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Abstract—Simulated fluids can produce incredible visuals and
more believable interactions. The development of algorithms and
techniques to perform these simulations in real-time interac-
tive environments poses many challenges. But recent works on
Smoothed Particle Hydrodynamics and Position Based Dynamics
have been able to produce compelling results. I walk through the
process of implementing the work of Miles Macklin and Matthias
Müller on Position Based Fluids in OpenGL. My implementation
generates realistic fluid simulations in a variety of situations but
unfortunately was not able to achieve real-time speeds.

Index Terms—position based dynamics, SPH, graphics, fluid
simulation

I. INTRODUCTION

Fluid simulation, in general, is a widely researched topic
of computer graphics. A proper fluid simulation, at least for
graphics, can capture the beauty and complexity that fluids
have within the physical world. From ocean scapes to slime
guns, fluids can create incredible scenes for video games and
movies alike. The beauty of the final product is dependent on
the quality of the simulation.

Fluid motion can be described nearly perfectly using the
Navier-Stokes equations; however, these equations are incred-
ibly complicated to solve and usually require the use of
supercomputers to effectively numerically approximate [1].
As such, either major simplifications have to be made or
different equations and techniques must be used to model
fluids efficiently.

For this project, the goal was to implement a fluid simulation
that works in non-bounded environments, supports collision
with complex objects, and is suitable for real-time applications
such as video games. This way the resulting implementation
could be used in a wide variety of situations from waves
crashing into a lighthouse or water being shot from a water
gun to toxic sludge pouring out of a pipe.

In the following sections, I will discuss a few of the different
techniques that focus on solving this type of simulation, then
I will expand on the problem definition and what challenges
must be overcome. I will dive into the details of my solution,
and finally, I will discuss the results of my fluid simulation
and future work.

II. RELATED WORK

Existing techniques vary widely in which components of
the fluid they are attempting to model, be it movement,
interaction, or appearance. Many techniques focus on specific
applications like height fields for large waterscapes [2] or
particle simulations for smaller quantities of liquid with more
interaction [3]. They usually focus on different types of fluids
like water, smoke, fire, explosions, syrup. I will go overworks

that focus on particle-based simulations focused mostly on
simulating water.

One of the most well known and commonly used tech-
niques is Smoothed Particle Hydrodynamics (SPH) which
was proposed in [3]. SPH is a general approach to modeling
physical systems. It represents the system as a set of particles,
interpolates information about an individual particle from its
neighbors, and then calculates forces to be applied to that
particle. [3] goes over how SPH can be used to model gas
dynamics, stellar collisions, planetary impact, cloud collisions,
motion near black holes, and nearly incompressible flow (flu-
ids). SPH can create very realistic fluid simulations, however,
SPH is not well suited for interactive simulations. SPH will
become unstable due to neighbor deficiencies and therefore
require very small time steps or lots of particles to avoid this
issue, resulting in high computational complexity.

To combat the issue of large time steps Miles Macklin and
Matthias Müller developed a new approach that uses many of
the concepts from SPH but uses the framework of Position
Based Dynamics (PBD) to try to alleviate the issues caused
by neighbor deficiencies in [4]. The result is Position Based
Fluids (PBF). PBF uses the same density estimation techniques
used by SPH but then updates the particle positions by solving
a system of constraints such that there is uniform density. As
position updates are less susceptible to instabilities than force-
based approaches the resulting simulation allows for much
larger time steps to be used [4]. This makes PBF much better
for real-time graphics. Although their implementation is not
perfect. There are issues with incorrect density estimations
when interacting with objects causing particles to stack along
object boundaries, the Jacobian solver used is slow to converge
and could be sped up with a more sophisticated solver, and
finally, their implementation has a lot of dependent parameters
which makes parameter tuning difficult [4].

III. PROBLEM STATEMENT

The goal of my project is to implement a particle-based fluid
simulation that can be used in real-time graphical applications.
To do this I will implement PBF in OpenGL using compute
shaders. Although the general algorithm has already been
laid out for the project, there are many nitty-gritty details I
will have to find solutions for and implement. The biggest
challenge throughout all of this will be finding algorithms that
are efficient (O(n), where n is the number of particles).

