
Rendering Water Using Compute Shaders and
Navier Stokes Equations

Ivan Krukov
Department of Computer Science

Colorado School of Mines
Golden, Colorado

ikrukov [at] mines.edu

Abstract—One area of particular interest within the field of
games and fluid simulators is the ability to physically model
properties of fluids such as water. Utilizing Navier Stokes
Equations – which can be used to describe incompressible,
homogeneous fluids in an iterative fashion – allows video game
and simulation designers to encode realistic fluid interactions
more effectively than traditional function based approaches such
as Gerstner Waves. Such approaches are highly extendable to the
rendering of different fluids such as fire, smoke, and volumes
of water. This project is primarily centered around utilizing
Navier Stokes Equations and a level set to realistically render a
flowing river. Calculations for updating quantities in the fluid are
performed in an OpenGL Compute Shader – different from the
traditional approach of implementing these calculations within
the traditional rendering pipeline as a pixel or fragment shader.
A vertex deformation shader is then used alongside a physically
based lighting model to create a visually appealing and realistic
looking river slice that was able to be rendered in real time.

Index Terms—Navier Stokes, Fluid Simulation, Physically
Based Rendering, Vertex Deformation, Raytracing

I. INTRODUCTION

This project primarily looked at the process of rendering
water in OpenGL with the help of Navier Stokes Equations to
physically model the geometry and velocity of the liquid along
with Physically Based Rendering to produce realistic lighting
effects. This technique of fluid simulation is important because
it allows for highly realistic water modeling with the ability for
easy extensions to user interaction (i.e allowing a user to pull
their hand through water, a character jumping into a pool, etc).
This can be accomplished by simply encoding interactions as a
set of dynamic forces which is more difficult to do with other
water rendering methods. Having a working implementation
of the Navier Stokes Equations also gives way to relatively
simple extensions to the modeling of different fluids such as
smoke, clouds, and fire using the same shaders.

The brunt of the difficulty of implementing this project
mainly came in the form of translating the Navier Stokes Equa-
tions into a form that can be computed on computer hardware.
These equations have to be discretized and transformed into an
iterative form in order to be able to simulate the evolution of
a fluid over time. Alongside understanding the mathematical
simplifications and assumptions that can be applied to Navier
Stokes, additional thought has to go into actually rendering
the fluid since Navier Stokes only describe how the velocity
of the fluid behaves.

This paper will begin by looking at a series of related
works in fluid/water simulation that influenced this project’s
implementation in Related Works. With the basis of related
work, implementation challenges of fluid rendering as well
as solutions that this implementation explores will then be
discussed in Problem Statement and Problem Solution re-
spectively. Finally, the Results section details the visual and
performance results of this implementation.

II. RELATED WORK

A. Gerstner Wave Functions

One approach to modeling behavior such as a ocean currents
has to do with the physically modeling these behaviors with a
combination of sinusoidal functions and calculating the height
of a particular point of the fluid using a time variable. Specif-
ically, Finch [1] describes GPU water rendering techniques
using the Gerstner wave function, defined by the equation:

Parameters such as amplitude (Ai), wave steepness (Qi),
and speed (φ) can be controlled to change how the water’s
geometry behaves. These parameters could also be tuned to
represent bodies of water other than oceans such as rivers and
lakes.

While Gerstner wave functions create relatively realistic
ocean surfaces and could in theory be extended to different
bodies of water, it is difficult to physically encode dynamic
interactions with the fluid and different wave functions have
to be considered if we want our fluid to behave differently.

B. Ocean Lighting

Bruneton, Neyret, and Holzschuch looked into approaches
in realistically lighting the surface of the ocean [4]. Their
approach consisted of multiple lighting passes to add refracted
light, sky reflection, and sun reflection. Their work also ex-
panded on approaches to applying physically based rendering
models to water by identified that the Ross BRDF model
would be best in representing the roughness of the ocean from



all viewing scales. This is due to the fact that waves generated
by a Gerstner wave train follow a Gaussian distribution of
heights and with the application of traditional BRDF models
such as Torrance Sparrow, the normals appear too uniform and
improperly scaled for variations in the ocean’s waves. The
usage of a Ross BRDF also led to visual results that were
similar to sample images used for rendering scenes.

