) tests the null of parameter stability in a framework of cointegrated regression models, against the alternative hypotheses that a single structural break exists at either a given or an unknown time. He considers a standard multiple regression model containing I(1) variables that are assumed to be cointegrated; the model parameters are estimated using OLS. His specification also allows for deterministic and stochastic trends in the regressors. He proposes three tests – Supχ^2, Mean χ^2, and LC – that test the null hypothesis of parameter constancy and simulates asymptotic critical values for each test. The Supχ^2 test has greater power against the alternative hypothesis of a one-time break at an unknown date. The mean-χ^2 test has greater power when the alternative is random walk parameters. Interestingly, he shows that the special case of an unstable intercept in under alternative hypothesis can be interpreted as an absence of cointegration among the I(1) variables in the model. Hence his test can be interpreted as a cointegration test.
Recently, there have been attempts in the macroeconomics literature to extend the unknown break date literature to consider two (possible) break points at unknown dates. (See, e.g. Mehl (2000)). An obvious issue that this extension raises is: why only two breaks rather than, say, three, or four?

Authors developing parameter stability tests have also considered the alternative hypothesis where the parameters are assumed to follow a random walk. In this case, the model parameters are generally unstable, in a way that can not be captured a one-time shift at any particular date. This test of general parameter stability is a good diagnostic test when assessing the adequacy of a particular model specification.

Hansen (1992, p. 321) provides an excellent overview of the issue and possible approaches to dealing with it:

“One potential problem with time series regression models is that the estimated parameters may change over time. A form of model misspecification, parameter nonconstancy, may have severe consequences on inference if left undetected. In consequence, many applied econometricians routinely apply tests for parameter change. The most common test is the sample split or Chow test (Chow 1960). This test is simple to apply, and the distribution theory is well developed. The test is crippled, however, by the need to specify a priori the timing of the (one-time) structural change that occurs under the alternative. It is hard to see how any non-arbitrary choice can be made independently of the data. In practice, the selection of the breakpoint is chosen either with historical events in mind or after time series plots have been examined. This implies that the breakpoint is selected conditional on the data and therefore conventional critical values are invalid. One can only conclude that inferences may be misleading. An alternative testing procedure was proposed by Quandt (1960), who suggested specifying the alternative hypothesis as a single structural break of unknown timing. The difficulty with Quandt’s test is that the distributional theory was unknown until quite recently. A distributional theory for this test statistic valid for weakly dependant regressors was presented independently by Andrews (1990), Chu (1989), and Hansen (1990). Chu considered as well the case of a simple linear time trend.

Another testing approach has developed in the statistics literature that specifies the coefficients under the alternative hypothesis as random walks. Recent expositions were given by Nabeya and Tanaka (1988), Nyblom (1989), and Hansen (1990).

The preceding works did not consider models with integrated regressors. [Hansen (1992), from which this quote is taken] makes such an extension.”

where the null hypothesis is the presence of cointegration. (In contract, in the Engel-Granger and Johansen cointegration tests, the null hypothesis is the absence of cointegration.)
In situations where one is tempted to argue that there are several structural breaks, it probably makes sense to ask whether the situation might be better described a one of general parameter instability.

A Matrix of Possible Univariate Specifications and Tests

As outlined above, the key issues in estimating the long-term trend in real commodity prices involve the presence or absence of unit roots and parameter stability. In order to organize our discussion of the existing literature on unit roots and structural breaks, and to point to direction for future research, consider the alternative univariate specifications in chart in Fig. 7. The models in the left column assume that the time series in question, here the real GY commodity price index, does not have a unit root. Rather it is stationary or trend stationary. Those on the right presume the presence of a unit root. Going across the rows, we consider parameter stability/instability of various kinds. The first row assumes the model parameters are constant over time. The second row assumes that there is at most single break or parameter shift in parameters at a known date. The third row assumes the possible single break occurs at an unknown date. The fourth row considers the possibility of two or more breaks – determined by either formal or informal methods where the break dates are known or unknown. Finally, the fifth row considers the case where the model parameters follow a random walk and hence are ‘unstable’ over time. For convenience the models are numbered for future reference.
Empirical economists have long employed the TS model for estimating long-term growth rates. A number of these authors also considered the possibility of model 2 – a TS model with a structural break at a known/predetermined date. To formally compare models 1 and 2, Chow-type structural break tests were employed. These tests are represented by the arrow running from model 1 to model 2. The arrow emerges from the model that is assumed to hold under the null hypothesis in the test and points toward the model under the alternative hypothesis.
The unit root revolution in time series econometrics emerged slowly in the mid 1970s and exploded in the 1980s. It stressed that seriously biased (indeed inconsistent) estimates of long-term trends could result if one employed simple log-linear trend models when, in fact, the underlying series had unit roots. Unit root tests, such as those of Dickey and Fuller (1979) and later Phillips-Perron (1988), were proposed as a method for choosing between so-called trend stationary (TS) and difference stationary (DS) models when estimating growth rates or trends in economic time series. The null hypothesis under these tests is the presence of a unit root. These are, therefore, represented by the arrow running from model 3 to model 1. Subsequently, Kwiatkowski, Phillips, Schmidt and Shin [KPSS] (1992) developed a test that maintained mean stationarity or trend stationarity under the null hypothesis. This test is, therefore, represented by the arrow running from model 1 to model 2.

