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VI.  THE STRUCTURE OF SOLIDS  

6-1 MOTIVATION 

We have come a great distance in the past weeks.  If everything is going according to plan, 

you are beginning to picture engineering as the design of energy distribution and storage systems.  

(If I had told you that on the first day of class, you would have thought me nuts, and maybe you 

still do.)  Of course, these systems are constrained by the two great laws of Nature.  The first tells 

us that energy is conserved and is stored only in the motion of atoms, called heat, or in the 

arrangement of atoms, called work.  The second tells us that Nature prefers to distribute energy in 

a particular fashion, which is mathematically expressed in the form of the Boltzmann distribution.  

In our labs and readings, we have found that some materials are able to store energy as work 

more successfully than others.  In particular, tough materials can store a great deal of energy 

through the rearrangement of atoms to produce what we call deformation. On the other hand, the 

atoms of brittle materials do not easily undergo rearrangement.    

We don’t yet know, however, what about the arrangement of atoms in tough material allows 

for the storage of energy as work, and how this arrangement differs from that of atoms in a brittle 

material.  We will now turn our attention to this puzzle.  As you proceed through labs and the 

reading, put yourself in the position of the scientists and engineers of the early 1900s who were 

wrestling with this same question.  They found the puzzle’s solution; see if you can do the same.   

6-2 CRYSTALS 

The structure of solids can be broadly classified as crystalline or amorphous.  By way of 

analogy, an amorphous material is to a crystal as a forest is to a Christmas tree farm. It is very hard 

to become lost in a Christmas tree farm because there are obvious directions. If you were dropped 

into a large Christmas tree farm, just walk along the furrows and eventually you will emerge.  But 

in a forest, there are no obvious direction, which is why people get lost and end up walking in 

circles.  On the other hand, while it is fun to “go for a walk in the forest” a walk through a Christmas 

tree farm is boring.  The Christmas tree farm looks the same no matter where you are, while every 

point in a forest is subtly different.  In a similar way, crystalline materials are marked by aligned 

repeating patterns.  An amorphous material does not possess aligned repeating units.  Window 

glass is an example of an amorphous material, but by and large, most engineering materials are 

crystalline.  And an important consideration from our perspective is that the atoms comprising the 
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perfect crystal have their lowest possible potential energy.  Hence, energy cannot be extracted from 

a flawless crystal only added.1   

6-2 TWO DIMENSIONAL CRYSTALS 

We will begin by looking at crystals with 2-dimensional examples since a number of 

conceptual advantages exist in this dimension—not the least of which is that it is much easier to 

draw and visualize in 2-D.  After we have mastered the basics, we will move on to 3-D crystals. 

There is a specific vocabulary used to describe crystals.  There are volumes and volumes of 

books—and in these days websites and software—devoted to nothing more than categorizing 

crystal structures.  If you have some combination of elements and want to know how these 

elements are arranged, more than likely that structure is recorded somewhere.  And when found, 

the information will be conveyed in a tabular form consisting of two parts: information about the 

crystal lattice, and the motif or basis associated with this lattice. 

A lattice is a purely mathematical construct.  It is nothing more than an infinite collection of 

coordinates called lattice points. In 2-D these coordinates are constructed from two non-collinear 

lattice vectors, which we will denote as 𝑎 and 𝑏.  We could specify these lattice vectors in a 

number of ways, say with respect to some Cartesian coordinate system.  However, the most general 

way to describe them is in terms of their lengths and the angle between them.   

We can build the lattice by picking an arbitrary starting point p0. Then an infinite array of 

lattice points, pnm, is generated through the relationship pnm = p0 + n 𝑎 + m 𝑏 where n and m are 

integers.  Another way to say this is that if you are standing at any point in a crystal lattice and you 

walk some integral number of 𝑎  vectors 

followed by some integral number of 𝑏 vectors, 

you will find yourself at a place where the 

arrangement of points indistinguishable from 

your starting point.  Remember this is an 

idealized infinite lattice and hence there are no 

edges.  

																																																								
1	This	is	actually	a	rough	statement	of	the	third	law	of	thermodynamics	
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By way of illustration, shown in Figure 6-1 are the lattice vectors 𝑎 and 𝑏 and the angle a 

between them. These vectors together with the point p0 define a lattice.  Note that this collection 

of points is just that, a collection of points; they have no physicality.  The lattice vectors also have 

no physicality.  Thus, the lattice is not the lines and the dots.   