Unfortunately due to time constraints, there wasn’t enough
time to implement the Ross or Ward BRDF in this implemen-
tation’s lighting model.

C. Fast Fluid Dynamics in Pixel Shaders

Harris provides much of the basis for understanding how
one would implement Navier Stokes Equations on the GPU
[2]. This article primarily looks at a high level approach to
using a incompressible, homogeneous fluid form of Navier
Stokes – modeling fluids that contain constant volumes within
subregions over time and constant densities over space and
time. Harris also does most of the work in approximating
the gradient, laplacian, and divergence operators used in the
original Navier Stokes equations to a discrete and iterative
form that can be programmed on a GPU.

In terms of GPU implementation details, Harris’ approach
used multiple 2D texture units to store quantities such as
velocity and dye color and iteratively updated these quantities
every draw cycle with multiple Direct3D pixel shaders. Im-
plementation details and understandings of the terms involved
in Navier Stokes are discussed further in the section Problem
Solution.

D. Ray marching Approach to Rendering Fluid Volumes

While Harris looked at the implementation of fluid dy-
namics on the GPU, few details were expressed on how to
render the fluid that was being modeled. Crane, Llamas, and
Tariq expanded on this by outlining an approach on rendering
multiple different 3D fluids in the form of smoke, water,
and fire [3]. Specifically in the context of water, this article
suggests expanding on Harris by using a 3D version of the
Navier Stokes equations with 3D textures.

In addition to having a 3D texture for velocity, the article
also introduced the usage of a level set to represent a fluid
volume that can be updated using the advection routine of a
Navier Stokes shader. The level set – commonly used to model
water surfaces – is a set of scalar values representing:

• x > 0: Cells that contain air
• x < 0: Cells that contain water
• x = 0: The exact point the water’s surface is encountered
Additional optimizations were also realized with the ability

to mask computations based on cells that contained air. This
is due to the fact that pressure computations can be skipped in
these cells(we don’t care about the pressure of the air to model
a fluid) and the application of external forces (we mainly care
about forces when directly applied to the fluid).

With this 3D level set texture, the authors then outline
that the front faces of a bounding box of the fluid needs to
be rendered. Rays are then cast into this bounding box that

generates a separate texture that keeps track of the entry point
of a ray and the depth that the ray traverses through the volume
before encountering another front face (i.e of a different object
in the scene) or the end of the bounding box. This ray data
is then used in a separate quad shader that dictates how a
3D texture representing the volume is sampled. In the case
of water, this texture is the level set discussed earlier. Once a
level set value of 0 is encountered, the shading routine for the
water’s surface is then run. Figure 1 represents this concept at
a high level for the rendering of smoke.

Fig. 1. Ray Tracing Rendering Process for 3D fluids [3]

III. PROBLEM STATEMENT

Modelling water is inherently challenging in case when
one would wish to be able to encode physical interactions
or forces on the fluid. Approaches such as using functions
to approximate wave heights such such as Gerstner Wave
Trains – while producing visually appealing results in real
time – fall short in how extensive the user can interact with
the fluid. Modelling water with fluid dynamics can allow for
the manipulation of a physical representation of the fluid with
respect to velocity, giving way to being able to encode different
bodies of water with different static forces as well as (if
desired) dynamic forces such as user interaction. However,
the brunt of the challenge in fluid simulation is being able to
understand and translate fluid dynamics involving continuous
calculus operations to something that can be computed on
computer hardware. While traditional approaches have been
able to achieve real-time results and have gone through the
approximation steps to run a discrete form of the Navier
Stokes equations on the CPU/GPU, these approaches also
came 5–10 years before compute shaders were introduced into
the core of OpenGL in version 4.3. As such, much of the
mathematical work that went into solving these equations was
done in the form of a G-buffer like structure with the help of
a fragment shader or Direct3D pixel shader. These approaches
inherently perform some unnecessary computational steps
such as processing and interpolating values for the points of
a screen space quad, potentially sampling texture units more
than necessary for updating a pixel in the simulation grid,
and performing per-fragment operations before finally writing
to the render buffer. Compute shaders can help reduce these
redundant computations by giving more fine-grained control
over how simulation values are updated.