The work of Perron (1989) was seminal in that it demonstrated that the unit root and structural break issues are intertwined. Perron showed how the presence of a structural break at a known break date TB would bias standard unit root tests toward nonrejection of the null hypothesis of a unit root. That is, if one used ADF tests to test model 3 against model 1, when the true model was in fact model 2, one was very likely to falsely accept the null hypothesis of a unit root. This has become known as the ‘Perron phenomenon.’ Perron went on to develop unit root tests that allowed for the (possible) presence of a structural break under both the null and alternative hypotheses. The Perron-Dickey-Fuller unit root test is represented by the arrow running from model 4 (the null) to model 2 (the alternative). Actually, he developed separate tests for breaks of types A, B, and C,
respectively, as described in the accompanying box, Figure 8. The appropriate specification in his various examples was primarily based on eyeballing the data (albeit with some knowledge of post World War I economic history), both to determine the most plausible break date, TB, and the type of break (A,B,C).

Fig.8: Perron’s (1992) Model Specification for Carrying Out P-ADF Unit Root Tests in Presence of Break at Time TB

Model A:

\[
y_t = \mu^A + \beta^A t + \phi^A DUM_{TB,t} + \hat{\gamma} A(DUM_{TB})_t + \hat{\alpha} A y_{t-1} + \sum_{i=1}^{k} \hat{\gamma} i \Delta y_{t-i} + \hat{\epsilon}_t
\]

Model B:

\[
y_t = \mu^B + \beta^B t + \phi^B DUM_{TB,t} + \gamma D(T) + \alpha^B y_{t-1} + \sum_{i=1}^{k} \hat{\gamma} i \Delta y_{t-i} + \hat{\epsilon}_t
\]

Model C:

\[
y_t = \mu^C + \beta^C t + \phi^C DUM_{TB,t} + \gamma C (DUM_{TB})_t + \hat{\alpha} C y_{t-1} + \sum_{i=1}^{k} \hat{\gamma} i \Delta y_{t-i} + \hat{\epsilon}_t
\]

where:

- \(t = \) time trend and \(TB = \) refers to the time of break.
- \(DUM_{TB,t} = 1 \) if \(t \geq TB \), and 0 otherwise (level-shift dummy)
- \(D(DUM_{TB})_t = 1 \) if \(t = TB \), and 0 otherwise (spike dummy)
- \(DT_t = (t-TB)*DUM_{TB,t} \) (time-interaction dummy)

7 Perron’s work on structural breaks distinguishes between the *Additive Outlier Model* and the *Innovational Outlier Model*. In the former, the break occurs suddenly at the break date. In the latter, the break takes the form of a shift in the structure of the underlying model that takes effect gradually over time in exactly the same way that an innovation is perpetuated by the ARMA process of the estimated model. See Perron and Vogelsang (1992) for a discussion of the two models. Throughout this paper, we use the innovational outlier model.

8 This is slight reworking of Perron’s original specification in that the timing of the dummy here reflects the first period of the new regime and the time interaction term is written the same way in models B and C. This shows more clearly that models A and B are nested in C.
Table 3 shows how imposing restrictions on the test equation for model C above causes it to collapse to TS or DS models with various break types. Unrestricted, the model nests all of these as special cases.

Table 3

<table>
<thead>
<tr>
<th>Model</th>
<th>α(ADF stat)</th>
<th>$d^*D(\text{DUM})$</th>
<th>$\phi^*\text{DUM}$</th>
<th>$\gamma^*\text{DT}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-no break</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TS-no break</td>
<td>$\neq 0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DS-break A</td>
<td>0</td>
<td>$\neq 0$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TS-break A</td>
<td>$\neq 0$</td>
<td>0</td>
<td>$\neq 0$</td>
<td>0</td>
</tr>
<tr>
<td>TS-with single outlier</td>
<td>$\neq 0$</td>
<td>$\neq 0$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DS-break B</td>
<td>0</td>
<td>0</td>
<td>$\neq 0$</td>
<td>0</td>
</tr>
<tr>
<td>TS-break B</td>
<td>$\neq 0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DS-break C</td>
<td>0</td>
<td>$\neq 0$</td>
<td>$\neq 0$</td>
<td>0</td>
</tr>
<tr>
<td>TS-break C</td>
<td>$\neq 0$</td>
<td>0</td>
<td>$\neq 0$</td>
<td>$\neq 0$</td>
</tr>
</tbody>
</table>

Subsequent authors, notably Christiano (1992), Banerjee-Lumsdaine-Stock (BLS) (1992) and Zivot and Andrews (ZA) (1992) were highly critical of Perron’s assumption that the date of the (possible) break was either known *a priori* or was determined by inspecting the data without adjusting the critical values in subsequent statistical tests to reflect this informal ‘search’ procedure. This, of course, echoed concerns in the literature developing formal tests for parameter stability (discussed above; see Hansen (1992) quotation). As Fig. 2 illustrates, unit root process often exhibit *apparent* breaks even when, in truth, there is none. So it’s risky to assess the presence of breaks by eyeballing the data.
BLS and ZA proposed a generalization of Perron-Dickey-Fuller (P-ADF) test that treated the possible break date as unknown; they propose an algorithm for searching over all possible break dates within the (trimmed\(^9\)) sample. There are a couple of noteworthy aspects of this test, which we dub the ZAP-ADF test. First, it allows the structural break under the alternative hypothesis but not under the null hypothesis of a unit root. This is reflected in the arrow representing the ZAP-ADF test, which runs from model 3 to model 5 in Fig. 7. Second, the ZAP-ADF test is a test of the null hypothesis of a unit root, conditional on the possible presence of structural break at an unknown date. It is not a test for the presence of structural break (hence our phrase ‘a possible structural break’). In spite of this, the ZAP-ADF and P-ADF tests have repeatedly been represented as tests of structural change in both the applied macroeconometric and commodity price literatures. [See, e.g., Enders (1995), Leon and Soto (1997), and Zanias (undated).] Finally, the ZAP-ADF test assumes that the type of break is known \(a\ priori\).\(^{10}\) Thus, the ZAP-ADF test has the rather inconsistent feature of testing for a unit root, conditional on the possible presence of a \(known\) type of structural break (A,B,C) at an \(unknown\) date!