The first hurdle to overcome will be to implement neighbor
finding, The naive approach is polynomial and is not fast
enough for a real-time environment. Next will be implement-
ing the particle simulation. This task will focus on how to



split up the algorithm outlined in into different shaders and
what graphical objects will be used to store the results. The
final problem will be figuring out how to perform collision
detection and response with external objects.

As this project is already a monumental task for a single
individual, I will not attempt to solve any of the underlying
issues in [4]’s implementation. Realistic fluid rendering will
also not be a goal of this project and instead, the particles will
just be rendered as spheres. Finally, the fluid will collide and
respond to the object, but the object will not be affected by
the fluid collision.

IV. APPROACH

Before diving into the specifics of the simulation loop and
its implementation in OpenGL, having some background on
the mathematics that control the whole simulation is vital.
In order to enforce incompressibility PBF solves a system
of constraints such that each particle has the same density,
the rest density ρ0. The system of constraints consists of
a constraint function for each particle. Following [4], the
constraint function for the ith particle is defined as:

Ci(p1, ...,pn) =
ρi
ρ0
− 1 (1)

Where p1,...,pn are the positions of the ith particle and the
positions of its neighbors. The density of the ith particle, ρi,
is calculated using the SPH density estimator [4]:

ρi =
∑
j

mj ∗W (pi − pj , h) (2)

Where h is the support radius and W (pi−pj , h) is the Poly6
smoothing kernel which can be found in [5]. Each simulation
loop we then calculate a change in particle positions ∆p such
that [4]:

C(p + ∆p) = 0 (3)

To do this we can take a series of steps along the constraint
gradient [4]:

∆p ≈ ∇C(p)λ (4)

C(p + ∆p) ≈ C(p) +∇CT ∆p = 0 (5)

≈ C(p) +∇CT∇Cλ = 0 (6)

Solving this for λ gives:

λi = −Ci(p1, ...,pn)∑
k |∇pk

Ci|2
(7)

Where ∇pk
Ci is the gradient of the constraint function with

respect to particle k, the equation for this can be found in [4].

Fig. 1: Gradient of Spiky Smoothing Kernel [6]

Due to the fact that the constraint function (1) has a
vanishing gradient at the smoothing kernel boundary, which
can be seen in Figure 1. The denominator in (7) will approach
0 when a particle is separating from the rest of the fluid causing
λi to approach ∞. To avoid this a user defined variable ε is
introduced. Resulting in the following equation [4]:

λi = − Ci(p1, ...,pn)∑
k |∇pk

Ci|2 + ε
(8)

The resulting position update is:

∆pi =
1

ρ0

∑
j

(λi + λj)∇W (pi − pj , h) (9)

Where ∇W is the gradient of the Spiky Smoothing Kernel as
defined in [5].

Clumping and clustering of particles due to neighbor de-
ficiencies is one of the issues that [4] addresses. [4] follows
the approach of [7]. Which adds in an artificial pressure term
defined as:

scorr = −k(
W (pi − pj , h)

W (∆q, h)
)n (10)

Where ∆q is a point at a user defined distance inside the
smoothing kernel radius, and k is a small positive constant.
Including this into the position update, (10) becomes:

∆pi =
1

ρ0

∑
j

(λi + λj + scorr)∇W (pi − pj , h) (11)

This the effect of particles repelling each-other when they
get too close by introducing artificial pressure, reducing the
amount of clustering, see Figure 2.

Fig. 2: ”Armadillo Splash, Top: particle clumping due to
neighbor deficiencies, Bottom: with artificial pressure term,
note the improved particle distribution and surface tension.”
[4]



With the math for the position update covered, we can
dive further into the fluid simulation. As stated previously,
I will be following the fluid simulation proposed in [4].
See Algorithm 1 for the pseudo-code of the simulation
loop. The algorithm can be split into four parts: position
prediction, neighbor find, constraint solving, and velocity
update. I will walk through each of the steps and lose
data structures behind each of them and then I will dive
into the details of how it was implemented using OpenGL.