The shaded region shown in the Figure 6-1 is known as a unit cell.  It is the parallelogram 

defined by the lattice vectors. Think of the unit cell as one of an infinite number of identical regions 

that could be used to tile a floor of infinite extent.  

Now, we transform the lattice into a crystal by associating with each lattice point a motif or 

basis.  In our case, the motif will be made up of atoms, but it could be anything.  A wallpaper 

designer might associate some floral design with each point.  I like to think of lattice points as the 

places where Maxwell’s Demon can hang 

atoms as if decorating a Christmas tree, 

which is why I chose red and green 

“atoms” for Figure 6-2.  Here Maxwell’s 

demon has “hung” from each lattice point 

a red and a green atom to produce the 

crystal.  Note that he did not place an atom 

directly on each point but hung a pair of atoms some distance from each point.  The hanger he used 

caused the atoms to be displaced from the lattice point.  Even though you will hear this in future 

classes, remember, a lattice point is not an atom.  

The periodicity of a crystal is easy to describe exactly.  One simply needs to specify the 

length of the two basis vectors and the angle between them and then the motif that will be 

associated with each lattice point.  Pretty neat.  

	
	

Fig 6-2 
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Yet there is one more step in simplification.  All 2D unit cells are parallelograms, but special 

parallelograms also exist.  In the case of 2-D lattices, in addition to the general parallelogram, four 

special parallelograms arise where there are 

particular relationships between 𝑎 , 𝑏 and a.  The 

general parallelogram 2D lattice exists when |𝑎| ≠

	|𝑏| and a≠ 90o, and is called an oblique lattice as in 

Figure 6-1.  The other four special parallelograms 

are the rectangular lattice (|𝑎| ≠ 𝑏  and a= 90o), 

square (|𝑎| = 	 |𝑏| and a= 90o), hexagonal (|𝑎| =

|𝑏| and a= 120o), and centered rectangular (|𝑎| =

	|𝑏| and a≠ 90o or 60o).  The general parallelogram plus the four special parallelograms form the 

five 2D crystal classes. 

Notice that the hexagonal and centered rectangular lattices take their names from the way 

the unit cells pack together to give additional symmetry.  Recognize the unit cell of the hexagonal 

lattice is not a hexagon and the unit cell of the centered rectangle is not a rectangle.  

You may be wondering what is gained by distinguishing the special parallelograms from the 

general.  Be reassured, a very good reason exists for this.  Imagine that we were to cut a specimen 

from the crystal shown in Figure 6-2 and measure its strength and modulus (stiffness) while 

applying stress in the 𝑎 direction and then again in 𝑏 direction.  Would you expect that we would 

get the same result for both measurements?  Obviously not.  However, if we were to make the 

same set of measurements on a crystal with a square lattice, we would get the same answers.  The 

point is that a crystal’s properties are intimately tied to the symmetry of the lattice.  The square 

lattice possesses a symmetry that the oblique lattice lacks.  Its structure is indistinguishable when 

rotated 90o.  While perhaps not immediately apparent, this symmetry means that the modulus of 

the crystal will be the same in all directions—not just when pulling along the 𝑎 and 𝑏 directions 

but when pulling in any direction.  This is an example of an isotropic property, i.e., one that is the 

same in all directions. Materials with isotropic properties are desirable for many engineering 

applications.  In turn, these properties are often a consequence of crystal structure.    
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6-3 DEFECTS IN CRYSTALS: A QUICK LOOK 

Above, we discussed a perfect crystal. These structures are in their ground state 

arrangement—its lowest potential energy.  Yet, if energy is to be stored in a crystal as work, it 

must be possible to “slightly” rearrange the crystal’s atoms.  So, many structures of higher energy 

exist in which the crystalline structure is interrupted by defects. And such defects are responsible 

for many materials properties.  (You should be on the lookout for the defect responsible for 

toughness). As a result, much of materials science is concerned with developing processes to 

control defects.   

There are four types of defects classified by extent (shape and size): point defects, line 

defects, surface and boundary defects, and bulk defects.   

Though there are several different types of point defects, in lab you may observe a type 

called a vacancy.  Vacancies are produced when an atom is missing from the position it should 

occupy—leaving an empty space or a hole in the crystal.  Point defects play an important role in 

determining electronic and optical properties of materials.  

