COLORADOSCHOOLOFMINES

Hydrogen from Natural Gas via Steam Methane Reforming (SMR)

John Jechura – jjechura@mines.edu Updated: January 4, 2015

Energy efficiency of hydrogen from natural gas

- Definition of energy efficiency
- From basic stoichiometry
 - $CH_4 + 2 H_2O \rightarrow CO_2 + 4 H_2$
 - Fuel to satisfy the heat requirements
- From "real" processes
 - SMR Steam methane reforming
 - Water shift reactions
 - Heat integration
 - CO₂ removal or PSA?

Energy Efficiency

• <u>Usable</u> energy <u>out</u> of a process compared to <u>all</u> energy <u>inputs</u>

$$\eta = \frac{\dot{E}_{out}}{\sum \left(\dot{E}_{in}\right)_{i}}$$

- Energy values could be heat, work, or chemical potential (heating value)
 - HHV (Gross): Fuel + $O_2 \rightarrow CO_2 + H_2O$ (liquid)
 - LHV (Net): Fuel + $O_2 \rightarrow CO_2 + H_2O$ (vapor)

	GPSA Data Book		Derived from Aspen Plus 2006.5			
Compound	HHV	LHV	HHV		LHV	
	Btu/scf	Btu/scf	kcal/g.mol	Btu/scf	kcal/g.mol	Btu/scf
Hydrogen	324.2	273.8	68.7	325.9	57.7	273.9
Methane	1010.0	909.4	213.6	1013.1	191.7	909.1
Carbon Monoxide	320.5	320.5	67.6	320.6	67.6	320.6
Carbon Dioxide	0.0	0.0	0.0	0.0	0.0	0.0

- Energy values may have to be discounted when combining different types
 - Should the HHV be discounted when combining with heat values?

Basic Stoichiometery – $CH_4 + 2 H_2O \rightarrow CO_2 + 4 H_2$

• Production:

$$\frac{N_{\rm H_2}}{N_{\rm CH_4}} = 4 \, \frac{\rm mol}{\rm mol}$$

- Apparent efficiency (HHV basis)
 - Just from stoichiometry:

$$\eta = \frac{4 \times 68.7}{1 \times 213.6} = 1.29$$

• Include heat of reaction:

$$\eta = \frac{4 \times 68.7}{1 \times 213.6 + 61.3} = 1.00$$

How do we provide the heat of reaction?

Could use additional methane – 0.29 mol fuel/mol reactant (HHV basis)

• Production:
$$\frac{N_{H_2}}{N_{CH_4}} = \frac{4}{1 + 0.29} = 3.1 \frac{\text{mol}}{\text{mol}}$$

Efficiency including fuel (HHV basis)

$$\eta = \frac{4 \times 68.7}{1.29 \times 213.6} = 1.0$$

Steam Methane Reforming & Water Gas Shift

 Reforming. Endothermic catalytic reaction, typically 20-30 atm & 800-880° C (1470-1615° F) outlet.

$$CH_4 + H_2O \leftrightarrow CO + 3 H_2$$

• *Shift conversion*. Exothermic fixed-bed catalytic reaction, possibly in two steps.

$$CO + H_2O \leftrightarrow CO_2 + H_2$$

HTS: $345-370^{\circ}$ C $(650 - 700^{\circ}F)$

LTS: 230° C (450°F)

- Gas Purification. Absorb CO₂ (amine) or separate into pure H₂ stream (PSA or membrane).
- Methanation. Convert residual CO & CO2 back to methane. Exothermic fixed-bed catalytic reactions at 370-425° C (700 – 800°F).

$$CO + 3 H_2 \leftrightarrow CH_4 + H_2O$$

$$CO_2 + 4 H_2 \leftrightarrow CH_4 + 2 H_2O$$

SMR Alternate Designs

 Traditional with 2 stages shift reactors – 95% to 98% purity

Newer designs with PSA

 (Pressure Swing Adsorption) –
 lower capital costs, lower
 conversion, but very high purity
 (99%+)