In contrast to the ZAP-ADF test, the specification in Perron (1989) permitted the break under \(both\) the null and alternative hypotheses -- albeit at a known date. Perron and Vogelsang (1992) developed a unit root test that allowed for a break at an unknown date under both the null and alternative. However, this was done in the context of comparing a TS model with zero trend \(\beta=0\) to a DS model (with \(\beta=0\) here, as well). This, in effect,

\(^9\) For technical reasons, it is often necessary to ‘trim’ the first and last 10-15% of the sample, so that only break dates in the middle 70-80% of the sample are considered.

\(^{10}\) That is, while ZA criticize Perron (1989) for assuming the timing of the break is known, they accept his visual characterization of the most plausible type of break for each macroeconomic variable considered as they demonstrate how their test differs from his.
limited the analysis *ex ante* to breaks of type A. This test is denoted PV, running from model 6 to model 5 in the matrix.

More recently, Leybourne, Mills, and Newbold (LMN)(1998) have pointed to a very compelling reason for preferring unit root testing procedures that allow for the presence of a break under both the null and alternative hypotheses. They consider situations where the true model is a DS model with either a type A or B break. In either case, (LMN (1998, p.191), our emphasis) demonstrate that there is a ‘converse Perron phenomenon.’ Specifically, “if the break occurs early in the series, routine application of standard Dickey-Fuller tests can lead to a very serious problem of spurious rejection of the unit root null hypothesis.” They go on to emphasize that:

Of course, this problem will not occur when the test procedures that explicitly permit a break under the null as well as under the alternative are employed, as for example in Perron (1989, 1993, 1994) and Perron and Vogelsang (1992). This is the case whether the break date is treated as exogenous or as endogenous, as in Zivot and Andrews (1992) or Banerjee et al. (1992). Indeed, our results imply a further motivation for employing such tests when a break is suspected, in addition to the well-known lack of power of standard Dickey-Fuller tests in these circumstances. (1998, p.198)

As mentioned above, some authors have entertained the possibility that economic time series might have more than one structural break. For the most part these multiple breaks were identified by casual data inspection, although there are now formal unit root tests in the (possible) presence of two structural breaks at unknown dates. See, e.g., Mehl (2000). Unfortunately, the unit root tests in the latter paper shares two undesirable features

11 They note that in the case of their type A break in the simplest type of DS model – a driftless random walk, this implies that the first-difference of the series is white noise with a single outlier at the break date.
12 LMN (1998, p.191): “It is well known that if a series is generated by a process that is stationary around a broken trend, conventional Dickey-Fuller tests can have very low power. [i.e., the ‘Perron phenomenon.’] In this paper, the converse phenomenon is studied and illustrated. Suppose that the true generating process is integrated of order one, but with a break…”
of earlier work: the breaks are assumed to be of a known type and the break is allowed under the alternative hypothesis, but not under the null hypothesis of a unit root.

4. A NEW LOOK AT GROWTH RATES, POSSIBLE BREAKS AND UNIT ROOT TESTS

In testing the PS hypothesis, our primary interest is in the growth rate β in the deflated GY index. Has it been negative as PS predicted? Has it been relatively stable over time? Or has this parameter shifted or drifted over time, or exhibited a sharp structural break or breaks? In our particular application, we are less interested in the presence or absence of unit roots *per se* than was the applied macroeconometric literature. Unfortunately it is difficult to estimate the growth rate β without first making a decision on the presence or absence of a unit root first. Ideally, we would also like to formally test for the presence of structural breaks without prejudging the case of whether the series has a unit root. This objective, however, appears to be beyond our reach at this time.

Our strategy is to proceed as follows. First estimate augmented ZAP-ADF-like regressions allowing for at most two structural breaks at unknown dates. Having searched for the two most plausible break dates, we then test whether each break is statistically significant. If both breaks are significant, we assume two breaks in what follows. If only one break is statistically significant, we re-estimate the ZAP-ADF equation with a single break at an unknown date and test the to see whether the remaining break is statistically significant.
The Possibility of At Most Two Break Points

We first consider the possibility that the GY series is characterized by (up to) two structural breaks of unknown type (A,B,C) and at unknown dates. Our search algorithm considers all possible pairs of break dates (TB1, TB2) in the trimmed sample. For the ZAP-ADF equation, three dummies – the spike, level-shift, and trend interaction dummies - are included for each of the two hypothesized break dates in order to allow for breaks of type A,B, or C under both the null hypothesis of a unit root and the alternative hypothesis of trend stationarity. That is, the estimated ZAP-ADF equation is:

\[
y_t = \hat{\mu} + \hat{\beta}t + \hat{\alpha}y_{t-1} + \hat{d}_1 D(\text{DUM}_{TB1}, t) + \hat{\phi}_1 \text{DUM}_{TB1,t} + \gamma_1 \ast t \ast \text{DUM}_{TB1,t} + \\
+ \hat{d}_2 D(\text{DUM}_{TB2}, t) + \hat{\phi}_2 \text{DUM}_{TB2,t} + \gamma_2 \ast t \ast \text{DUM}_{TB2,t} \sum_{i=1}^{k} \hat{c}_i \Delta y_{t-i} + \hat{e}_t
\]

(7)

In each regression as different pairs of break dates (TB1, TB2) are considered, the number of lags of the dependent variable, k, is chosen using Perron’s general to specific method so as to be reasonably confident that the residuals are serially uncorrelated at each stage as we proceed.

