Liquids Processing

Chapter 15
Reasons for Liquids Processing

Make a shippable liquid product
- Reduce vapor pressure

Sweeten – reduce sulfur content

Make individual salable products
Plant Block Schematic
Topics

Condensate processing
- Vapor pressure control
- Sweetening
- Dehydration

NGL processing
- Fractionation
- Sweetening
 - Amine treating
 - Adsorption
 - Caustic treating
- Dehydration
 - Adsorption
 - Dessicant (nonrenewable)
 - Gas stripping
 - Fractionation
Condensate processing
Simple condensate processing

Vapor pressure spec – 10 – 34 psi RVP
 - If trucked off site, more typically 9 – 12 psi RVP

D86 end point no more than 375°F

NGL processing
Typical NGL Fractionation Conditions

TABLE 15.1
Typical Fractionator Operating Conditions

<table>
<thead>
<tr>
<th></th>
<th>Operating Pressure, psig (barg)</th>
<th>Number of Actual Trays</th>
<th>Reflux Ratio<sup>a</sup></th>
<th>Tray Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deethanizer</td>
<td>350–450 (24–30)</td>
<td>25–40</td>
<td>0.8–2.0</td>
<td>60–85</td>
</tr>
<tr>
<td>Depropanizer</td>
<td>240–270 (16–19)</td>
<td>30–45</td>
<td>1.8–3.5</td>
<td>80–90</td>
</tr>
<tr>
<td>Debutanizer</td>
<td>70–130 (5–9)</td>
<td>25–40</td>
<td>1.2–1.8</td>
<td>85–95</td>
</tr>
<tr>
<td>Deisobutanizer<sup>b</sup></td>
<td>80–100 (5–7)</td>
<td>70–100</td>
<td>4–16</td>
<td>90–100</td>
</tr>
<tr>
<td>Condensate Stabilizer</td>
<td>50–400 (3–30)</td>
<td>16–24</td>
<td>Varies</td>
<td>30–50</td>
</tr>
</tbody>
</table>

^a Reflux ratio relative to overhead mol/mol.
^b Also called a butane splitter.

Ref: *Fundamentals of Natural Gas Processing, 2nd ed.*, Kidnay, et. al.
Typical NGL Fractionation

![Table of Typical Fractionator Parameters](image)

FIG. 19-19

Typical Fractionator Parameters

<table>
<thead>
<tr>
<th></th>
<th>Operating Pressure, psig</th>
<th>Number of Actual Trays</th>
<th>Reflux(^1) Ratio</th>
<th>Reflux(^2) Ratio</th>
<th>Tray Efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demethanizer</td>
<td>200 – 400</td>
<td>18 – 26</td>
<td>Top Feed</td>
<td>Top Feed</td>
<td>45 – 60</td>
</tr>
<tr>
<td>Deethanizer</td>
<td>375 – 450</td>
<td>25 – 35</td>
<td>0.9 – 2.0</td>
<td>0.6 – 1.0</td>
<td>60 – 75</td>
</tr>
<tr>
<td>Depropanizer</td>
<td>240 – 270</td>
<td>30 – 40</td>
<td>1.8 – 3.5</td>
<td>0.9 – 1.1</td>
<td>80 – 90</td>
</tr>
<tr>
<td>Debutanizer</td>
<td>70 – 90</td>
<td>25 – 35</td>
<td>1.2 – 1.5</td>
<td>0.8 – 0.9</td>
<td>85 – 95</td>
</tr>
<tr>
<td>Butane Splitter</td>
<td>80 – 100</td>
<td>60 – 80</td>
<td>6.0 – 14.0</td>
<td>3.0 – 3.5</td>
<td>90 – 100</td>
</tr>
<tr>
<td>Rich Oil Fractionator (Still)</td>
<td>130 – 160</td>
<td>20 – 30</td>
<td>1.75 – 2.0</td>
<td>0.35 – 0.40</td>
<td>Top 67 Bottom 50</td>
</tr>
<tr>
<td>Rich Oil Deethanizer</td>
<td>200 – 250</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>Top 25 – 40 Bottom 40 – 60</td>
</tr>
<tr>
<td>Condensate Stabilizer</td>
<td>100 – 400</td>
<td>16 – 24</td>
<td>Top Feed</td>
<td>Top Feed</td>
<td>50 – 75</td>
</tr>
</tbody>
</table>

\(^1\) Reflux ratio relative to overhead product, mol/mol
\(^2\) Reflux ratio relative to feed, gal/gal.

Liquid Sweetening & Dehydration
Liquid Sweetening

Upstream treatment of the gases will usually remove \(\text{H}_2\text{S} \) but not \(\text{CS}_2 \) or mercaptans

Liquid treating options

- Amines – effectiveness is similar to gas treating
- Adsorption
 - Effective if no water is present
- Caustic treating
 - Converts sulfur compounds into water soluble mercaptan salt; oxidized with air to form dissulfide oil

\[
\text{RSH} + \text{NaOH} \rightarrow \text{RSNa} + \text{H}_2\text{O}
\]

\[
2 \text{RSNa} + \frac{1}{2} \text{O}_2 + \text{H}_2\text{O} \rightarrow \text{RSSR} + 2 \text{NaOH}
\]
Liquid Sweetening

UOP’s Merox process is very common

- Catalytic oxidation process. Carried out in an alkaline environment with aqueous solution of NaOH (strong base) or NH3 (weak base).
- Reactions (using NaOH)
 - Extraction: \(R-SH + NaOH \rightarrow NaS-R + H_2O \)
 - Regeneration: \(4 \ NaS-R + O_2 + 2 \ H_2O \rightarrow 2 \ R-S-S-R + 4 \ NaOH \)
 - Overall: \(4 \ R-SH + O_2 \rightarrow 2 \ R-S-S-R + 2 \ H_2O \)
- Can control to less than 10 ppmw mercaptan level
- Dissulphides leave in the Merox reactor in caustic/aqueous phase. Once oxidized forms a non-soluble disulfide oil.

Liquid Dehydration

Low mutual solubility of liquid water & liquid hydrocarbons
 - Greatest mutual solubility is with water & aromatics (benzene, …)

Process options:
 - Adsorption (e.g., mole sieves)
 - Desiccant
 - Gas stripping
Summary
Summary

Extent of processing depends on product(s) to be made

- Simplest processing is to stabilize the condensate

Separation into multiple products usually done at large facility or centralized processing facility

- Separate the lightest fractions first
- Separate isomers after carbon-number fraction separated from rest of liquids

Sweetening

- Merox unit can remove all sulfur compounds – makes disulfide oils

Dehydration

- Typical processes are mole sieve adsorption, desiccant adsorption, & gas stripping