
Final Project Report

Jonathan Sumner Evans∗, Robinson Merillat†, and Sam Sartor‡
Department of Computer Science, Colorado School of Mines

Golden, Colorado
Email: ∗jonathanevans@mines.edu, †rdmerillat@mines.edu, ‡ssartor@mines.edu

Abstract—Virtual Reality (VR) Technology has been
developing rapidly over the past decade. Current solutions
such as Unity attempt to use old programming languages
and even older paradigms to implement VR applications
and thus, limit developers’ abilities to create new and
unique environments. With every cutting edge technology,
new paradigms and design patterns must be invented. In
this paper, we discuss a deferred immediate mode (DIM)
application architecture suitable for implementing large
virtual reality applications. We present a UI library which
utilizes this architecture and a few case studies of this
library in use.

I. INTRODUCTION

The Virtual Reality (VR) market is growing
rapidly. The International Data Corporation (IDC)
projects that revenues for the combined Augmented
Reality (AR) and Virtual Reality markets will grow
from $5.2 billion in 2016 to more than $162 billion
in 2020 [4]. This flourishing new industry has cre-
ated an exciting new field of Software Engineering
with great potential for revolutionary new design
paradigms and program architectures.

Most current frameworks and libraries attempt to
apply old design paradigms and program architec-
tures to virtual reality. While these paradigms and
architectures are well-suited for 2D user interfaces
and rendering 3D environments to a flat screen,
they are not designed with VR in mind. Although
endeavors to adapt these old patterns to VR have
been successful, they are restrictive in both the code
architecture and way of thinking. Grace Hopper
loved to say “The most damaging phrase in the
language is: ‘It’s always been done that way’” [3].
This quote promotes new ways of thinking. Utilizing
outdated architectures hinders the exploration and
the potential for new design paradigms and program
architectures.

Our goal is to find a system that provides a
modern, fast, and practical approach to virtual re-

ality development. Specifically, we require that this
system meets the following criteria.

A. Performant

Traditionally, animation is done at approximately
60 frames per second. This is due to the dominance
of monitors and televisions that ran at 60Hz and had
a refresh rate of 60 frames per second (fps). This
frame rate is acceptable when viewing a screen from
a distance. However, in order to appear believable
and prevent disorientation, a virtual reality program
must run at at least 90 fps. In fact, many studies have
shown that when VR is run with lower frame rates
users experience headaches and nausea faster than
when at high frame rates [8]. Since VR headsets
run two displays concurrently, the effective required
frame rate is 180fps. Achieving this frame rate
is resource intensive and requires highly efficient
and optimized code. Additionally, multi-threading is
imperative so that long-running processes can occur
without blocking the user interface. This is unlike
a traditional desktop user interface where blocking
the UI process for a second does not have a major
affect on the usability of the program. These factors
require a VR framework that is highly performant
and multi-threadable.

B. Natural

A natural user interface is an interface that can
be used without the need for a controller [10].
Although current VR systems utilize hand-held con-
trollers, they emulate this goal much better than
desktop, mobile, and web applications. For our
discussion of these natural user interfaces, we define
the following terms.

Definition 1. A planar UI is a user interface where
components are organized along a 2D surface.

Definition 2. A spacial UI is a user interface where
components are organized within a 3D space.

Both planar and spacial user interfaces are ef-
fective in virtual reality applications. This cannot
be said of applications that use traditional human-
interface devices such as mice and keyboards. Be-
cause virtual reality environments are inherently 3D,
they make spacial UI convenient and practical for
the first time. Thus, the ability to create spacial UI
rather than merely to planar UI is a high priority.

C. Flexible

Computer software is used to solve a variety of
unique problems which in turn require a variety of
user interface solutions. Thus, a good user interface
toolkit must be general enough to accommodate the
goals of the developers writing the software. Most
importantly, such a toolkit must not be opinionated
about which types of application should be created
with it. The desktop, mobile, and web application
fields already have general purpose user interface
toolkits (e.g. HTML and GTK). We need a UI
library for VR which is equally general-purpose.