Process Considerations

	Kaes [2000]	Molburg & Doctor [2003]	Nexant Report [2006]	Other
Desulfurization	Model as conversion reactor	Model as equilibrium reactor.		
Reactors		Sulfur compounds converted to H2S &		
		adsorbed in ZnO bed.		
	Small temperature increase	500 - 800°F depending on technology.		
		700°F most typical.		
		Typically up to 725 psi (50 bar)		
Reformer	1450 - 1650°F exit	1500°F	20 - 30 atm (295 - 440 psia)	
	Equilibirium Gibbs reactor with 20°F	Model as equilibrium reactor.	850-1000°F (455-540°C) inlet	
	approach (for design).		1470-1615°F (800-880°C) outlet	
High Temperature	650 - 700°F entrance for HTS + LTS	660°F entrance	940°F (504°C) inlet	
Shift Reactor	500 - 535°F entrance when no LTS			
	Equilibirium Gibbs reactor	Fixed 90% CO conversion		
	All components inert except CO, H2O,			
	CO2, & H2.			
Low Temperature	400 - 450°F entrance	400°F entrance		
Shift Reactor	Equilibirium Gibbs reactor		480-525°F (249-274°C) outlet	
	All components inert except CO, H2O,	Fixed 90% CO conversion		
	CO2, & H2.			
Methanation	500 - 550°F entrance			
	Equilibirium Gibbs reactor			
	All components inert except CH4, CO,			
	H2O, CO2, & H2.			
Amine Purification	Model as component splitter	Model as component splitter		MDEA circulation, duty, & work estimates
				from GPSA Data Book
	Treated gas 10 - 15°F increase, 5 - 10	Treated gas 100°F & 230 psi (16 bar)		Rejected CO2 atmospheric pressure &
	psi decrease, water saturated	exit		water saturated
		95% CO2 recovery		
PSA	Model as component splitter	Model as component splitter		
	100°F entrance	90% H2 recovered		75 - 85% recovery for "reasonable"
				capital costs (higher requires more beds)
	l			
	H2 purity as high as 99.999%	H2 contains 0.001% product stream as		
		contaminant		
				200 - 400 psig feed pressure for refinery
				applications
				4:1 minimum feed: purge gas ratio. Purge
				gas typically 2 - 5 psig.

Basic SMR Process

SMR Basic Process Energy Requirements

SMR – Heat Recovery for Steam Generation

Reformer Furnace Design

"Hydrogen Production by Steam Reforming" Ray Elshout, Chemical Engineering, May 2010

Direct Fired Heaters for Reformer & Amine Unit

Pre-Heat the Reformer Feed?

SMR Alternate Designs

 Traditional with 2 stages shift reactors – 95% to 98% purity

Newer designs with PSA

 (Pressure Swing Adsorption) –
 lower capital costs, lower conversion, but very high purity (99%+)

Alternate Hydrogen Purification Processes

FIGURE 5. Most older units remove carbon dioxide from the hydrogen-rich gas with a solvent

FIGURE 6. A PSA unit separates carbon monoxide, carbon dioxide and unconverted hydrocarbons from hydrogen. Adsorbers operate in a high-pressure to low-pressure cycle to adsorb and then release contaminants

"Hydrogen Production by Steam Reforming" Ray Elshout, *Chemical Engineering*, May 2010

Use of PSA for Product Purification

Use of PSA for Product Purification

Integrated Process

"Hydrogen Production by Steam Reforming" Ray Elshout, *Chemical Engineering*, May 2010

What should be the price of hydrogen?

- Hydrogen sales should cover all costs plus profit
 - Raw material costs (primarily natural gas)
 - Electricity
 - Other operating expenses (staff, ...)
 - Recovery of capital invested
- Minimum is to cover cost of natural gas & power

- Example
 - Natural gas \$4.36 per million BTU (as of March 30, 2011) = \$3.68 per kmol CH₄
 - Electricity 6.79 ¢/kW-hr (for 2010 per EIA for Industrial customers)
 - PSA production scenario
 - 104.5 kmol/hr $CH_{\Delta} \rightarrow 385 per hr
 - 461.1 kW \rightarrow \$31 per hr
 - 263 kmol/hr $H_2 \rightarrow 0.79 per kg
 - Electrolysis comparison 80% electrolysis efficiency & 90% compression efficiency
 - \$3.80 per kg
 - \$6.80 per kg with capital costs included

A Realistic Look at Hydrogen Price Projections, F. David Doty Mar. 11, 2004 (updated Sept 21, 2004)

Other References

- Refinery Process Modeling, 1st ed. Gerald L. Kaes Kaes Enterprises, Inc., 2000
- "Hydrogen from Steam-Methane Reforming with CO2 Capture"
 John C. Molburg & Richard D. Doctor
 Paper for 20th Annual International Pittsburgh Coal Conference, September 15-19, 2003
 http://www.netl.doe.gov/technologies/hydrogen_clean_fuels/refshelf/papers/pgh/hydrogen%20from%20steam%20methane%20reforming%20for%20carbon%20dioxide%20cap.pdf
- Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

NREL Subcontract Report, work performed by Nexant Inc., San Francisco, CA May 2006

http://www.nrel.gov/docs/fy06osti/39943.pdf