Algorithm 1: Simulation Loop [4]

1 forall particles i do
2 apply forces vi ← vi + ∆tfext(xi)
3 predict position x∗i ← xi + ∆tvi

4 end
5 forall particles i do
6 find neighboring particles Ni(x∗i )
7 end
8 while iter < solverIterations do
9 forall particles i do

10 calculate λi
11 end
12 forall particles i do
13 calculate ∆pi

14 perform collision detection and response
15 end
16 forall particles i do
17 update position x∗i ← x∗

i + ∆pi

18 end
19 end
20 forall particles i do
21 update velocity vi ← 1

∆t (x∗
i − xi)

22 apply vorticity confinement and XSPH viscosity
23 update position xi ← x∗i
24 end

A. Position Prediction

Position prediction is relatively simple, update the velocity
and position of each particle using forward Euler integration
of external forces, which for this simulation is only gravity.

B. Neighbor Finding

Neighbor finding then takes the updated positions of all
of the particles and then computes for each particle which
particles are within its support radius (the distance at which a
particle is considered a neighbor). Neighbor finding is one of
the most computationally expensive parts of the simulation. So
the algorithm used to perform neighbor finding must be highly
parallelizable and be spatially and computationally efficient for
this simulation to be interactive.

One common technique is to use a uniform grid. A uniform
grid stores a list of particles that are in each of the grid cells,
where the size of the grid cell is the support radius, this way
each particle just has to check its cell and the 26 adjacent
cells for its neighbors [5], see Figure 3. Using uniform grids
for neighbor search has a computational complexity of O(n)

because PBF moves particles to ensure there is a uniform
density meaning each cell will contain the same number of
particles. However, uniform grids are not the best choice
because to use them the fluid must be restricted to within
the bounds of the grid.

Fig. 3: Neighbor search in a uniform grid [8]

To enable the fluid to be unconstrained a spatial hash table
is used instead. A spatial hash table uses a hashing function
which maps each particle’s position to a grid cell and then
hashes the grid cells coordinates to a unique index [5]. The
spatial hashing function can be seen in the equation (12).
Where h is the support radius, m is the table size, and p1,
p2, p3 are all large prime numbers [5].

hash(x, y, z) = [(
x

h
∗ p1)xor(

y

h
∗ p1)xor(

z

h
∗ p3)]%m (12)

Using the spatial hash we construct two lists: a hash table and
a linked list. The hash table stores the index of the first particle
in the linked list. The linked list entries store a particle id and
then the index of the next particle in that grid cell. The spatial
complexity is O(m+n), where m is the hash table size and n
is the number of particles, and the computational complexity
is O(n).

With the spatial hash table constructed, a two-dimensional
array can be made to store the neighbors for each particle.
As most GPU’s require the size of two-dimensional lists to
be statically allocated, a maximum neighbor count, MN, can
be set. To build the neighbor list we can iterate over the 27
immediate and neighboring cells for each particle, compute
their hash indices and then traverse the linked list adding
particles within the particle’s support radius along the way.
A neighbor count is also stored for each particle. This process
has a spatial and computational complexity of O(MN*n).

C. Constraint Solving

Constraint solving is where we implement the math ex-
plained at the beginning of this section. Constraint solving
consists of a for loop which runs n iterations of position up-
dates in order to move the particles such that incompressibility
has been enforced. There are two procedures that occur during
every iteration. The first is that λi is computed using equation
(8) for all of particles and then stored in an array. Then
∆pi is computed using Equation (11) for each particle. After
∆pi has been calculated ∆pi is altered by collision detection
and response to avoid particles getting pushed into objects
during the constraint solving process. Collision detection and
response will be discussed more in the next section. The



altered ∆pi is then stored in an array as well. Finally, the
particles positions, p∗

i , are updated.

D. Collision Detection and Response
At the end of the constraint solving, step collision detection

and response is performed. In this implementation, bounding
boxes with signed distance fields are used to support collision
detection and response. Signed distance fields (SDF) are three-
dimensional grids that contain the signed distance of each cell
to the closest point on the object as well as the corresponding
normal vector [9]. Figure 4 shows a cross-section of the signed
distance field for a sphere.

By using a grid structure, collision detection and response
can be done in O(n*d), where n is the number of particles,
and d is the number of objects. At the beginning of the
simulation, each of the objects is loaded in, and then their
SDF is precomputed using Algorithm 2. The signed distance
between the triangles and the cells is calculated using the
equation outlined in [7]. The complexity of computing the
SDF is O(w ∗h∗d∗ t), where w, h, and d are the dimensions
of the grid, and t is the number of triangles in the object’s
mesh.