D. Modular

A direct result of flexibility is modularity—a flex-
ible architecture cannot be a monolith. Many current
VR libraries include features such as pathfinding
and character rigging which must be included even
if they are not used. This is not modular and most
non-entertainment software does not require any of
these features.

From a software engineering standpoint, a good
UI library must allow the programmer to integrate
any number of components, but these components
should be add-ons, not dependencies. Additionally,
these components should be compartmentalized and
not interfere with one another. This library design
promotes good software engineering practices in-
cluding the UNIX philosophy (“do one thing and
do it well”) and the open/closed principle (“software
entities should be open for extension but closed to
modification”).

We need a framework that has a minimal feature
set baked in while still allowing extensibility via the
addition of self-contained modules.

Given these criteria, we evaluate current pro-
gram architectures and UI libraries in Section II.
We describe the underlying architecture of these
libraries is Section III and discuss the immediate
mode architecture in Section IV. We describe how
these architectures influenced our deferred imme-
diate mode architecture which we formally present
in Section V. In Section VI we describe Flight—
an implementation of a VR UI library using the
deferred immediate mode architecture. Then we
present five case studies of Flight and the deferred
immediate mode architecture being used to solve
real software engineering problems in Section VII.
We conclude in Section VIII.

II. EXISTING TOOLKITS

We researched many current VR software archi-
tectures to find one which suited our needs. In
this section we describe a variety of libraries and
evaluate their ability to accomplish our goals as
described in the previous section.

A. Unity

Unity is a game engine which was designed to
allow programmers to easily create games and has
many features which make this process effortless.
Unity has been used to create many successful,
award-winning VR games and applications includ-
ing SUPERHOT [1] and TiltBrush [9]. The Unity
ecosystem is growing rapidly and has become the
de facto standard for building VR applications. For
example, Google released a TiltBrush toolkit on
GitHub under the Apache 2.0 library [2].

Unity’s UI system, however, was designed for
building 2D UIs and has been adapted for making
3D UIs. Although these adaptations have been suc-
cessful, we wanted to explore systems which have
3D UI elements as first class citizens.

B. A-Frame

A-Frame is a virtual reality engine created by
Mozilla for the web. Scenes are built using declar-
ative HTML, and evaluated as an entity component
system (ECS). Unlike traditional object-oriented
programming, where new object types generally
inherit functionality from a single parent, an ECS
creates objects through composition. This works
very well in a declarative environment, since an

entity can be declared into existence by simply
listing a set of components (e.g. color, shape,
movement, interactivity) [7]. In addition, building
VR apps using HTML has the distinct advantage
of leveraging proven web UI frameworks such as
Facebook’s React library [6].

React and A-Frame are very effective solutions
to the problem of VR on the web, however both are
still fundamentally reliant on the document object
model (DOM). This constrains the performance and
generality of virtual reality applications. If the DOM
is entirely abstracted away, then there is no reason
to build on it in the first place. VR can be attacked at
a much lower level using desktop VR frameworks
and ported to the web using technologies such as
WebAssembly (WASM).

III. RETAINED MODE

All of the libraries and frameworks we discussed
in Section II use a retained mode architecture.
Retained mode architectures are declarative. In the
context of user interfaces, this means that the entire
user interface is defined and stored in memory.
For each each frame, the graphics library draws
the entire scene from memory. The entire scene is
stored in memory between frames and modification
of the scene is done by modifying the in-memory
representation of the scene [5].

Retained mode presents some problems with syn-
chronization across user interface trees. For exam-
ple, many applications have a stored state such
as a list of items table. However, there may be
elements external to the table which modify the list
of items. This causes a problem of cross mutation.
One common method of solving this problem in old
applications was to add a function call to refresh the
table when the button was clicked. This has major
scalability problems when the elements which are
changed by a single button form a massive depen-
dency tree. Additionally, if a programmer misses
one refresh call, it can cause the state in part of the
application to become stale.

Currently, one of the popular ways of handling
the synchronization problem is Flux, the underly-
ing architecture of Facebook’s Redux. This model
forces state to be stored in a single global store.
Data is sent from this store down the entire UI tree,
and messages which modify the state are propagated

upwards through the tree. This model ensures that
there is one source of truth—the common data
store—and that if one component sends a message
which modifies that central state, then the entire UI
tree can update accordingly.