Extending Hansen (1992), albeit less rigorously at this point, to cover situations with two break dates, we calculate an \(\sup \chi^2 \) statistic to make an inference about the existence of structural change and a mean \(\chi^2 \) statistic to determine the existence of general parameter instability in the data. In this context of the ZAP-ADF equation, the \(\sup \chi^2 \) statistic is the maximum value over all (TB1, TB2) pairs of the Wald test statistic for the null hypothesis that all six dummies (level, spike, and time interaction dummies for TB1

13 When searching for two break points with the use of spike, level-shift and trend interaction dummies, it is easy to show that the break points must be separated by a minimum of two periods to avoid perfect multicollinearity among the dummies. If one does not allow for breaks under the null hypothesis, only under the alternative (as in Mehl (2000)), then the two spike dummies are omitted and the two break need only be separated by a single period to avoid perfect multicollinearity.
and TB2) are equal to zero. Hence we will call it a sup\(\chi^2\)(6) statistic. The mean\(\chi^2\)(6) statistic is simply the average of the \(\chi^2\)(6) statistics. As explained in Hansen (1992), a significantly high sup\(\chi^2\) with a relatively low mean\(\chi^2\) implies the existence of a single structural break (or here two structural breaks) and no/low parameter instability. On the other hand, a high mean\(\chi^2\) is indicative of general parameter instability rather than an abrupt structural change (or two). In addition, we also compute the \(\chi^2\) statistic for to test the joint significance of the three types of dummies associated with each candidate break point. These are denoted \(\chi^2\) \textit{stat(3)}_TB1 and \(\chi^2\) \textit{stat(3)}_TB2, respectively. See Table 4 for results.

\textbf{Table 4.} Grid Search Results for Two Structural Breaks14

<table>
<thead>
<tr>
<th>Type of Model</th>
<th>ZAP-ADF Model</th>
<th>Type of Structural Break Dummies</th>
<th>With Level, Spike & Time Interaction Dummies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chosen Break Points TB1 & TB2</td>
<td>\textit{1921 & 1974}</td>
<td>58.53</td>
<td></td>
</tr>
<tr>
<td>Sup(\chi^2)(6)</td>
<td>10.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF stat for unit root test at (TB1=1921,TB2=1974)</td>
<td>-5.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\chi^2)\textit{stat(3)}_TB1 (1921)</td>
<td>14.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\chi^2)\textit{stat(3)}_TB2 (1974)</td>
<td>7.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to the grid search based on the ZAP-ADF equation, the two structural breaks are most likely to have occurred in 1921 and 1974.15 The sup\(\chi^2\)(6) statistic of 58.53 is presumably statistically significant (given that the 1% critical value from the \(\chi^2\)(6)

14 In a Pentium III processor, the program runs for approximately 30 minutes for the ZAP-ADF model. The maximum number of lags considered in the lagged dependent variable polynomial is six.

15 We also searched for two breaks in the ZAP-ADF model without the two spike dummies (which precludes a level-shift break under the null hypothesis of a unit root). In this specification the most prominent breaks are in 1921 and 1985. This estimation produced a sup\(\chi^2\) of 34.43, a mean\(\chi^2\) of 8.07, and an ADF stat of –7.29.
distribution is 16.81. The critical value for the sup statistic must be determined via simulation methods, but we know it will be higher than 16.81.) The mean $\chi^2(6)$ value of 10.79, on the other hand, is probably not statistically significant. (We know that for models with one break the critical values from the mean $\chi^2(6)$ distribution will be slightly lower than those from the standard $\chi^2(6)$ distribution. See Hansen, 1992.)

Fig. 9 shows a 3-D graph of the $\chi^2(6)$ values corresponding to alternative break date pairs. The sup $\chi^2(6)$ of 58.53 corresponding to (TB1, TB2)=(1921, 1974) is, by definition, the global maximum but there are several local maximums. There are, in fact, others $\chi^2(6)$ statistics that are close in value to the sup χ^2 attained in (1921, 1974). The second highest sup χ^2 value of 56.33 occurs with candidate break date pair (1921, 1973), and the third highest of 55.79 occurred at (1921, 1984). Note that there is a clear L-shaped ‘ridge’ of high sup $\chi^2(6)$ values where either TB1 or TB2 is 1921. This suggests that there is a rather decisive break in 1921. Placing the other possible break date almost any other date after 1923 in the trimmed sample often produces a high $\chi^2(6)$ statistic. This might be indicative of general parameter instability, rather than a second decisive break point. Alternatively, there may be only a single break at 1921, with the dating of a second possible break being rather inconsequential in determining the value of the sup $\chi^2(6)$ statistic.

Turning to the two break points, considered separately, the $\chi^2(3)_{TB1}$ and $\chi^2(3)_{TB2}$ suggests that the structural change in 1921 is more prominent than the one in 1974. Note that $\chi^2(3)_{TB2}=7.77$, which is less than the standard 1% critical value for $\chi^2(3)$ of 11.34. The appropriate critical value, given that the break dates are chosen from search process that maximizes $\chi^2(6)$, must be higher. Thus, we can safely conclude that TB2 is
insignificant. A determination on TB1 would require a calculation of the appropriate critical values. A complementary approach is to estimate the ZAP-ADF equation with a single possible break point at an unknown date, which we take up next.