In addition to the modelling challenges and potential im-
provements by transitioning to a compute shader, there are also
additional factors not considered in the papers such as creating
the illusion of a continuous fluid volume. This is particularly
crucial for this implementation since the segment of the
river being rendered is inherently continuous. Considerations
have to be made on how to exactly initialize the level set
and set boundary conditions that produce visually appealing
behaviour.

IV. PROBLEM SOLUTION

The following section details the technical implementation
details of the final codebase. Much of the following work is
based on prior works with the exception of applying Navier
Stokes computations on the GPU alongside implementation
hacks such as treating the level set as a height map to avoid
ray tracing and modifications to the level set to create the
appearance of a continuous volume.

A. Navier Stokes GPU Approximations

Much of the mathematical work is attributed to the work
done by Harris from the Related Works section. In general,
the Navier Stokes Equation for homogeneous, incompressible
fluids can be expressed as:

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p+ ν∇2u+ F (1)

This can be thought of as the combination of multiple
acceleration terms dictating the evolution of a fluid’s velocity,
u, over time. The updated velocity of the fluid can then be
used to update other quantities within the fluid that dictate
how it the fluid appears.

Within the final implementation, each acceleration term
ends up being consolidated and processed within its own com-
pute shader. Certain approximations to calculus operators such
as Jacobi Iteration for the laplacian are also contained within
their own shader (calculus.c.glsl). The following paragraphs
go into more detail what each of the acceleration terms in the
equation are alongside how these quantities are approximated
discretely.

a) Advection (−(u · ∇)u): Advection at a high level
encodes the fact that velocity can move quantities within a
fluid such as dye colors, the level set, and even velocity itself.
As such, advection could instead be expressed of in terms
of updating the position of a particle using Euler’s forward
integration method rather than in terms of the divergence
operator:

r(t+ δt) = r(t) + u(t)δt (2)

One principle concern with this approach is that if u(t)δt
gets larger than the size of a grid cell (especially in the
case of large time steps), the calculation becomes unstable.
Therefore, the final implementation uses an implicict method
of integration which can be visualized by Figure 2.

q(x, t+ δt) = q(x− u(x, t)δt, t) (3)

This method effectively states that the quantity at a point x
at time t+ δt is calculated by getting quantity at point x− u
at time t , where u is the velocity at our current position
and time. Since the resolution of our grid isn’t infinite, it is
often the case that this projection backwards doesn’t perfectly
align with the sampling grid. Thus, the four points surrounding
the traced point are bilinearly interpolated to approximate the
quantity that would have been at that point. This is most easily
accomplised with rectangular texture units, which are used in
the final implementation. This is due to the fact that one could
then sample a texture based on a texture’s dimensions(whole
numbers) and use the fractional portion of a traced coordinate
for mixing proportions. Flooring and ceiling functions could
then be used to access the nearest points in the grid.

Another customary modification to the advection term is
to multiply a dissipation constant to the advected quantity to
represent behavior such as the fading of dye through a fluid,
usually taking a value very close to 1 (e.g 0.99). This method
is applied to the final implementation with the visual result
of the modeled river sloping slightly downards along with the
settling of the fluid when no forces are applied.