IV. IMMEDIATE MODE

An alternative way of tackling the synchroniza-
tion problem is immediate mode. In this architecture,
the UI is defined procedurally for each frame. The
graphics library does not store the scene in memory,
rather any state that is necessary to create the scene
is stored by the application itself [5]. Immediate
mode prevents the problem of stale state and cross
mutation by recomputing the entire UI scene every
frame. In an immediate mode architecture, a pro-
grammer specifies that a UI element exists on each
frame, and if they want to remove the element, they
simply do not call the function.

The major drawback of immediate mode is that
there is no guarantee that another element will not
be created later that will interfere with the current
element’s state. We call this problem the incomplete
information problem. An example of this problem
would be an element in a virtual environment whose
color depends on whether or not the user is pointing
at it. It is easy to detect whether or not the controller
is pointed at the element. It is impossible to guar-
antee that another component will not be added to
the scene which will obstruct the controller’s view
of the first element.

In other words, there are some questions about
the state of the system which cannot be answered
until all UI elements have “reported” their state.
To solve this incomplete information problem, we
added a new aspect to immediate mode: deferability
described in the next section.

V. DEFERRED IMMEDIATE MODE

The Deferred Immediate Mode (DIM) architec-
ture provides all of the advantages of both imme-
diate mode and retained mode. DIM starts with
immediate mode as a base and thus inherits the
easy procedural definition of UIs from immediate
mode. Like immediate mode, DIM also does not
have the problem of stale state and cross mutation.
DIM solves the incomplete data problem from the
immediate mode architecture by deferring final state

resolution until all all elements have reported their
state.

The core pattern of DIM is that UI elements are
declared and rendered using the following process:

1) Each element is defined and reports their state.
2) Deferred computations are resolved.
3) Each element receives the resolved state and

finishes updating.
The concept of deferring updates until the com-

plete state is resolved is not a new concept. Deferred
rendering has been used in computer graphics for
decades. DIM is a generalization of this concept to
apply to UIs and real time physics.

VI. FLIGHT

Flight is our implementation of a VR UI library
and the DIM architecture using the Rust program-
ming language. Flight is designed from the ground
up to be performant, general, and modular.

A. Language
We chose to implement Flight using the Rust

language for a few reasons.
1) Performance: As mentioned in Section I-A,

virtual reality requires a high frame rate. Rust is
a very fast compiled language that makes asyn-
chronous and concurrent code safe and easy to
write.

2) Safety: Rust’s safety guarantees can help to
eliminate the time consuming debugging of mem-
ory, logic, and concurrency issues.

3) Ecosystem: Despite being very young, the
Rust ecosystem already has rich, full-featured tools
for graphics, physics, and virtual reality.

4) Functional: Concisely implementing DIM re-
quires first-class functions and functional constructs.
Other low-level languages such as C++ do not have
this ability, but Rust does.

B. Dependencies
The Rust dependency manager, Cargo, allows

programmers to easily include third-party libraries
from https://crates.io. To avoid duplicating work
by other programmers, we utilized a few external
libraries for Flight. The main dependencies are
listed below.

• rust-webvr: VR hardware API wrapper
• nalgebra: linear primitives and operations

• ncollide: geometric operations and queries
• nphysics: rigid body physics engine
• gfx: type-safe OpenGL wrapper

C. API Pattern
Most parts of the user interface update process

(rendering, point-tests, etc.) can be done online with
a pure immediate mode API. Only a few important
steps (ray-casting, physics step, etc.) directly require
DIM. These operations are made available by ob-
jects we call “Gurus.” Gurus are responsible for
aggregating reports and then resolving to a complete
output. For example, the API for a simple ray-cast
guru might be the following:

guru RayCast:
variable shapes: []
variable ray: ...

function ray_cast(shape):
if ray.hits(shape):

append shape to shapes
yield until resolved
return shapes[0] is shape

function resolve():
sort shapes by ray.distance(shape)