Fig. 9. 3-D Graph of the $\chi^2(6)$ Statistic for the ZAP-ADF Equation

To reiterate, without conducting an extensive Monte Carlo simulation analysis we don’t know whether the supχ^2 or meanχ^2 statistics are statistically significant. Similarly, we don’t know whether the ZAP-ADF stat of –5.93 in Table 4 above is large enough to reject the null hypothesis of a unit root, conditional on the possible presence of two breaks of unknown type (A,B,C) and unknown dates.
The ZAP-ADF Tests with At Most One Break

The above exercise is repeated assuming, now, that there is at most one break at an unknown date as in ZA/BLS and Perron-Vogelsang.16 The ZAP-ADF equation is:

\begin{equation}
y_t = \mu + \beta t + \alpha y_{t-1} + \hat{d}DUM_{TB1,t} + \phi DUM_{TB1,t} + \mu^* DUM_{TB1,t} + \sum_{i=1}^{k} \hat{c}_i \Delta y_{t-i} + \hat{e}_t \quad (8)
\end{equation}

ZA/BLS and Perron-Vogelsang (1992) choose the break date that minimizes the t-statistic on α – the ADF statistic. We use an alternative search algorithm, although using our output it is easy to compare to the ZA/BLS results. The alternative we consider is similar to Andrews (1992) and Hansen (1992). For each and every possible break date TB in the [.15, .85]-trimmed sample, we calculate the Wald χ^2 statistic for the joint hypothesis that the coefficients on all three break dummies are jointly insignificant. That is, $H_0: \theta = \hat{y} = d = 0$.17 Under the null, there is no break of Type A, B, or C.

We plot the sequence of χ^2 statistics, as in Hansen (1992), to get some indication of whether there might be one or more breaks. The maximum in the sequence of χ^2 statistics, denoted “sup χ^2” is determined. The mean χ^2 is also calculated.18 A high value for the sup χ^2 statistic signals a possible structural break (of type A, B, or C); a high value for the mean χ^2 statistic, on the other hand, suggests the parameter estimates (in the ZAP-ADF equation

16 Perron and Vogelsang also consider an algorithm that selects TB so as to maximize the absolute value of the t-statistic on DUM. In their context which precludes breaks in the growth rate (as it is identically zero), this amounts to using the supχ^2 statistic that we employ.

17 Given that we impose linear restrictions, the Wald test output produces both an χ^2 statistic and a Chi-square statistic. However, the Chi-square statistic is more appropriate since lagged dependent variables appear as regressors in our equation specification.

18 These two statistics are analogous to the supχ^2 and meanχ^2 statistics discussed in Hansen (1992), for his regressions that did not involve lagged dependent variables.
in this case) are unstable. We also plot the t-statistics on the dummies and the ADF-t statistic for each possible break point.

When our single break selection procedure is applied to the deflated GY index, the Wald test statistics for the various possible break points are those shown in Fig. 10. The sup χ^2 of 32.14 occurs in 1921 and is a clear outlier in terms of magnitude; the mean $\chi^2 = 4.19$. Given that sup χ^2 lies well above the standard 1% critical value for $\chi^2(3)$ of 13.28, and mean χ^2 lies well below the critical value, it is reasonable to conclude that the real GY series is well characterized by a single break in 1921, rather than multiple breaks or general parameter instability.

Fig. 10: The Sequence of Wald χ^2 Test Statistics for the Joint Hypothesis H_0:
$\hat{\theta} = \hat{\gamma} = \hat{d} = 0$.

To get a better understanding of what is producing the large sup χ^2 value in 1921, one can examine the sequence of t-statistics on the individual dummy coefficients shown in Fig. 11 below.
A visual inspection confirms the existence of a spike dummy in 1921. Formally, the t-statistics in 1921 are –5.2047, -0.3987, -0.2141, and –0.2029 for the spike, level, interaction, and trend dummies respectively. Even though we do not have the correct critical values to interpret the spike dummy at this point, a t-statistic of –5.2047 is presumably above the appropriately calculated critical value, implying a rejection of the hypothesis of a zero coefficient on the spike dummy.19

19 The coefficient on the spike dummy in 1921 is –0.2184. This turns out to be a clear outlier compared with that of the rest of the period.
Turn now to Fig.12, which shows the ADF t-statistic for all possible (single) break dates. Our $\sup \chi^2$ statistic identified 1921 as the year of the break. On that date, the ADF statistic has a value of -3.03. Presumably (awaiting correct critical values), the null of unit root cannot be rejected at a reasonable level of significance. Given that Fig.11 shows only the t-statistic on the spike dummy is large, and the ADF statistic is small, it suggests that the GY series is probably well described as a DS-break A model.

It is interesting that the minimum value of the Perron-ADF statistic in Fig. 12 is the -4.99 value in 1972. The ZA/BLS method for selecting the break date would, therefore, have chosen 1972 not 1921 as the break date. Given the value of the test statistic, one would fail to reject the unit root with break hypothesis at the one or five percent significance levels; the respective critical values are -5.57 and -5.30 (assuming that the ZA asymptotic critical values still apply when a spike dummy is included in the ZAP-ADF
equation as we do here). From Fig. 10 showing the sequence of Wald statistics, on the other hand, it appears that the argument that the break occurs in 1972 rather than 1921 is weak.

Comparing our algorithm to the ZA/BLS algorithm suggests that the latter gives very little weight to the significance of the spike dummy. In effect, this amount to not taking seriously DS (unit root) with a type A break model. We believe this biases the results against the unit root hypothesis. Our algorithm should dominate the ZA/BLS algorithm in the situations described by LMN (1998). They emphasize the need to allow for the break under both the null and alternative hypotheses. We add to this point by stressing the need to apply an appropriate search algorithm for determining the break point.

The ZAP-ADF tests conducted here consider up to two break dates in the GY series. We tentatively conclude that the series is well characterized as a unit root process with a single level-shift break (type A) in 1921. Unfortunately, unit root tests have notoriously low power, so the common failure to reject the unit root hypothesis hardly provides a definitive determination of the true data generating process. An alternative approach is to consider the KPSS tests, which take stationarity or trend stationarity, rather than nonstationarity, as the null hypothesis. These tests are found in the appendix.