The process described for the implicit method of forward
integration with dissipation is encoded and performed in the
shader advect.c.glsl, with the OpenGL calls to orchestrate
the execution of this routine found in the C++ function
advect(timeStep).

Fig. 2. Tracing the Velocity of a Particle for Stable Advection [2]

b) Pressure (− 1
ρ∇p): The pressure term primarily en-

codes Newton’s Second Law, where pressure can often build
up in a fluid due to the squishing of fluid particles. This
squishing of particles imparts an acceleration of its own onto
the fluid. The magnitude of this effect is tunable through
changing the fluid’s density ρ. However, one major factor in
determining the effect of pressure is to solve for the actual
pressure field since velocity and fluid quantities are the only
variables that are being tracked.

In order to get to a point where one could solve for the pres-
sure term, some groundwork has to be built up. Considering



the constraint placed on the modeled fluid being homogeneous
and incompressible, this tells us that the divergence of the
resulting velocity field needs to be zero at each time step.
Luckily, just like how vectors can be broken into î and ĵ
components, so too could vector fields be broken up into
divergence and divergence free fields of the form:

w = u+∇p (4)

Where w is a vector field in the region of fluid that is being
modeled, u has a divergence of 0 parallel to the region of
fluid, and p is a scalar field (in this case, pressure). Formally,
this technique is called the Helmholtz-Hodge Decomposition,
and it allows us to express the pressure term as a subtrac-
tion of a pressure gradient (Equation (5)) and solve for the
pressure field by applying the divergence operator on both
sides of the Helmholtz-Hodge Decomposition to solve for
pressure(Equation (6)).

u = w −∇p (5)

∇ ·w = ∇ · (u+∇p) = ∇ · u+∇2p (6)

Since the divergence of velocity is zero from our fluid
constraints, Equation (6) could be simplified into the Poisson
Equation described in Equation (7). This form has solver tech-
niques that can be now implemented on computer hardware,
discussed further in Solving the Poisson Equation

∇2p = ∇ ·w (7)

Implementation-wise, Pressure is solved using routines in
calculus.c.glsl for calculating the divergence of velocity along
with iteratively solving for the pressure gradient with the
divergence of velocity using Jacobi iteration described in
Solving the Poisson Equation.

c) Viscous Diffusion (ν∇2u): Viscous diffusion allows
for the modeling of fluids of varying consistencies and thick-
nesses. This allows us to encode different fluid behavior when
dealing with a fluid such as water versus maple syrup. In
essence, this term acts as a resistance to flow that causes a
diffusion of momentum(hence the term Viscous Diffusion).

In a very similar way to advection, Viscous Diffusion can
also be expressed in discrete terms by the equation:

u(x, t+ δt) = u(x, t) + νδt∇2u(x, t) (8)

Where ∇2 is the discrete form of the Laplacian Operator:

∇2p =
pi+1,j + pi−1,j + pi,j+1 + pi,j−1 − 4pi,j

(δx)2
(9)

Just like how advection experienced stability issues with
large timesteps, so too does the diffusion term in Equation (8).
This is also resolved by using an implicit method of integration
to get to a form that can then be solved with a Poisson equation
solver:

(
I− νδt∇2

)
u(x, t+ δt) = u(x, t) (10)

Implementation-wise, Viscous Diffusion is solved through
iterative calls to Jacobi iteration in the C++ function dif-
fuse(timeDelta), which then is responsible for dispatching
multiple compute shader runs in calculus.c.glsl.

d) Solving the Poisson Equation: Since Pressure and
Viscous Diffusion could be rewritten in the form of Poisson
equations (linear algebra matrix equations in the form Ax = b,
solver techniques for these equations could be implemented
on the GPU to get these quantities. This is accomplished with
the usage of a technique called Jacobi iteration to iteratively
approach the solution for these quantities. The general form
for Jacobi iteration – derived from the discrete form of the
Laplacian Operator – is described by the equation:

x
(k+1)
i,j =

x
(k)
i−1,j + x

(k)
i+1,j + x

(k)
i,j−1 + x

(k)
i,j+1 + αbi,j

β
(11)

