PHGN 422: Nuclear Physics
Lecture 17: γ Decay

Prof. Kyle Leach
Last Class...

- β decay converts a proton to a neutron (or vice versa) within a bound nucleus.
- That process is mediated by the weak interaction.
- β^\pm are three body decays, and EC is a two-body decay.
- Fermi theory of beta decay allowed us to estimate the decay rates from Fermi’s golden rule.

- Assignment 3 is now online!
- Topic selection on my door
γ Decay

- γ decay is an *electromagnetic* process where the nucleus decreases in excitation energy, but does not change proton or neutron numbers.

- This decay process only involves the emission of photons.
The Spectrum of Electromagnetic Radiation

- **Increasing Frequency (ν)**
 - γ rays
 - X rays
 - UV
 - IR
 - Microwave
 - FM Radio waves
 - AM Radio waves
 - Long radio waves

- **Increasing Wavelength (λ)**
 - Visible spectrum
 - Increasing Wavelength (λ) in nm
\(\gamma \) Decay

There are only two-bodies in the final state for \(\gamma \) decay:

\[
\frac{A}{Z} X_N^* \rightarrow \frac{A}{Z} X_N^{(*)} + \gamma
\]
\(\gamma \) Decay in a Nutshell

- The photon emission of the nucleus essentially results from a re-ordering of nucleons within the shells:

Source: Krane, Fig. 5.11
 Decay in a Nutshell

- This re-ordering often follows α or β decay, and moves the system into a more energetically favourable state:
Classical Electrodynamics

First let’s think of this in broader terms:

- The nucleus is a collection of moving charges, which can induce magnetic/electric fields
Classical Electrodynamics

First let’s think of this in broader terms:

- The nucleus is a collection of moving charges, which can induce magnetic/electric fields

- The power radiated into a small area element is proportional to $\sin^2(\theta)$
Classical Electrodynamics

First let’s think of this in broader terms:

- The nucleus is a collection of moving charges, which can induce magnetic/electric fields.

- The power radiated into a small area element is proportional to $\sin^2(\theta)$.

- The average power radiated for an electric dipole is:
Classical Electrodynamics

First let’s think of this in broader terms:

- The nucleus is a collection of moving charges, which can induce magnetic/electric fields
- The power radiated into a small area element is proportional to $\sin^2(\theta)$
- The average power radiated for an electric dipole is:

$$P = \frac{1}{12\pi\epsilon_0} \frac{\omega^4}{c^3} d^2$$
Classical Electrodynamics

First let’s think of this in broader terms:

- The nucleus is a collection of moving charges, which can induce magnetic/electric fields

- The power radiated into a small area element is proportional to $\sin^2(\theta)$

- The average power radiated for an electric dipole is:

$$P = \frac{1}{12\pi \varepsilon_0} \frac{\omega^4}{c^3} d^2$$

- For a magnetic dipole is:
Classical Electrodynamics

First let’s think of this in broader terms:

- The nucleus is a collection of moving charges, which can induce magnetic/electric fields
- The power radiated into a small area element is proportional to $\sin^2(\theta)$
- The average power radiated for an electric dipole is:

\[P = \frac{1}{12\pi\varepsilon_0} \frac{\omega^4}{c^3} d^2 \]

- For a magnetic dipole is:

\[P = \frac{1}{12\pi\varepsilon_0} \frac{\omega^4}{c^5} \mu^2 \]
Electric/Magnetic Dipoles

Electric and magnetic dipole fields have opposite parity: Magnetic dipoles have even parity, and electric dipole fields have odd parity.

\[\pi(ML) = (-1)^{L+1} \text{ and } \pi(EL) = (-1)^L \]
Higher Order Multipoles

It is also possible to describe the angular distribution of the radiation field as a function of the *multipole order* using Legendre polynomials. So, as a refresher:

- L: The index of radiation
 - 2^L: The multipole order of the radiation
- $L = 1 \rightarrow$ Dipole
 - $L = 2 \rightarrow$ Quadrupole
 - $L = 3 \rightarrow$ Octopole
 -
- The associated Legendre polynomials $P_{2L}(\cos(\theta))$ are:
 - For $L = 1$: $P_2 = \frac{1}{2}(3\cos^2(\theta) - 1)$
 - For $L = 2$: $P_4 = \frac{1}{8}(35\cos^4(\theta) - 30\cos^2(\theta) + 3)$
 - etc....
Classical to Quantum Electrodynamics

Nuclei are (of course) quantum mechanical object. So, we need to adjust our theory to properly describe γ emission from nuclear decay. How do we do this?

- First, we need to quantize the electromagnetic field. We first start by replacing our electromagnetic moments by the relevant electromagnetic operators:

$$m(\sigma L) \rightarrow m_{fi}(\sigma L)$$

Where $m_{fi}(\sigma L) = \int \psi_f^* \, m(\sigma L) \, \psi_i \, dV$

- But we’ve done this before! Let’s head to the chalkboard again...
Electric Transitions

Electric Transition Probability

\[\lambda(EL) = \frac{8\pi(L+1)}{L[(2L+1)!!]^2} \frac{e^2}{4\pi\epsilon_0\hbar c} \left(\frac{E}{\hbar c} \right)^{2L+1} \left(\frac{3}{L+3} \right)^2 cR^{2L} \]

