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XII.  ELECTRONIC PROPERTIES II (DRAFT) 

12.1 ELECTRON-HOLE EQUILIBRIA 

A quantitative description for the electronic properties of semiconductors demands that we 

know the density of charge carriers—holes and electrons—resulting from doping.   This is just 

another example of a chemical equilibrium.   

Holes and electrons will come to equilibrium when the number of electrons being excited to 

the conduction band is equal to the number of electrons and holes that recombine, i.e., when the 

rate of excitation is equal to the rate of recombination. The rate of excitation is given, of course, 

by the Boltzmann equation as, 

𝒑↑ = 𝑨	𝒆'
()
𝒌	𝑻 

 
where 𝒑↑	is the probability of exciting a silicon electron across the energy gap of 𝑬𝒈.  The rate at 

which this process will occur we denote as  𝑹↑ and note that it will be proportional to the product 

of the number of Si electrons available for excitation,	𝑵𝑺𝒊	 (usually expressed as the number per 

cubic centimeter) times the probability of an excitation.  Hence,  

𝑹↑ 	∝ 𝑵𝑺𝒊	𝒑↑ = 𝑵𝑺𝒊	𝑨	𝒆
'
()
𝒌	𝑻 = 	𝑵𝑺𝒊	𝑲′(𝑻)	 

	 
where 𝑲′(𝑻)	is a function that depends only on temperature.  

The rate of recombination, 𝑹↓, will be proportional to the product of the number of electrons 

in the conduction band, 𝑵𝒆, with the number of hole carriers in the valence band, 𝑵𝒉, times the 

probability of recombination, 𝒑↓.  This latter term is once again a constant function that depends 

only on temperature, which gives, 

𝑹↑ ∝ 	𝑵𝒆	𝑵𝒉	𝒑↑ = 	𝑵𝒆	𝑵𝒉	𝒌′(𝑻) 

At equilibrium, the rate of excitation will equal the rate of recombination and hence it is easy 

to show that, 

𝑵𝒆	𝑵𝒉 	=
𝑵𝑺𝒊	𝑲9(𝑻)
𝒌9(𝑻)

= 𝑲(𝑻). 

Note that because 𝑵𝑺𝒊	 is a constant function that depends only on the element and its crystal 

structure, the product of the number of electron carriers with the number of hole carriers is a 

temperature dependent constant.  For silicon at room temperature 𝑲(𝑻) is equal to 1020 cm-6.  
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𝑲(𝑻) is the equilibrium constant discussed in Chapter 4.  In fact, we could have come to the 

same conclusion by writing the excitation to create a hole and an electron pair as a chemical 

equation, 

𝑏𝑜𝑛𝑑	 ⇌ ℎ + 𝑒 

and then applying equation 4-8.  

Nonetheless, we may now assess the effect of doping on the concentration of electron and 

hole carriers.  In an intrinsic semiconductor, the concentration of holes and electrons must be 

equal, so  𝑵𝒆 = 	𝑵𝒉 = 𝑵 = 1010 cm-3.  Though this may seem like a large number of carriers, 

there are 5 x 1022 silicon atoms per cm3 in crystalline silicon.  So, an electron from 

approximately one in a trillion silicon atoms is excited and moving in the conduction band.  If we 

were to dope the silicon to make it p-type by adding 1017 boron atom per cm3, every boron atom 

would produce one hole and hence the concentration of holes would be 1017 and the number of 

electron carriers is simply computed as 103 per cm3.  Even at 1017 doping there would be a hole 

on fewer than one in 10,000 silicon atoms and less than one in 1019 silicon atoms would host a 

conduction electron.   

  

12-2 THE FERMI ENERGY 

All atoms, molecules and solids have a tendency to attract electrons and become charged.  

The property measuring this tendency is referred to as electronegativity or equivalently electron 

chemical potential. You may have 

seen tabulated values for the 

electronegativity of the atoms of 

the period table.   The 

electronegativity of molecules and 

solids is controlled by a weighted 

average of the occupied and 

unoccupied orbitals, or bands in 

the case of a solid. This weighted 

average is expressed as an energy 

called the Fermi energy, Ef.  For 

example, Figure 12-1 shows the position of the Fermi energy in a metal as well as in an intrinsic, 

 
 Fig 12-1 The fermi energy for a metal and an intrinsic, p-type and 
n-type semiconductor 
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p-type and n-type semiconductor. For the metal the Ef marks the dividing point between the 

occupied and unoccupied band states.  For an intrinsic semiconductor where the number of 

thermally excited holes and electrons must be equal, the Fermi energy passes through the middle 

of the energy gap.  As holes are added, which remove electrons from the conduction band, the 

Fermi energy falls toward the valence band edge.  Conversely when doped n-type by adding more 

electrons to the conduction band the Fermi energy rises toward the conduction band edge.  The 

important point here is that through doping we can control the position of the Fermi energy.  Let’s 

see why this is so important. 

For two materials, the one with a lower Fermi energy attracts electrons more strongly, 

becoming negatively charged while leaving the other material with a positive charge.  As electrons 

move between the materials, on the material losing electrons the bands shift down in energy along 

with the Fermi energy while the bands and Fermi energy of the material gaining electrons shift up 

in energy.  When their Fermi energies become equal the electron transfer stops.  Compared to the 

total number of electrons in these materials, the number of electrons transferred is very small.    