Two other arguments can also be invoked in making a choice between the TS and DS specifications:

- Plosser and Schwert (1978) discuss the pros and cons of estimating economic time series regression models, of which log-linear time trend models are a special case, is levels or first-differences. More precisely, they consider the relative costs of over-differencing and under-differencing. Which strategy is riskier: first-differencing (1)-(2), so that the DS model in (3)-(4) is estimated, when in fact there is no unit root in (1)-(2), or estimating (1)-(2) when there is, in fact, a unit root? They argue that “the problem of nonstationary disturbances (possibly in the levels regressions) are far more serious than the problems caused by excessive differencing (in the second differences regression, for example).” (1978, p.657).
Parameter instability in the TS model may, in fact, be an indication that the error process, in fact, has a unit root. Thus, we should look carefully for differences in the degree of parameter instability across the TS and DS specifications.

Given the uncertainty surrounding the question of unit roots, it seems reasonable to estimate both TS and DS models with one or two breaks. (The models with no breaks have already been estimated above.) Begin with the more general two-break specification.

5. ESTIMATED TS AND DS MODELS WITH TWO BREAKS

Below we will consider the TS and DS model in turn, using our search algorithm to choose the dating of two break points. As discussed above, we need to include only the level-shift and time interaction dummies to allow for breaks of type A, B, and C in the TS model. Thus the criterion for choosing the break dates (TB1, TB2) is the sup$\chi^2(4)$ statistic from the set of all $\chi^2(4)$ statistics testing the joint significance of the two dummies associated with all possible pairs of break dates. Analogously, in the DS specification, we need to include only the spike and level-shift dummies. The criterion is again a sup$\chi^2(4)$ statistic.

Once the two most plausible break points have been identified in the TS and DS specifications respectively, there are three subsamples of the GY index to consider. There is a necessary to estimate the growth rates for each segment: pre-TB1, TB1 through TB2, post-TB2. Estimates of the trend segments for both the TS and DS specifications are shown in Table 5. Also reported is the Wald test of the hypothesis that each trend

20 Each specification requires the inclusion of two dummies for each break date. It can be shown that the break dates must be separated by at least one period to avoid perfect multicollinearity.
A rejection of the hypothesis indicates the presence of a significant trend in the respective sub-period.

Table 5. Grid Search Results for Two Possible Breaks at Unknown Dates (TB1, TB2)\(^2^1\)

<table>
<thead>
<tr>
<th>Type of Model</th>
<th>TS Model</th>
<th>DS Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type of Structural Break Dummies</td>
<td>Level & Time Interaction</td>
</tr>
<tr>
<td>Chosen Break Points TB1 & TB2</td>
<td>1921 & 1985</td>
<td>1921 & 1974</td>
</tr>
<tr>
<td>Sup(\chi^2(4))</td>
<td>34.43</td>
<td>47.40</td>
</tr>
<tr>
<td>Mean(\chi^2(4))</td>
<td>8.07</td>
<td>3.35</td>
</tr>
<tr>
<td>(Segmented) Trend(^1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. pre_TB1</td>
<td>0.0032 (0.1836)</td>
<td>0.0027 (0.6559)</td>
</tr>
<tr>
<td>2. TB1 through TB2</td>
<td>-0.0006 (0.1298)</td>
<td>0.0001 (0.9690)</td>
</tr>
<tr>
<td>3. post_TB2</td>
<td>-0.0021 (0.5874)</td>
<td>-0.0109 (0.0307)</td>
</tr>
<tr>
<td>(\chi^2) stat(2) TB1</td>
<td>13.25</td>
<td>19.32</td>
</tr>
<tr>
<td>(\chi^2) stat(2) TB2</td>
<td>14.36</td>
<td>4.77</td>
</tr>
</tbody>
</table>

Note:
1. The p-value for the hypothesis that the trend coefficient is equal to zero is given in parenthesis. P values that are higher than your chosen test size (say .05) indicate failure to reject the null hypothesis of a zero trend for the given segment of the data. These p values ignore the fact that TB1 and TB2 were chosen so as to maximize sup\(\chi^2\). Thus the p-values on the trend segments are possibly inaccurate.

Examining the table, we find that sup\(\chi^2(4)\) statistics for both the TS and DS specifications are ‘large’ (relative to the standard 1% critical value for\(\chi^2(4)\) of 13.28. The mean\(\chi^2(4)\) statistic for the DS model is very small, suggesting no issue of general parameter instability. The mean\(\chi^2(4)\) statistic for the TS model is close enough to the standard critical value that it is impossible to guess the outcome of a formal parameter stability tests based on simulated critical values.

The TS model estimation places the two breaks in 1921 and 1985. Moreover, the \(\chi^2(2)\)_TB1 and\(\chi^2(2)\)_TB2 stats for 1921 and 1985, respectively, are similar in magnitude, with 1985 being slightly larger (14.36 vs. 13.25, whereas the 1.0% critical value for

\(^2^1\) In a Pentium III processor, the program runs for approximately 20 minutes each for the TS and DS models. In both cases, the maximum number of lags of the dependent variable considered (k) was six.
\(\chi^2(2) = 9.21 \). To calculate the segment-specific growth rates in the TS model, the formulas in the accompanying box are used.