Also in lab, you may observe grain boundaries.  These boundary defects mark a change in 

the orientation of lattice vectors.  In 2D, grain boundaries appear as lines, but in real 3D crystals, 

they are surface defects that surround individual single crystals called grains.  Most, though not 

all, technologically interesting crystalline materials are polycrystalline with the size of the grains 

being important in determining mechanical properties.  

In lab, you may observe dislocations.  Dislocations are examples of line defects.  These are 

a very important class of defect as they move in response to a force and allow whole planes of 

atoms to shift positions.  

Finally, there is a class of defects called bulk defects.  In these regions, an entirely different 

structure extends over significant distances.  Voids are a common bulk defect that significantly 

impacts the strength of a material. 
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6-4 THREE DIMENSIONAL LATTICES 

So far, we have talked only about patterns in two dimensions. What we are really interested 

in, however, are patterns of atoms in three dimensions. First, it is clear that a three-dimensional 

crystal will have three primitive vectors, 𝑎, 𝑏, 

and 𝑐, whose orientation relative to each other 

may be specified by three angle as shown in 

Figure 6-4.   The resulting three-dimensional 

primitive unit cell will form a parallelepiped.  

Just as with the 2D crystals, where there are 

special parallelograms, in 3D crystals there are 

special parallelepipeds. The most general 

parallelepiped is characterized by three 

primitive vectors (𝑎 , 𝑏 , and 𝑐 ) of different 

lengths and inclined to each other at three 

different angles.  The resulting lattice is called 

triclinic.  When all the basis vectors are of the 

same length we have a trigonal lattice.  If one of 

the primitive vectors, say 𝑐, is at right angles to 

the other two, we get a monoclinic unit cell.  The hexagonal lattice is produced when, in addition 

to being perpendicular to 𝑐 , 𝑎  and 𝑏  are of equal length and the angle between them is 60o.   

Finally, we have the orthorhombic lattices that result when the all three lattice vectors are 

orthogonal to each other.  When, in addition, two or three of the lattice vectors are of equal length, 

the result is a tetragonal or cubic lattice respectively.  That is it; these cells represent all the special 

parallelepipeds and give rises to the seven classes of crystal lattices.  

 

 

 

 

 

 

	
Fig. 6-4. The seven classes of crystal lattices	
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6-5 CUBIC LATTICES 

Just as there are two primitive rectangular 

lattices (rectangular and centered rectangular), 

there are different primitive unit cells 

comprising some of the crystal classes.  We are 

particularly interested in the unit cells that 

comprise the cubic crystal class, of which there 

are three: simple cubic (SC), body-centered 

cubic (BCC) and face-centered cubic (FCC).  

While a primitive unit cell for each of these structures exists, more commonly they are represented 

in terms of their conventional, or cubic unit, cells as shown in Figure 6-5.  

The SC cell can also be identified as a primitive unit cell.  The BCC conventional unit cell 

has an additional lattice point in what is called the cube’s body center.  The FCC conventional unit 

cell contains additional lattice points in the cube faces.   

The BCC and FCC lattices are of particular interest because many engineering materials are 

commonly composed of these lattice structures. Iron, the principal component of steel, is BCC, 

and so is the very hard and dense metal tungsten.  The ductile metals of copper, silver, gold and 

aluminum, which may be drawn easily into wires or hammered into sheets, share the FCC lattice.  

Collectively when we refer to these metals as BCC or FCC, by convention we assume that a single 

atom sits on each lattice point.  However, this is not always the case.  Silicon, which is an important 

component of almost all electronics, has an FCC crystal structure with a two-atom motif.     

6-6 THE HEXAGONAL CLOSE PACKED STRUCTURE 

Another technologically important crystal is 

the hexagonal close packed (HCP) structure.  

Metals like zinc and magnesium share this 

structure.  The HCP structure is built from a 

hexagonal lattice with a two-atom motif as 

pictured in Figure 6-6.  Note that the primitive cell 

is not a hexagonal prism.  The hexagonal symmetry results from the packing of three primitive 

cells.   

