
VIII. INTERATOMIC POTENTIAL

8-1 The charge density and interatomic potentials

In the last chapter we saw that the electron density is responsible for holding atoms

together. In other words, it is the density that creates a potential between the atoms, which

as Feynman said, “attracts [atoms] when they are a little distance apart, but repels [them]

upon being squeezed into one another.” What Feynman is describing is the interatomic

potential. Depending on the exact electron density, this potential can take on different

forms, but they all share the same general features as shown in Figure 1. Each of these

potentials represents some real molecule held together by bonds that we describe as ionic,

covalent, etc., and each has a different set of properties.

FIG. 1: Every electron distribution will give rise to a different interatomic potential and hence different

properties.

At present there is a good deal of research directed toward determine the potential that

will result from a particular charge density, and the properties that result from that potential.

We will come back to this extremely interesting area of research in a subsequent chapter. For

now, however, we want to focus on the properties that can be extracted from the interatomic

potential.

We are aided in this exploration by noting that real interatomic potentials of the type
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picture in Figure 1 can be approximated with a simple algebraic equation of the form:

V (r) =
A

rm
− B

rn
(1)

where A, B, m, and n are adjustable parameters that depend on the electron distribution

and can be varied to give a potential that fairly accurately reproduces the potential of a

real of atoms. We will use to study a common engineering phenomenon–fracture of a brittle

material. We are going to calculate the “theoretical” work of fracture.

8-2 The work of brittle fracture

We will begin by creating a structure made from atoms interacting through an idealized

interatomic potential: a rod with a square cross section of 1 cm on a side and 10 cm long.

This rod is made from long strings of bound atoms running along the length of the rod. In

cross section these strings are arranged on a square lattice 5 Å apart. The atoms interact

through an interatomic potential of the form:

Vm(r) = 51200

(
32

r12
− 1

r6

)
(2)

where r is the distance between bound atoms measured in Å and Vm is in units of kJ/mole.

Graphically the potential has the form shown below.

FIG. 2: The potential energy between pairs of atoms bound by the potential given in Equation 1.
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We will need several bits of information that can be extracted from the potential. The

first is the force versus displacement function, that is the amount of force that must be

exerted to change the distance between the atoms and correspondingly stretch or compress

the rod. This is an easy matter as we know that this force, Fm(r), is given by the derivative

of the potential in the direction of the applied force, i.e. (You should verify this calculation)

Fm(r) =
−∂Vm(r)

∂r
= 51200

(
384

r13
− 6

r7

)
(3)

The units on Fm(r) are kJ/mole/Å (verify that these are units of force).

It is useful to superimpose the plots of Vm(r) and Fm(r), as this will allow us to understand

qualitatively how the energy of bound atoms changes as we imagine pulling them apart or

pushing them together.

FIG. 3: The blue curve is the potential energy as a function of separation (Equation 1) and the dashed

red curve is the force versus separation curve (Equation 2).

First and foremost, we note that the point at which no force is required to maintain a

particular separation corresponds to the minimum of Vm(r). (Can you explain why this is

the case using both mathematical and physical arguments?) This point is the equilibrium

separation of our atoms along the strings–a distance often denoted as r0. We can quickly

find this separation by setting Equation 2 equal to zero and solving for r. You should do

this and verify that r0 = 2 Å.

3



When the atoms are separated by 2 Å they are at the lowest possible energy and we

would like to know what this energy is. To find it all we need do is set r = 2 in Equation

1 giving Vm(2) = −400 kJ/mole. So a pair of atoms separated by 2 Å will have an energy

of -400 kJ/mole. But as we can see from Figure 1, when they are separated by just a few

more Å, their energy is very close to zero. In order to separate these atoms we will have

to add 400 kJ/mole to the system in the form of mechanical work (force acting through a

distance). The work required to rearrange the atoms is called the bond energy or the work

of separation. For any potential, it is given simply as Vm(∞)− Vm(r0). (It is also given by∫∞
r0

Fm(r) dr, can you explain why?) So the bond energy between our atoms is 400 kJ/mole.

Returning now to Figure 2. Note that to push the atoms closer together than 2 Å requires

a negative (compressive) force and to hold them at distances greater than 2 Å requires a

positive (tensile) force. Further, there is a maximum force that we can apply to separate

these atoms. Let’s find the magnitude of this force and the interatomic separation at which

it occurs.