For good convergence on the solution and high resolution
results, 20–50 iterations and 40–80 iterations are recom-
mended for Viscous Diffusion and Pressure respectively [2].
The final implementation opts to use 30 iterations for both
effects. Table 1 outlines what each parameter is set to when
solving the Laplacian for Viscous Diffusion and Pressure. δx
represents the scale of our grid (1 since there is one cell per
pixel) and δt represents the time step. x and b represent the
texture units(and image unit for storing x

(k+1)
i,j ) that would

be bound on the execution of the Jacobi iteration shader.
The pressure computation also relies on the computation of
the divergence of velocity which is performed by a separate
shader routine and stored in a texture unit prior to pressure
calculations. The overall routine to perform Jacobi Iteration
along with other calculus operators are stored in the shader
calculus.c.glsl.

TABLE I
JACOBI ITERATION PARAMETERS FOR SOLVING LAPLACIAN OPERATORS

Property α β x b

Diffusion (δx)2

νδt
4 + α velocity velocity

Pressure −(δx)2 4 pressure ∇ · v

e) External Forces (F): The external forces term simply
encodes any forces (static, constant forces such as gravity or
dynamic forces such as wind or user interaction) that impart
an acceleration or impulse that changes the velocity of the
fluid. This term is the most straightforward of them all since it
doesn’t involve any complex calculus and is a simple addition
based on time.

In terms of the implementation, the addition of external
force is performed by a separate shader called force.c.glsl.
This shader has multiple subroutines which can be switched
between to change the force being applied to the fluid domain
using the ”C” key when the text on the top of the screen says
that the user is in ”force mode” (toggled using the ”F” key).



This shader implements four force models to play around with
different fluid dynamics defined by simple equations:

• River applies a constant force based on a passed in
uniform vec4 ”force”. This is the default mode of op-
eration with a force vector representing the pull of a
river(constant, to the lower left portion of the fluid texture
unit).

• Whirlpool plays around with moving the fluid in a
slightly circular pattern around the center of the fluid.

• Ripple involves a force that increases as you move
radially away from the center of the fluid.

• Inward acts as the opposite of ripple and pulls all
quantities inwards.

• Nochange sets force to zero.
f) Boundary Conditions: In order to properly pose the

mathematical approximations described for the Navier Stokes
equations detailed above, boundary conditions have to be
enforced for the grid. These come in the form of a no-slip
condition for velocity, stating that u → 0 as we approach
the bounds of our grid along with a constraint required
for the Poisson pressure equation called a pure Neumann
boundary condition, where the change in pressure relative to
the direction normal of a boundary is zero (In other words,
δp/δn = 0).

In terms of shader implementation, both of these constraints
can be simply solved for by enforcing that the values directly
at the edge of the boundary are zero. However, due to the fact
that the samples in our grid represent the middle of a cell,
we have to instead take the two adjacent cells to a border and
solve for the border pixel value where their average would
be zero. This can be visualized with Figure 3 which outlines
the offsets from the border that would be used to solve for
the average of zero, with the result being stored in the shaded
cells.

Fig. 3. Sampling Cell Centers for Boundary Condition Enforcement [2]

Traditionally, the implementation described by Harris in-
volved masking computations to be explicitly on the boundary
by having a rendering pass which draws line primitives on
the edges of a quad (the quad being used for Navier Stokes
computations). Since this approach uses compute shaders, this

masking of computations is instead a different workgroup
scheduling further described in the section on Compute Shader
Applications. All of the boundary condition calculations are
performed with the routine defined in boundary.c.glsl.