Calculating Segment-Specific Growth Rates in the TS and DS Models

TS Model:

\[
\ln(y_t) = \beta_0 + \beta_1 t + \beta_2 DUM_{TB1} + \beta_3 t * DUM_{TB1} + \beta_4 DUM_{TB2} + \beta_5 t * DUM_{TB2} + \sum_{i=1}^{k} \delta_i \ln(y_{t-i})
\]

DS Model:

\[
\Delta \ln(y_t) = \beta_0 + \beta_1 DUM_{TB1} + \beta_2 D(DUM_{TB1}) + \beta_3 DUM_{TB2} + \beta_4 D(DUM_{TB2}) + \sum_{i=1}^{k} \delta_i \Delta \ln(y_{t-i})
\]

Segment-Specific Growth Rates in the TS Model:

- Pre_TB1 growth rate:
 \[
 \frac{\beta_1}{1 - (\delta_1 + ... + \delta_k)}
 \]

- TB1 through TB2 growth rate:
 \[
 \frac{\beta_1 + \beta_3}{1 - (\delta_1 + ... + \delta_k)}
 \]

- Post_TB2 growth rate:
 \[
 \frac{\beta_1 + \beta_3 + \beta_5}{1 - (\delta_1 + ... + \delta_k)}
 \]

Segment-Specific Growth Rates in the DS Model:

- Pre_TB1 growth rate:
 \[
 \frac{\beta_0}{1 - (\delta_1 + ... + \delta_k)}
 \]

- TB1 through TB2 growth rate:
 \[
 \frac{\beta_0 + \beta_1}{1 - (\delta_1 + ... + \delta_k)}
 \]

- Post_TB2 growth rate:
 \[
 \frac{\beta_0 + \beta_1 + \beta_3}{1 - (\delta_1 + ... + \delta_k)}
 \]
The resulting calculations for the TS model growth rates and their χ^2 statistics (conventional p values noted) indicate that the trend in all three sub-periods are not statistically different from zero. In conclusion, therefore, if one rejects the unit root hypothesis and accepts the TS model, the GY series is best characterized as a zero-growth series that has experienced two significant downward level shifts (type A breaks), first in 1921 and then again in 1985.

<table>
<thead>
<tr>
<th>Dependent Variable: GY</th>
<th>Method: Least Squares</th>
<th>Date: 10/31/01 Time: 11:25</th>
<th>Sample(adjusted): 1902 1998</th>
<th>Included observations: 97 after adjusting endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Coefficient</td>
<td>Std. Error</td>
<td>t-Statistic</td>
<td>Prob.</td>
</tr>
<tr>
<td>GY(-1)</td>
<td>0.621716</td>
<td>0.097600</td>
<td>6.370075</td>
<td>0.0000</td>
</tr>
<tr>
<td>GY(-2)</td>
<td>-0.314414</td>
<td>0.095788</td>
<td>-3.282405</td>
<td>0.0015</td>
</tr>
<tr>
<td>C</td>
<td>1.489242</td>
<td>0.202636</td>
<td>7.349340</td>
<td>0.0000</td>
</tr>
<tr>
<td>@TREND</td>
<td>0.002224</td>
<td>0.001737</td>
<td>1.280643</td>
<td>0.2036</td>
</tr>
<tr>
<td>DUM1921</td>
<td>-0.068788</td>
<td>0.025894</td>
<td>-2.656577</td>
<td>0.0094</td>
</tr>
<tr>
<td>DUM1921*@TREND</td>
<td>-0.002631</td>
<td>0.001782</td>
<td>-1.476821</td>
<td>0.1433</td>
</tr>
<tr>
<td>DUM1985</td>
<td>-0.012324</td>
<td>0.244391</td>
<td>-0.050425</td>
<td>0.9599</td>
</tr>
<tr>
<td>DUM1985*@TREND</td>
<td>-0.001040</td>
<td>0.002699</td>
<td>-0.385271</td>
<td>0.7010</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.880814</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.871440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.039538</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>0.139131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>179.8948</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>1.840466</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 13 shows the actual logged GY series, the fitted values and residuals from the best fitting TS specification with two breaks, and the forecasted values starting in 1900 in order to show the long-run trend segments more clearly. The tests summarized in Table 5 above indicate that the trend is insignificantly different from zero in each of the three segments of the TS model: pre-1920, 1921-1984, and post-1984.

In contrast to the TS model, the DS model identifies the two break years as 1921 and 1974, rather than 1985. Note that for the DS model, the sup$\chi^2(4)$ is very large while the mean$\chi^2(4)$ statistic is quite small. (For comparison, the standard $\chi^2(4)=13.28$.) Also,
the 1921 break has a much higher $\chi^2(2)$ stat than the 1974 break. Together these χ^2
statistics suggest that, if one uses the DS specification, the GY series is well characterized
by one (1921) or possibly two (1921, 1974) structural breaks rather than general parameter
instability. Examining the $\chi^2(2)_{TB1}$ (=19.32) and the $\chi^2(2)_{TB2}$ (=4.77) statistics, it is
clear that the 1921 break is significant, while the 1974 break is not statistically
significant. Thus the DS specification requires only a single break in 1921. This is
consistent with our ZAP-ADF tests, which found a single break and were unable to reject
the null hypothesis of a unit root.

6. ESTIMATED TS AND DS MODELS WITH A SINGLE BREAK

We now estimate DS and TS Models with single breaks at an unknown date.

We first search for one endogenous break in the GY series using the TS model. As one
may recall, we need to include only the level dummy and the time interaction dummy in
this particular setup. We obtain the sup$\chi^2(2)$ statistic that tests the hypothesis that these two
dummies are equal to zero and graph it below. The maximum sup$\chi^2(2)$ has a value of 7.93
and occurs in 1946. The 1% critical value for the standard $\chi^2(2)$ distribution, however, is
9.21. Thus the sup$\chi^2(2)$ and mean$\chi^2(2)$ (=2.88) suggest that a TS model with zero breaks is
adequate! Thus, rather curiously, the two-break model suggested that there are two
(marginally?) significant breaks in 1921 and 1985, while the one break model finds no
break at all! If one believes the two break model, the GY series has two downward level

22 What about the calculated growth rates for each segment in the DS specification if we assume there are
TWO breaks? Results for the DS model are slightly different from those obtained from the TS model. In
spite of a statistically insignificant trend in each of the first two sub-periods, the DS model identifies the
existence of a “possibly significant" negative trend of 1.09% in the post-1974 period.
shifts, but not ongoing secular trend. If one believes the TS model with no breaks, there is a statistically significant negative time trend!