Where \(R = r_0a^{1/3} \), as usual. From here, we can now make some estimates for the various multipoles:

\[\lambda(E1) = 1.0 \times 10^{14} A^{2/3} E^3 \]
(1)

\[\lambda(E2) = 7.3 \times 10^7 A^{4/3} E^5 \]
(2)

\[\lambda(E3) = 3.4 \times 10^1 A^2 E^7 \]
(3)

\[\lambda(E4) = 1.1 \times 10^{-5} A^{8/3} E^9 \]
(4)

where \(\lambda \) is in \(s^{-1} \) and \(E \) is in MeV.
Magnetic Transitions

Magnetic Transition Probability

\[\lambda(ML) = \frac{80\pi(L+1)}{L[(2L+1)!!]} \left(\frac{\hbar}{m_pc} \right)^2 \frac{e^2}{4\pi\epsilon_0\hbar c} \left(\frac{E}{\hbar c} \right)^{2L+1} \left(\frac{3}{L+2} \right)^2 cR^{2L-2} \]

Therefore, the magnetic multipole estimates are:

\[\lambda(M1) = 5.6 \times 10^{13} E^3 \]
\[\lambda(M2) = 3.5 \times 10^7 A^{2/3} E^5 \]
\[\lambda(M3) = 1.6 \times 10^1 A^{4/3} E^7 \]
\[\lambda(M4) = 4.5 \times 10^{-6} A^2 E^9 \]

where \(\lambda \) is in \(s^{-1} \) and \(E \) is in MeV.
The Weisskopf Estimates

We have made the assumption here that only a single particle (proton) changing states in the shell-model is responsible for the de-excitation via γ decay.

Electric Transitions

\[
\begin{align*}
\lambda(E1) &= 1.0 \times 10^{14} A^{2/3} E^3 \\
\lambda(E2) &= 7.3 \times 10^7 A^{4/3} E^5 \\
\lambda(E3) &= 3.4 \times 10^1 A^2 E^7 \\
\lambda(E4) &= 1.1 \times 10^{-5} A^{8/3} E^9
\end{align*}
\]

Magnetic Transitions

\[
\begin{align*}
\lambda(M1) &= 5.6 \times 10^{13} E^3 \\
\lambda(M2) &= 3.5 \times 10^7 A^{2/3} E^5 \\
\lambda(M3) &= 1.6 \times 10^1 A^{4/3} E^7 \\
\lambda(M4) &= 4.5 \times 10^{-6} A^2 E^9
\end{align*}
\]

These estimates (for both ML and EL) are known as the *Weisskopf Estimates*. What can we learn from these?
Interpreting the Weisskopf Estimates

The Weisskopf estimates are only intended to be a comparative guideline, and are not meant to be exact representations of all cases (remember, we have removed our dependence on the nuclear structure). So, how do we actually interpret a comparison between these estimates, and what we would observe experimentally (the transition rate):

\[\lambda(\sigma L)_{\text{Exp.}} \ll \lambda(\sigma L)_{\text{Weiss.}}. \]

A poor overlap between \(\psi_i \) and \(\psi_f \) which decreases the probability for the transition to occur.

\[\lambda(\sigma L)_{\text{Exp.}} \gg \lambda(\sigma L)_{\text{Weiss.}}. \]

More than one single particle contributes to the decay, thus increasing the probability for the transition.
Angular Momentum in γ Decay

- The photon is a spin-1 Boson.
Angular Momentum in γ Decay

- The photon is a spin-1 Boson.

- Like α decay and β decay the emitted γ can carry away units of angular momentum L, which has given us the different multipolarities for the transitions described above.
Angular Momentum in γ Decay

- The photon is a spin-1 Boson.

- Like α decay and β decay the emitted γ can carry away units of angular momentum L, which has given us the different multipolarities for the transitions described above.

For orbital angular momentum, we can have values $L = 0, 1, 2, 3...$ that correspond to our multipolarity.
Angular Momentum in γ Decay

- The photon is a spin-1 Boson.

- Like α decay and β decay the emitted γ can carry away units of angular momentum L, which has given us the different multipolarities for the transitions described above.

 For orbital angular momentum, we can have values $L = 0, 1, 2, 3...$ that correspond to our multipolarity.

- Therefore, our selection rule is:

 $$|J_i - J_f| \leq L \leq |J_i + J_f|$$

Let’s head to the chalkboard for an example...
Internal Conversion

Each of the above cases were for $J_i \neq J_f$, but what about $J_i = J_f$?
Internal Conversion

Each of the above cases were for \(J_i \neq J_f \), but what about \(J_i = J_f \)?

There are no \(L = 0 \) photons! So what about \(0 \to 0 \) transitions within the nucleus? Do they occur?
Each of the above cases were for $J_i \neq J_f$, but what about $J_i = J_f$?

There are no $L = 0$ photons! So what about $0 \rightarrow 0$ transitions within the nucleus? Do they occur?

Yes!, but they cannot decay by photon emission....
Internal Conversion
Each of the above cases were for $J_i \neq J_f$, but what about $J_i = J_f$?

There are no $L = 0$ photons! So what about $0 \rightarrow 0$ transitions within the nucleus? Do they occur?
Yes!, but they cannot decay by photon emission.

- The decrease in energy from state $i \rightarrow f$ can instead "kick" an electron out of the atom
- This process is called *internal conversion*
- In general, this process competes with γ decay..
- However, for $0 \rightarrow 0$ transitions, it is the only possible decay mode

We won’t cover IC any further, but see Krane 10.6 for a detailed discussion.
Next Week...

Reading Before Next Class

- Chapter 7.1 in Krane

Next Class Topics

- Rutherford scattering and introduction to nuclear reactions
- Radiation interaction with matter