B. Compute Shader Application

While traditional implementations looked at fragment and
pixel shader approaches for running Navier Stokes compu-
tations on textures, this approach looked more at the usage
of compute shaders to improve computational performance.
Most of the shaders described above for performing a step
of the iterative Navier Stokes Computations were compiled
as programs with a single compute shader. These compute
shaders typically take in a number of sampler2DRect texture
units for velocity, pressure, and the level set (in the case
of advection) depending on the Navier Stokes step that is
being performed. All of the compute shaders also take in
an image2DRect texture unit which is used so the compute
shaders can do meaningful work and store their result in a
place that can be accessible for future computations and draw
calls. The process of loading specific uniforms and texture
units is described by the parameters in previous sections as
well as the C++ functions named after each Navier Stokes
Operation (advect, diffuse, projection (pressure), boundary,
applyForce)

In terms of work group allocation, all of these compute
shader programs with the exception of the boundary program
operated with TEXDIM by TEXDIM global work groups.
Each work group in an invocation was responsible for updating
exactly one pixel in the resulting image2D using the image-
Store GLSL command. In the case of the boundary conditions
program, there are instead TEXDIM by 1 global workgroups
and a local size of 4 local workgroups. The local workgroup
ID is used to effectively index the top, bottom, left, and right
sides of the image. This leads to a structure where there are 4
image writes per global work group invocation for the ith pixel
on the top, bottom, left, and right boundaries of the image.

In addition to the aforementioned compute shaders for per-
forming Navier Stokes computations, an additional compute
shader is used for calculating the bump map of the level set.
The reason for this operation is described in more detail in the
next section outlining the fluid rendering process. The code for
this routine is defined in normals.c.glsl.

Due to the memory model of OpenGL, undefined behaviour
may occur when performing concurrent reads and writes to
the same texture unit or SSBO on a compute shader pass. As
such, pairs of rectangular texture units are used for velocity,
pressure, and the level set. In events where a velocity texture
unit needs to be read and written to concurrently (e.g in
the case of velocity advecting itself), one unit is bound
as a write-only image2DRect while the other is bound as
a standard sampler2DRect. A consistent access pattern to
these textures is maintained to make sure the latest texture
representation is being read while stale values are overwritten.
This is primarily accomplished with the help of a user-defined
function called swapAndBindTexUnits which is responsible



for swapping the texture that is being read/written and binding
them to the corresponding sampler/image binding points for
the next shader call. In places where a shader invocation
only needs to read the latest updated value of a texture unit,
swapAndBindTexUnits guarantees that the second texture unit
(e.g velocityTextures[1]) contains the desired value.

C. Fluid Rendering Process

Instead of performing a ray tracing approach to rendering
3D water as described in the Related Works, this implemen-
tation instead opts for a simpler approximation of the water’s
surface by using the level set as a height map. The level
set texture is processed by a separate compute shader called
normals.c.glsl. This routine is responsible for writing out a
bump map texture which stores the original position of the
particle alongside the normal based on the gradient using the
surrounding level set values. The bump map is then used as
an input for rendering in the vertex deformation shader and
PBR fragment shader.

At a high level, the OpenGL rendering process for each
pixel involves the following steps:

1) Compute the timedelta
2) Perform advection, diffusion, force application, pressure,

and boundary condition evaluation on the velocity tex-
ture

3) Use the updated velocity to advect the level set
4) If the continuous level set hack is being used (toggled

by pressing ”S”), use the boundary program to set the
level set at the edge of the texture unit

5) Calculate the bump map (normals with position) for the
level set(treated as a height map)

6) If we are rendering in quad debug mode (toggled by
pressing ”D”), render a screenspace quad showing tex-
tures such as the velocity, level set, and pressure field.

7) If we aren’t in debug mode, render the skybox
8) Render the water using the bump map, skybox cube map

for reflections, and uniform parameters for water fluid
material and lights. This is done with triangle strips or
line strips if the user has cheap wireframing enabled
(toggled by pressing ”W”)

In addition to the rendering process and key controls men-
tioned above, the user can also reinitialize the level set texture
by pressing the ”R” key.