Any component that depends on a guru must also
have a mechanism for deferring:

function dim_example(guru):
data ← query(guru)
yeild until data
return data

A DIM function in the Rust language usually has
this rough form:

fn dim_example<'partial>(
// mutates the self state
&'partial mut self,
// depends on some deferred computation
guru: &mut Guru

)
// defer self until computation is resolved
-> impl FnOnce(&GuruReply)
// output will be available
-> MyOutput + 'partial

{
// ask the guru a question
let data = self.query(guru);
// defer further work on self
move |reply| {

// guru answer is available
return data(reply)

}
}

Notice that the dim_example function re-
turns some type that is FnOnce. Specifically, the
last few lines of dim_example return a closure
(|reply| ...) that is responsible for resolving the
incomplete computation.

D. Dependencies

The Rust dependency manager, Cargo, allows
programmers to easily include third-party libraries
from https://crates.io. To avoid duplicating work
by other programmers, we utilized a few external
libraries for Flight. The main dependencies are
listed below.

• rust-webvr: VR hardware API wrapper
• nalgebra: linear primitives and operations
• ncollide: geometric operations and queries
• nphysics: rigid body physics engine
• gfx: type-safe OpenGL wrapper

VII. CASE STUDIES

We started this project with the goal of imple-
menting a graphical shell in virtual reality. The
problems we encountered motivated the develop-
ment of the DIM architecture and flight-ui.

A. Yanking, Grabbing, and Pointing

The most important aspect of a virtual reality
application is the interface system. Since our in-
terface incorporates many movable elements, we
needed intuitive controls for moving objects. We

chose to implement yanking (bringing a distant
object closer), grabbing (directly manipulating an
object at close range), and pointing (triggering an
event from a distance). All three were done through
a combination of the InteractGuru object and
a Moveable state object.

DIM enabled these interactions to be perfectly
encapsulated. For example, a last-minute refactor of
the movement system required virtually no changes
to the physics system, global user interface, or ap-
plications despite all relying heavily on the previous
API. Countless new edge cases were created by the
addition of the yanking operation, but the physics
guru handled them easily without any changes.

(a) Before

(b) After

Figure 1: Yanking Mjolnir from a Distance

B. Let’s Get Physical and Snowflakes — Physics

We created two applications which rely heavily
on physics. Let’s Get Physical allows the user
to swing and throw Mjolnir, Thor’s hammer, and
hit other objects in a physically realistic manner.
Snowflakes allows the user to stack snow blocks on
top of one another in a physically accurate manner.
We created these applications separately and then
combined them later. We discuss this combined
application here.

The challenge with physics in immediate mode
is the fact that objects in the physical world are in-
herently intertwined. For example, each snow block
might influence, or be influenced by, any other snow
block or Mjolnir. Without deferred immediate mode,
the world stored by the physics engine would need
to be the ultimate source of truth regarding which
snow blocks exist and where they are in space. The
problem with this is that we need to allow the user
to spawn and move blocks within the world while
the blocks still interact with all of the other physics
objects.

With deferred immediate mode, we are able to
add each block and Mjolnir to the physics world
(using the physics guru) every frame, then we wait
for the physics guru to resolve. After the physics
guru has resolved, we are able to render the blocks
and Mjolnir in the proper location. If the user was
holding a block or Mjolnir, the element is declared
in immediate mode as existing at the location of
the user’s controller. This allows interaction between
objects that are held by the user with ones on the
ground.

Although these applications were developed inde-
pendently, and even still exist in separate modules
of our application, deferred immediate mode with
the physics guru allowed us to integrate the two
applications with minimal code changes. The end
result was being able to hit snow blocks with
Mjolnir and vise versa as shown in Figure 2.

(a) Stacking

(b) Mjolnir Hitting Snowblocks

Figure 2: Physics Between Snowblocks and Mjolnir

C. Global User Interface

For our project we also created a module which
allowed the user to turn on and off Let’s Get
Physical and Snowflakes. This module rendered two
boxes, each of which toggles on and off one of the
applications. We stored some minimal state about
whether or not each application is enabled. If the
application is not enabled, its functions are not
called and thus, since we are using immediate mode,
the objects are not rendered. When the application
is toggled back on, the functions for that application
begin to be called again and the objects associated
with that application are rendered again. This toggle
functionality is shown in Figure 3.

