Bottom of Barrel Processing
Chapters 5, 6, & 8
Crude Oil → Desalting → Vacuum Distillation → Gas Separation & Stabilizer → Light Naphtha

Light Naphtha → Isomerization → Atmospheric Distillation → Naphtha-Reforming → Vacuum Distillation → Gas Oil Hydro-treating → Fluidized Catalytic Cracking → Coker Gas Oil

Coker Naphtha → Hydro-treating → Cat Naphtha → Distillate → Treating & Blending → Sulfur Plant → Sulfur

Heavy Naphtha → Naphtha-Hydro-treating → Distillate → Treating & Blending → Diesel Fuel Oil

Kerosene → Naphtha - Reformation → Vacuum Residue → Solvent Dewaxing → Lube Oil

Fuel Oil → Bottoms → Distillates → Hydro-treating → Cat Naphtha → Cycle Oils

DAO → Solvent Desalting → Gas Oil

DAO → Distillate Hydro-treating → Gas Oil

SAO → Heavy Coker Gas Oil

LPG → Aviation Gasoline

Jet Fuels

Kerosene

Solvants

Residual Fuel Oils

Asphalts

Lubricants

Greases

Waxes

Surplus Gas

Butanes

Fuel Gas

LPG
Need For Heavy Ends Processing

- **Worldwide** crude slate has become heavier
 - Concentration of sulfur & other contaminants has been increasing
 - Sulfur specifications becoming more stringent
 - Environmental protection
 - Demand for No. 6 Fuel Oil declining
 - Environmental protection
 - Cost of light crude relative to heavy crude is increasing
- Trends in the United States have become more complicated due to the flood of light, sweet, tight oil from shale in the United States

Gunaseelan & Buehler
“Changing US crude imports are driving refinery upgrades”
Oil & Gas Journal, Aug. 10, 2009
Processing Options

- Physical separations
 - Vacuum distillation
 - Volatility
 - Solvent Deasphalting
 - Solubility
- Lube Oil Processing
 - Requires specialized feedstocks
- Chemical reactions (in order of increasing severity)
 - Visbreaking
 - Catalytic cracking
 - Coking
 - Delayed coking
 - Fluidized bed coking
 - Hydrocracking
U.S. Refinery Implementation

EIA, Jan. 1, 2016 database, published June 2016
http://www.eia.gov/petroleum/refinerycapacity/

Updated: August 12, 2016
Copyright © 2016 John Jechura (jjechura@mines.edu)
Solvent Deasphalting

- **Purpose**
 - Remove asphalts from lube plant feeds
 - Increase gas oil yield from crude
 - Make commercial asphalts from asphaltic crude unit bottoms

- **Characteristics**
 - Physical recovery using light hydrocarbon solvent (C3, C4, C5)
 - Dissolve saturated components
 - Leave behind/precipitate asphaltenes
 - Resins split between phases

- **Products**
 - Deasphalted Oil (DAO)
 - Resins
 - Bottoms/pitch – asphaltenes

Updated: August 12, 2016
Copyright © 2016 John Jechura (jjechura@mines.edu)
Typical SDA Process

Foster Wheeler SDA process
Characteristics of Products

- DAO resembles gas oil but is of drastically different boiling point range
Characteristics of Products

First 50% DAO molecules are suitable to hydrocrack
50-70+% DAO molecules are challenging to hydrocrack

Residue Upgrading Technology Options for Cost Effective Solutions,
Steve Beeston, ARTC 2014, Singapore, March 5, 2014
Integration of SDA into Refinery

<table>
<thead>
<tr>
<th>Component</th>
<th>Base (bpsd)</th>
<th>With SDA (bpsd)</th>
<th>Base (°API)</th>
<th>With SDA (°API)</th>
<th>Base wt% S</th>
<th>With SDA wt% S</th>
<th>Base ppmw metals</th>
<th>With SDA ppmw metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atm Resid Feed</td>
<td>50,000</td>
<td>50,000</td>
<td>15.1</td>
<td>15.1</td>
<td>4.02</td>
<td>4.02</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>Vac Resid</td>
<td>20,000</td>
<td>20,000</td>
<td>5.6</td>
<td>5.6</td>
<td>5.55</td>
<td>5.55</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>SDA Bottoms</td>
<td>14,600</td>
<td></td>
<td>-12.6</td>
<td></td>
<td>7.15</td>
<td></td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>SDA DAO</td>
<td>30,000</td>
<td>30,000</td>
<td>22.3</td>
<td>22.3</td>
<td>3.04</td>
<td>3.04</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Gas Oil</td>
<td>30,000</td>
<td>44,600</td>
<td>22.3</td>
<td>18.5</td>
<td>3.66</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Feed to HDS</td>
<td>30,000</td>
<td>44,600</td>
<td>22.3</td>
<td>18.5</td>
<td>3.66</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Feed to FCC</td>
<td>27,340</td>
<td>40,651</td>
<td>24.0</td>
<td></td>
<td>24.0</td>
<td></td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>HDS Fuel Gas</td>
<td>4,200</td>
<td>6,310</td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>FCC Fuel Gas</td>
<td>4,430</td>
<td>6,582</td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>Total Fuel Gas</td>
<td>8,630</td>
<td>12,892</td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>HDS C3/C4</td>
<td>190</td>
<td>289</td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>Total C3/C4</td>
<td>5,410</td>
<td>8,054</td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>HDS Naphtha</td>
<td>260</td>
<td>388</td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>Total Naphtha</td>
<td>15,680</td>
<td>23,315</td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>FCC Naphtha</td>
<td>260</td>
<td>388</td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>Total Naphtha</td>
<td>15,680</td>
<td>23,315</td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
<td>25.5</td>
<td></td>
</tr>
</tbody>
</table>