Algorithm 2: SDF Calculation

1 forall cells i do
2 minTri ← NULL
3 sDist ← ∞
4 forall triangles j do
5 if |signed dist(i,j)| < |sDist| then
6 minTri ← j
7 sDist ← signed dist(i,j)
8 end
9 end

10 i.dist ← sDist
11 i.normal ← minTri.normal
12 end

Once the SDF is computed particle-object collision detec-
tion can be performed by first transforming the ith particle’s
position p∗

i into grid coordinates pi,grid using equation (13),
which is in the Appendix. Where resolution is the width of
a grid cell and minX/Y/Z is the position of the cell corre-
sponding to grid[0][0][0] in world space. Collision response
is done by updating ∆pi using equation (14), which is also
in the Appendix. Where r is the particle radius and b is the
dimensions of the SDF grid.

Fig. 4: Sphere Signed Distance Field, Top: signed distance
where red is negative distance and blue is positive distance,
Bottom: normal vector where (x,y,z) are mapped to (r,g,b)

E. Velocity Update

The final step of the simulation loop is performing the
velocity update. The first step is to compute the new velocity
of the particles using the equation at line 21 of Algorithm
1. After that, vorticity confinement is applied to replace lost
energy, where vorticity is the curl of the velocity. Vorticity
confinement calculates the vorticity at the particle’s location
and then increases the velocity of the particle using the curl
[10]. The equations for calculating this force can be found
in [4]. Then XSPH viscosity is applied to the velocity which
corrects the velocity of the particle to be more similar to its
neighbors. Finally, the velocity and position of the particle are
updated.

F. OpenGL Implementation

The actual implementation of this simulation was done
entirely in OpenGL. Converting the simulation loop into
shaders and buffers took quite a few attempts and failures.
But finally I implemented the algorithm below:

Fig. 5: OpenGL Implementation, mustard is a vertex shader
pass, blue is a compute shader pass, and green is a buffer copy



The particle data: p, p∗, v, v∗, λ, ∆p, and color are all
stored in separate Shader Storage Buffer Objects (SSBO).
This enables their data to be modified easily by all shaders
(mainly Compute and Vertex) while also acting as Vertex
Buffer Objects (VBO) for the particle rendering pass. Separate
SSBOs were chosen instead of one interlaced SSBO because
most of the shaders only use and modify two or three of the
attributes. Following suit all of the other fluid simulation data
structures also use SSBOs. Those being the spatial hash table
and corresponding linked list, the neighbor list, and the SDFs
for each object.

The first step to the fluid simulation is to precompute
the Signed Distance Field. This is done by first loading in
the object’s mesh information from Wavefront object files.
Then a complete list of triangles and their associated normals
are constructed and buffered to the GPU in an SSBO. The
SDF’s bounding box, transformation matrix, resolution, and
dimensions are calculated and buffered to the GPU as well.
The compute shader is then dispatched with a workgroup
count equal to the grid dimensions, such that each invocation
computes the signed distance for each cell. After the SDF has
been computed the triangle buffer is unallocated to keep the
memory usage manageable.

After that position prediction and spatial hashing are per-
formed simultaneously using a vertex shader with rasterization
disabled. The reason that a vertex shader was used to perform
this operation is that the method used to compute the spa-
tial hash table requires memory synchronization. The shader
implementation of this is shown below:

The idea is that each invocation of the vertex shader
computes the spatial hash of their associated particle. Then we
get the first available index in the linked list using the atomic
counter increment. And then finally we get the index of the
next particle in our cell from the hash table and swap it for our
index. This shader is a very simple way to create the spatial
hash table but it requires two atomic operations. Compute
shaders only supports atomic operations for invocations in the
same workgroup, which has a maximum size of one-thousand.
As the fluid simulation uses fifteen-thousand or more particles,
that won’t suffice. So a vertex shader that does support full
atomic operations is used. Since the rasterization and fragment

shading would take up precious processing time, they were
disabled.

The idea of memory synchronization continued to be one of
the largest factors in the rest of the implementation’s design.
Each shader cannot modify data when other invocations may
use that data. This leads to five individual compute shader
passes which each compute a piece of the equation and then
store the results for the next shader to use.

To finish up the neighbor finding step a compute shader
pass uses the spatial hash table to construct a list of neighbors
for each particle.