You have probably experienced the results of this electron transfer in the form of a shock 

when touching someone or something after shuffling your feet along a carpeted floor.  Electrons 

are transferred from the carpet to you and then to the person or thing you touch.  The driving force 

here is that your Fermi energy is lower than that of the carpet.  You become negatively charged, 

raising your Fermi energy and upon touching someone with a lower Fermi energy those electrons 

are discharged.  This is the same process that drives lightning strikes and despite being a common 

phenomenon is poorly understood.  

We can control charge transfer between two semiconductors at their interface by adjusting 

their relative Fermi energies as is shown in 

Figure 12-2.  We imagine producing an 

interface by bringing a p-and n-type material 

into contact (this is not how it is actually 

done).  A very small number of electrons 

will be transferred a short distance across the 

interface from the n-type to the p-type 

material.  As the electrons are transferred the  

bands of the n-type material will shift down 

 
Fig 12-2 The flat band diagram at resulting at the 
interface between a p- and n-type semiconductor  
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relative to the p-type semiconductor until their Fermi energies are equal, at which point there will 

be no further charge transfer across the interface.   

The diagram on the right of Figure 12-2 represents the distribution and the energies of the 

electrons and holes near a p-n junction. Note that for electrons to move from right to left in the 

conduction band they must overcome a small step in potential denoted as VS, which is typically 

reported in volts. Though there is no barrier for the movement of electrons from left to right, there 

are very few electrons to the left of the barrier. This barrier is the key to rectification.  The energy 

required for one electron to overcome this barrier is eVS where e is of course the charge on an 

electron. 

 

12-3 THE EFFECT OF BIASING A P-N JUNCTION 

Now consider what happens to the barrier to electron motion when the junction is biased by 

imposing an electric potential 

difference at its two ends, i.e., 

hooking it up to a battery. The 

possibilities are picture in Figure 12-

3.  Shown at the center of this figure 

is the neutral situation in which there 

is no voltage across the p-n junction 

and the barrier energy is simply eVS.  

On the left is shown the situation of 

a reverse bias where electrons may lower their potential by flowing to the right of the junction.  In 

this case, the barrier increases due to the loss of a tiny number of electrons to the right. If the bias 

voltage is VB then the potential barrier due to the bias is now VS + |Vb| and the energy required for 

one electron to climb this barrier is e(VS + |Vb|).  Pictured to the right is the forward bias situation.  

Here higher potential electrons are injected from the right and as a consequence the barrier height 

decreases.  Now the potential barrier due to the bias is VS - |Vb| and the energy required for one 

electron to climb this barrier is e(VS - |Vb|). Define the reverse bias as a negative voltage then for 

both forward and reverse bias the energy to surmount the barrier will be given by e(VS – Vb). 

 

 

 
Fig. 12-3 The change in the barrier to electron motion due to bias. 
Note that Eg is not changed by the bias 
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12-3 THE CURRENT ACROSS A P-N JUNCTION 

All that remains to do is to calculate the probability that 

an electron can get over the barrier in the neutral, forward and 

revers bias directions.  Let’s begin with the neutral case.  Figure 

12-4 depicts the flat band diagram for an unbiased p-n junction 

along with arrows indicating the directions and magnitudes of 

the hole and electron currents. We will consider only the 

electron current, though what follows pertains equally to the 

hole current.) 

 Because there is some probability that a conduction 

electron may surmount the barrier, there must be an electron 

current to the left, IL.  At the same time, there is some 

probability that electron carriers from the p-side (left) of the 

junction will descend the barrier and hence there is an electron current to the right, IR.  However, 

there can be no net current and hence |IL| = |IR|, which we will designate as I0.   

It is straightforward to compute I0.  The number of electrons surmounting the barrier is just 

the product of the number of conduction elections in the n-type material (a number of the order of 

1017 cm-3) with the probability of a transition over the barrier as given by Boltzmann’s equation, 

i.e. 

𝐼C = 	𝑁E	𝐴𝑒
'EGHIJ  

When biased, the barrier to electron motion 

changes as depicted in Figure 12-5, with the 

barrier to electron motion increasing for reveres 

bias and decreasing for forward bias. The 

magnitudes of IL  changes correspondingly, 

increasing for forward bias and decreasing for 

revers bias.  Recalling that the reverse bias voltage 

is taken as negative, for both cases the current is 

given as, 

 

 
Fig. 12-4 

 
Fig. 12-5  
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𝐼K = 	𝑁E	𝐴𝑒
'E GH'GL

IJ = 	𝑁E	𝐴𝑒
'EGHIJ 𝑒

EGL
IJ = 𝐼C𝑒

EGL
IJ  

While 𝐼K is dependent on the bias, because there is no change in the barrier to IR, its value 

remains unchanged at Io. Thus, the total measurable current is, 

𝐼J = 	 𝐼K −	𝐼C = 	 𝐼C𝑒
EGL
IJ −	𝐼C. 

Leading to our desired result, 

𝐼J = 		 𝐼C 𝑒-
EGL
IJ -	1 . 

Note that for a large reverse bias (Vb  << 0) 𝐼J asymptotically approaches 𝐼C.  Under forward 

bias the current increases exponentially.  This is exactly the current as a function of voltage 

behavior of a rectifier picture in Figure 11-1.  
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