Handbook of Petroleum Refining Processes
Robert Meyers
Visbreaking

- **Purpose**
 - Reduce viscosity by 1/2 of feed (specs for heavy fuel oil)
 - Reduces "cutter stock"
 - Reduces heavy fuel oil amount
- **Characteristics**
 - Relatively mild thermal cracking operation
 - Flexible on feedstock quality
 - Typically high resin crude oils
 - Low capital cost for process
- **Products**
 - About 20% feed cracked to light ends, naphtha, gas oil & sometimes distillate.
 - Low yield of valuable naphtha
 - Products contain a lot of olefins
 - Olefinic C3s & C4s often recovered
 - Naphtha & distillate often hydrotreated because of olefins & sulfur
 - Gas oil high in aromatics — more appropriate for hydrocracking than cat cracking
 - Large volumes of heavy fuel oil with high sulfur content
 - Bottoms (visbreaker tar) sent directly to heavy fuel oil
Typical Coil Visbreaker

http://www.fwc.com/industries/pdf/Residue_upgrading_English_10th_Sept.pdf?DIRNAME=%23dirName%23
Catalytic Cracking

- **Purpose**
 - β Make gasoline & distillates (diesel/heating oil)
 - β Try to minimize heavy fuel oil

- **Characteristics**
 - β Medium severity cracking process
 - β Gas oils are typical feedstocks
 - β Not normally used on whole atmospheric or vacuum residus
 - PNAs tend to condense, leading to coking
 - Catalysts sensitive to poisoning by sulfur & metals present in PNAs

- **Products**
 - β Light gases
 - Olefins
 - β Light & Heavy Naphtha
 - β Light & Heavy Cycle Oils
 - β Slurry
Hydrocracking

- Purpose
 - Minimize heavy fuel oil

- Characteristics
 - Severe cracking process
 - Combines cracking & hydrogenation
 - Coking better for resids
 - High pressures & large amounts of hydrogen required

- Products
 - Produces high yields of liquids
 - Hydrogen suppresses coke formation
 - Liquids low in sulfur & olefins
Coking

• **Purpose**
 - Produce light gases & distillates
 - “Carbon rejection”

• **Characteristics**
 - Severe thermal cracking process
 - Can process a wide variety of feedstocks
 - High metals (nickel and vanadium), sulfur, resins & asphaltenes with PNAs
 - Separates thermally stable PNA cores from their side chains
 - PNAs contain majority of the heteroatoms (sulfur, nitrogen, metals)
 - Concentrate in the coke as PNAs condense

• **Products**
 - Produces light gases, distillates (naphthas & gas oils) for catalytic upgrading
 - Low yields of liquids relative to hydrocracking
 - Liquids contain large amounts of sulfur & olefins but little aromatics
 - Coke
 - Contains large amounts of metals & sulfur.
 - Coke use depends upon quality
 - May pose a disposal problem
Supplemental Slides

- SDA technology providers
- Visbreaking technology providers
SDA Technology Providers

<table>
<thead>
<tr>
<th>Provider</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foster Wheeler</td>
<td>Light hydrocarbon solvent with DAO/solvent separation at supercritical conditions</td>
</tr>
<tr>
<td>KBR</td>
<td></td>
</tr>
</tbody>
</table>

Foster Wheeler

KBR ROSE©

Hydrocarbon Processing's 2008 Refining Processes Handbook
Visbreaking Technology Providers

<table>
<thead>
<tr>
<th>Provider</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foster Wheeler</td>
<td>Visbreaker heater & downstream coil</td>
</tr>
<tr>
<td>Shell Global Solutions</td>
<td></td>
</tr>
</tbody>
</table>

Foster Wheeler

Shell Global Solutions

Hydrocarbon Processing’s 2008 Refining Processes Handbook