With neighbor finding completed, we begin the constraint
solving step. A for loop CPU side dispatches the three compute
passes which calculate the λs, position update, and then apply
the position update.

The last step is to perform the velocity update. A vorticity
confinement shader computes the new velocity and then stores
those velocities in the v∗ SSBO. Once all the new velocities
have been updated an OpenGL CopyBufferData() call is used
to efficiently update the velocity buffer. Then an XSPH shader
applies XSPH and stores the result as well in the v∗ SSBO.
Finally, two buffer copies are performed to update the position
and velocity.

The fluid is then rendered as spheres. Hardware instancing
is used to perform this operation efficiently. The instanced
attributes are the particle’s positions to offset the sphere model
by and the particle’s colors.

V. RESULTS

I tested my algorithm with four different scenarios: a water
drop, wave, wave with sphere (Figure 6), and a funnel pour
(Figure 7). In all of these scenarios, the fluid behaved properly
and object collisions are handled very well.

The goal to create a real-time fluid simulation using a
particle system that can interact with complex objects was not
achieved. With only fifteen-thousand particles on an NVIDIA
GTX 1050TI, we were only able to achieve framerates in the
range of 3-5 frames per second. The low framerates come from
a few different factors. The first is that I was unable to tune
the fluid parameters to support a small support radius. The
computational efficiency of this simulation is largely reliant
on the number of neighbors each particle has and that number
grows in a polynomial fashion as the support radius increases.
The second reason is the hash table is constructed in a manner
which results in very poor memory locality. Particles within
the same cell are strewn across the linked list and this slows
down neighbor searching dramatically. Hash table construction
also slows down the simulation loop because of the two
critical sections. A fully parallelizable hash table construction
algorithm could result in a major speedup. And finally, ping-
ponging between buffers was not utilized resulting in many
large copy operations.



Fig. 6: Colliding a wave with a sphere (15k particles)

Fig. 7: Pouring water out of a funnel onto a pea shooter (15k
particles)

VI. CONCLUSION

Simulating fluids for real-time graphical applications using
particle systems is challenging. However, when done correctly
it has impressive results visually. Including simulated fluids
in games can produce incredibly immersive gameplay. As
modern graphical processors become increasingly powerful
these simulations may become commonplace.

For this project, I focused on implementing a real-time fluid
simulation based on the work by Miles Macklin and Matthias
Müller titles ”Position Based Fluids”. Their solution has been
shown to produce comparable accuracy to SPH while being
efficient enough for interactive simulations. Implementing
their work requires the use of many clever data structures and
effective GPGPU.

I was not able to produce the same results as [4], however,
the current implementation is a great starting point and with
some more work, it could run at similar speeds. This can be
done by using a more effective spatial hash table, buffer ping-
ponging, and condensing some shader passes.

This project was not without its challenges: parameter
tuning, spatial hashing, memory synchronization, and SDF
were all incredibly hard to implement correctly and even
harder to debug. Through this project, I found that careful
planning, pseudocode, research, and color debugging were all
very useful techniques when problems arose. In the future,

this project could be improved in many ways. After imple-
menting the aforementioned changes, I would like to add
in trilinear interpolation of the SDF for improved collision
detection and response, fluid rendering techniques to produce
realistic-looking liquids, and possibly modify the parameters
and structure to simulate smoke or fire. I could also look into
adaptive particle sizing, time-stepping, and solver iterations.
There were also some projects which explore using a few
particles to generate a flow field and then update and render
a large number of particles using this field.

Despite not being able to produce real-time results this
project was a complete success. I have learned so much
more about fluid simulations, OpenGL, computer graphics, and
parallel computing. This project was a large step into learning
GPGPU and I would love to learn and grow more in this field.



VII. APPENDIX

pi,grid =




1/resolution 0 0 0
0 1/resolution 0 0
0 0 1/resolution 0
0 0 0 1




1 0 0 −minX
0 1 0 −minY
0 0 1 −minZ
0 0 0 1

p∗
i

 (13)

∆pi =

{
∆pi + (r − grid[pi,grid].dist) ∗ grid[pi,grid].norm if 0 ≤ pi,grid ≤ b ∧ grid[pi,grid].dist ≤ r

∆pi else
(14)
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