(a) Before

(b) After

Figure 3: Application Toggles

This example illustrates the power of immediate
mode. We did not have to go through the entire
scene removing or adding all of the elements asso-
ciated with the toggled application, we merely had
to check a boolean value to determine whether or
not to call each applications’ functions.

D. Control Elements

flight-ui includes a few control UI elements,
notably a one-dimensional slider. This slider com-
ponent can be grabbed, moved, manipulated, and
yanked. Because all UI components use the imme-
diate mode architecture, they are easily associated
with state information, simulation parameters, and
even other interface elements.

Two slider elements are shown in Figure 4. The
first controls the speed of the physics simulation and
the second controls the length of the first. This kind
of interdependence is frustrating and bug-prone in
a retained mode system, but was a trival feature to
add to our application.

(a) Before

(b) After

Figure 4: Interdependent Sliders

E. State Saving

We also implemented the ability to save the state
of the application. Each module of the application
individually defines a serialize and deserialize func-
tion which converts the module state to a JSON
format. When the user exits and reopens the ap-
plication, the state of the application is restored.
By using immediate mode, we are able to minimize

the amount of state that we have to store; we only
need to store enough state to begin calling the same
functions once the application is reopened. im In the
example of Snowflakes we only need to store the
location and rotation of each snow block. Likewise
for Let’s Get Physical; we only need to store the
location and rotation of Mjolnir.

VIII. CONCLUSION

Over the past three months, we have explored
a variety of user interface implementations for vir-
tual reality. While doing so, we have significantly
improved our knowledge of the Rust language and
ecosystem, becoming familiar with virtual reality
tools and libraries. Additionally, we have developed,
almost from scratch, our own toolkit called Flight
which takes a novel approach to user interface and
virtual reality application architecture.

Finally, as a demonstration of what we have
learned through this independent study, we created a
variety of virtual reality environments and combined
them into one cohesive project.

We are excited to improve on the deferred im-
mediate mode approach and revolutionize the way
people interact with computers.

REFERENCES

[1] Joe Durbin. Superhot VR Wins Best Game
At Unity Vision Summit 2017. May 1, 2017.
URL: https://uploadvr.com/superhot-vr-best-
game/.

[2] googlevr. Tilt Brush Toolkit. URL: https : / /
github.com/googlevr/tilt-brush-toolkit.

[3] Grace Murray Hopper. Information Week
Interview. Mar. 9, 1987. URL: https : / /
quoteinvestigator. com/2014 /11 /27 /always-
done/.

[4] IDC. Worldwide Revenues for Augmented and
Virtual Reality Forecast to Reach $162 Bil-
lion in 2020, According to IDC. Aug. 15,
2016. URL: https : / / www. idc . com / getdoc .
jsp?containerId=prUS41676216.

[5] Microsoft. Retained Mode Versus Immediate
Mode. URL: https://msdn.microsoft.com/en-
us/library/windows/desktop/ff684178(v=vs.
85).aspx.

[6] Kevin Ngo. aframe-react. Aug. 31, 2017.
URL: https : / /github.com/ngokevin /aframe-
react.

[7] Kevin Ngo. Build the Virtual Reality Web
with A-Frame Mozilla Hacks - the Web
developer blog. Mar. 3, 2016. URL: https://
hacks.mozilla.org/2016/03/build-the-virtual-
reality-web-with-a-frame/.

[8] The Importance of Frame Rates. URL: https://
help.irisvr.com/hc/en-us/articles/215884547-
The-Importance-of-Frame-Rates.

[9] Unity. 2015 Unity Awards Winners. URL:
https://unityweb.unity3d.com/awards/2015/
winners.

[10] Alexandre Wimmers et al. Natural User In-
terface and Virtual Reality Integration in
Video Games. Mar. 31, 2015. URL: http : / /
csiflabs.cs.ucdavis.edu/~cs193/cs193_2015/
23_design.pdf.