Due to time constraints, there wasn’t ample time to im-
plement the Ross model of physically based rendering of the
water’s surface. The Torrance Sparrow model is used instead
with a material that has a roughness of 0.23, non-metallic,
and a grayish blue color. There weren’t many good sources
on good values for modelling water, so these values were
achieved by tweaking parameters until a good visual result
was achieved.

V. RESULTS

Figure 4 shows the visual results of applying the afore-
mentioned rendering techniques to a fluid using the river
force application. Figure 5 shows the corresponding texture

debug view of the level set currently being drawn. This render
specifically utilized random initialization of the level set for
simulation initial conditions, random reinitialization of the
level set which can be observed on the top/right edges of the
rendering, and a constant static force that influences velocity
to pull the particles to the bottom left of the rendered volume.
In motion, this results in a convincing look to the river and
even cause small scale distortions/shimmers on the surface
near specular highlights. The Whirlpool force application is
also demonstrated in Figure 6.

In terms of frame rate, the program averages at 21 frames
per second using integrated graphics on an Intel Core I5 CPU,
300×300 textures for storing simulation parameters, 30 Jacobi
iterations for approximating the laplacian operators involved in
the diffuse and pressure terms, and a vertex deformation mesh
of around 115,000 triangles. With dedicated graphics hardware
or a different algorithm for calculating the laplacian, the frame
rate would likely be closer to 60 frames per second.

Fig. 4. Final Rendered Result

Fig. 5. Advected Level Set Quantity

VI. CONCLUSION

This project looked at the implementation of the Navier
Stokes Equations in an OpenGL compute shader in order to
render a realistic looking river. This is different from prior
approaches which just look at using fragment/pixel shaders
or that seek to approximate surface behaviour using wave



Fig. 6. Whirlpool force rendering

trains. This project also simplified the modelling of the water’s
surface by looking at the level set as a height map that is
advected and used for a vertex deformation shader. While
there wasn’t enough time in the semester to implement some
of the lighting/texturing features (i.e adding sea foam), the
visual results of the program are still look relatively impressive
while maintaining a workable frame rate on low end graphics
hardware.

This project served as a great opportunity to get a glimpse
of how computer graphics programmers take math and physics
heavy concepts and massage models into something that could
be used by the GPU to improve the realism of a simulated
effect. This project also served as a good learning experience
for how to model fluids on the GPU and gives a good baseline
of shaders that could be used in different projects for other
fluids outside of water such as fire and smoke.

Future work for this implementation includes adding the
ability for the user to impart impulses on the fluid, replacing
the Jacobi Iteration algorithm with one that converges to a
solution in fewer iterations, and the implementation of the
Ross BRDF in order to be able to compare visual results. It
would have also been interesting to create an implementation
using only fragment shaders for Navier Stokes computations
and see the magnitude of performance gains seen when using
a compute shader over a fragment shader.

REFERENCES

[1] M. Finch. “Effective Water Simulation from Physical Models”. GPU
Gems ch. 1, vol. 1. https://developer.nvidia.com/gpugems/gpugems/part-

i-natural-effects/chapter-1-effective-water-simulation-physical-models.
April 2004.

[2] M. Harris, “Fast fluid dynamics simulation on the GPU,” ACM SIG-
GRAPH 2005 Courses, pp. 220-es, Jul. 2005.

[3] K. Crane, I. Llamas, and S. Tariq. “Real-Time Simulation
and Rendering of 3D Fluids”. GPU Gems ch. 30, vol. 3.
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-
simulation/chapter-30-real-time-simulation-and-rendering-3d-fluids.
August 2007.

[4] E. Bruneton, F. Neyret, and N. Holzschuch, “Real-time Realistic Ocean
Lighting using Seamless Transitions from Geometry to BRDF,” Com-
puter Graphics Forum, vol. 29, no. 2, pp. 487–496, Jan. 2010.