	

	
Fig. 6-5. The cubic lattices: a) simple cubic, b) body-
centered cubic and c) face-centered cubic	
	

				 	
Fig. 6-6: left) The HCP primitive unit cell, right) 
Several primitive cells showing hexagonal symmetry  
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6-7 YIELDING AND DEFORMATION 

Now let’s see how energy is stored in metals during deformation. Most of the familiar metals are 

considered tough because one layer of the crystal easily slides over the next. Suppose we look at 

two layers of a crystal subjected to a shear force, as shown in the diagram of Figure 6-7 (a). You 

might at first think the whole layer would resist motion until the force was big enough to push the 

whole layer “over the hump,” so that it shifted 

one notch to the left. Although slipping does 

occur along a plane, it doesn't happen that 

way. What happens is more like one atom 

going at a time; first the atom on the left makes 

its jump, then the next, and so on, as indicated 

in Figure 6-7 (b). In effect, the vacant space 

between two atoms quickly travels to the right, 

with the net result that the whole second layer 

has moved over one atomic spacing. The slipping goes this way because much less energy is 

required to lift one atom at a time over the hump than to lift a whole row. Once enough stress is 

applied to start the process, the rest of movement occurs very fast. The stress at which the slip 

begins is the yield stress we discussed in the last chapter. 

It turns out that in a real crystal, slipping will occur repeatedly at one plane, stop, and then 

start again at some other plane. The details of why it starts and stops are quite mysterious. It is, in 

fact, quite strange that successive regions of slip are often fairly evenly spaced. Figure 6-8 shows 

a photograph of a tiny thin copper crystal 

that has been stretched. You can see the 

various planes where slipping has 

occurred. These are called slip planes.  

The sudden slipping of individual crystal planes is quite apparent if you take a piece of tin 

wire and stretch it while holding it next to your ear. You can hear a rush of “ticks” as the planes 

snap to their new positions, one after the other.  

	
Fig 6-7 Slippage o0f crystal planes 

	
Fig. 6-8 Slip bands in a copper wire 
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The problem of having a “missing” atom in one row is somewhat more difficult than it might 

appear from	 Figure 6-7. When there are more layers, 

the situation must be something like that shown in 

Figure 6-9. Such an imperfection in a crystal is called a 

dislocation. This defect is generated when a metal is 

subjected to stresses greater than the yield stress.  The 

work of deformation is thus stored in these dislocations.  

Once dislocations are produced, they can move 

relatively freely through the crystal. Moreover, the 

gross deformation results from the production of many 

of such dislocations.  

Dislocations can move freely—that is, they 

require little extra energy to move—so long as the rest of the crystal has a perfect lattice. But they 

may get “stuck” if they encounter some other kind of crystalline defect such as a grain boundary. 

If it takes a lot of energy for a dislocation to pass the imperfection, they will stop and instead 

transfer that energy to make another dislocation nearby. This is one of the ways we can increase 

the yield strength of a metal using a process called alloying.  Pure FCC, BCC, or HCP metals are 

quite soft—dislocations are created and move easily--but a small concentration of impurity atoms 

may block the dislocations.  These immobilized dislocations require more force to start moving 

and hence yielding begins at larger stresses.   

As you observed in laboratory, pure copper is very soft, but can be “work-hardened.” This 

is done by hammering on it or bending it back and forth. In this case, many new dislocations of 

various kinds are made, which interfere with one another, cutting down their mobility. In the 

process, the copper was work-hardened and cannot easily be unbent.  A work-hardened metal like 

copper can be made soft again by annealing at a high temperature. The thermal motion of the atoms 

takes them over the energy barrier transforming the metastable dislocation into the lower energy 

crystal.  

 

 

 

	
Fig 6-9 Across section through a dislocation 
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PROBLEMS	FOR	THE	CURIOUS	

	
1) For each pattern, outline the primitive unit cell and identify the lattice type. If you find a 

centered rectangular lattice, indicate BOTH the primitive and the conventional unit cell.   

.	 	 	 		
	

		 	 .	 	 	 	
	

	 	 	 	 	
	
2) Among the 2D lattice types is the centered rectangular lattice, but there is no “centered 

square” lattice or “centered hexagonal” lattice.  Why not?   
 

3) For both the FCC and BCC structures, calculate the lattice constant of the conventional unit 
cell that will result from the packing of atoms of radius r.  
 

4) Journaling activity:   
How do we know the crystal structures of materials?  Who was the first person to 
determine a crystal structure?   (Hint:  this might be a good place to start.  
http://learn.crystallography.org.uk/learn-crystallography/history/.  ) 