Fig. 14 $\chi^2(2)$ stats TS Model with One Endogenous Break

We now search for a single break in the GY series using the DS model. In this case, we include only the level and spike dummies in the estimation. We now use the $\text{sup}\chi^2(2)$ statistic to test the hypothesis that these two dummies are zero. **Fig. 15** graphs the $\chi^2(2)$ for the DS model.
Here, the maximum $\sup \chi^2(2)$ has a value of 32.26 and occurs in 1921. The second highest $\sup \chi^2(2)$ has a value of 6.28 and occurs in 1975. In addition, the mean $\chi^2(2)$ statistic is 1.58, a contrastingly low value compared to either the $\sup \chi^2$ or the 1% critical value of 9.21 from the standard $\chi^2(2)$ distribution. Therefore, with the DS specification, a single downward level shift in 1921 but with no ongoing (stochastic) trend fits the data well.

7. CONCLUSIONS

Despite 50 years of empirical testing of the Prebisch-Singer hypothesis, a long-run downward trend in real commodity prices remains elusive. Previous studies have generated a range of conclusions, due in part to differences in data but mainly due to differences in specification, as to the stationarity of the error process and the number, timing, and nature of structural breaks. In this paper, we have attempted to allow the data to tell us the proper specification. In our most general specification (model 8, in Fig. 7), which allows for a unit root, and searches for two structural breaks of any kind, we find the
most likely pair of breaks to be in 1921 and 1974, but 1974 break is statistically insignificant. Moreover, we cannot reject the hypothesis of a unit root. If we search for only one structural break, we find one very clearly in 1921, again with no rejection the unit root hypothesis. This model indicates also that there is no drift, either positive or negative, before or after 1921.

If we force the model to be trend stationary, we find much fuzzier results. The two-break model (model 7) puts the breaks in 1921 and 1985, with both breaks border-line significant. The three segments in this case (before, between and after the breaks), show no trend. The model with one break, puts the break in 1946, but is rejected in favor of model 1 (TS with no break). Only in the case of model 1, the model studied by researchers since the beginning of Prebisch-Singer testing, can one find a significant negative trend. Yet model 1 is inconsistent with our results N-step ahead forecasting.

We conclude the preponderance of evidence suggests that the series is well characterized as a unit root process with a single level-shift break (type A) in 1921.
7. REFERENCES

APPENDIX: KPSS Tests for Level and Trend Stationarity

Kwiatkowski, Phillips, Schmidt and Shin [KPSS] (1992) propose a test that examines the null hypothesis of stationarity or trend stationarity against the alternative of a unit root for a given series. To the present authors’ knowledge, the KPSS test has not yet be employed in the PS literature.

The KPSS test involves decomposing the series into three components – a deterministic trend, a random walk, and a stationary error:

\[y_t = \xi t + r_t + \varepsilon_t \]
\[r_t = r_{t-1} + u_t \]

where \(r_t \) is a random walk, and \(u_t \) is an error process that is iid \((0, \sigma_u^2)\). The initial value of \(r_t \) is assumed to be fixed at \(r_0 \). The stationarity hypothesis consists of both trend stationarity and level stationarity. For instance, \(y_t \) is trend stationary under the null if \(\sigma_u^2 \) is equal to zero. In the special case where \(\xi = 0 \), the null hypothesis reflects stationarity around a level \(r_0 \). The authors derive the test statistic for the trend stationary case, \(\hat{\eta}_\tau \), by obtaining the partial sum process of the residuals from (9) and modeling it as a Brownian motion. The test statistic for the level stationary case, \(\hat{\eta}_\mu \), is derived in exactly the same manner except that residuals from (9) are now obtained from a regression of \(y_t \) on an intercept only rather than on both the intercept and the trend. Here, we apply the KPSS test to the real GY index and obtain the following results:23

| Table 6 | Stationarity Test Results for GY series |
For the lag truncation parameter two and above, we cannot reject the hypothesis of trend stationarity even at the 1% significance level. On the other hand, we can reject the hypothesis of level stationarity at high significance levels for all lags considered. Based on the KPSS test, therefore, the real GY series appears to be stationary around a deterministic trend. Thus, the results of the ZAP-ADF tests and KPSS tests are inconsistent, with the former pointing toward the DS model and the later favoring the TS specification.

Note: Critical Values for $\hat{\eta}_t$ and $\hat{\eta}_\mu$ presented by Kwiatkowski et al. (1992)

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\eta}_t$</td>
<td>0.40</td>
<td>0.23</td>
<td>0.18</td>
<td>0.15</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>$\hat{\eta}_\mu$</td>
<td>5.67</td>
<td>3.02</td>
<td>2.11</td>
<td>1.65</td>
<td>1.37</td>
<td>1.17</td>
<td>1.04</td>
<td>0.93</td>
<td>0.85</td>
<td>0.78</td>
<td>0.73</td>
</tr>
</tbody>
</table>

23 KPSS applied their new test to the Nelson-Plosser data and find that the hypothesis of trend stationarity cannot be rejected for many series while that of level stationarity can be rejected for most of the series.

24 Kwiatkowski et al. (1992) state that the ability to reject the hypothesis of level stationarity in their series is not very surprising due to the obvious deterministic trends present in the series.