The interatomic separation at the maximum force will correspond to the value of r at

the point of inflection of Vm(r) (explain why this is the case). We find this point by setting

the second derivative of Vm(r) with respect to r equal to zero and solving for r. As a first

step we find the stiffness function, Cm(r), i.e.

Cm(r) =
∂2Vm(r)

∂r2
= 51200

(
4992

r14
− 42

r8

)
(4)

Setting Cm(r) equal to zero and solving for r gives rFmax ≈ 2.217 Å. To get the the magnitude

of the force at this point simply evaluate Equation 2 for r = 2.217 which gives, Fm(2.217) =

Fmax = 538 kJ/mole/Å.

These are strange units so let’s convert them to more traditional units of force, Newtons

(kg m/s2) which gives us 8.93 × 10−9 N/bond. This is equivalent to the force of gravity

acting on an object with a mass of about a microgram. In other words, if we could hang a

microgram mass from one of these bonds, it would stretch the bond from 2 to 2.217 Å.

But how much energy is stored in the bond as it is stretched to this point? This is

given by taking the difference between the potentials at r = r0 and r = rFmax , that is

Vm(rFmax) − Vm(r0) = −314.8 + 400 = 85.2 kJ/mole. With these bond parameters it is an

easy matter to calculate the macroscopic properties of our 10×1×1 cm rod.
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FIG. 4: Imagine pulling on the rod until it breaks. The work of fracture is given only by the energy needed

to rearrange the atoms of the rod

First let’s calculate the work of fracture, that is the amount of energy needed to separate

the rod into two pieces as in the folowing picture.

Recall that the work of a process is nothing more than the energy used to change the

structure and rearrange the atoms. In this case the change in structure amounts to creating

two new surfaces. The matter that has been rearranged is the electrons in the bonds that

held the two sides of the bar together. The energy necessary to break these bonds is given

by the number of bonds × the bond energy. Thus we need the number of bonds broken to

calculate the work of fracture.

As the strings of atoms are 5 Å apart and an Å is equivalent to 10−10 m, along a length

of one meter there will be 1/(5× 10−10) = 2× 109 strings and along a cm there will 2× 107

strings. Obviously, (2× 107)2 or 4× 1014 strings will run through the 1 cm2 cross section of

the rod, which is the same number of bonds that will be broken in separating the two halves

of the rod. Hence, the work of fracture is: 400 ×(4× 1014) = 1.6× 1017 kJ/(mole of bars) =

2.65× 10−4 J/bar (verify the arithmetic). This is a tiny amount of work. It is roughly the

work done in lifting 1 gram 3 cm. How is it possible that this is all the energy necessary to

fracture the rod?

Remember there is another component of energy associated with any process and that

is heat. Let’s see how much heat might be generated in fracturing the bar. For this we

have to imagine the whole process leading up to the fracture, so assume that our bar is
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FIG. 5: Our imagined experimental setup to measure the energy to stretch the rod to its breaking point.

suspended from a very rigid structure on one end and supporting a platform to which we

can add weights on the other end. All of our connections from the bar will be made with

infinitely strong and unstretchable materials.

As we add weights, the atoms in the strings will move apart until the restoring force

between them just balances the force of the weights. This will continue as more weight is

added until the bonds reach their maximum restoring force, add more weight and the force

of the weight will exceed the restoring force of the bonds and the material will break, the

force at this point is a measure of the rod’s “ultimate strength.”

We can calculate the ultimate strength of the rod much as was done in calculating the

fracture energy. We will multiply Fmax for one bond by the number of bonds in the cross

section of the rod: (8.93× 10−9 N/bond)×(4× 1014 bonds) = 3.57× 106 N. The force due to

1 kg on the Earth’s surface is 9.80 N so our rod could support a load of 364,286 kg before

breaking.

Typically, ultimate strength is reported for a standardized cross section of 1 m2 giving

units of N/m2 called Pascals and denoted Pa. In these standardized units our bar has a

“tensile strength” of 3.37×1010 Pa. The tensile strength of the very strongest steel is right

around 5×109 Pa and the strongest known materials, carbon nanotubes, are predicted to

have a tensile strength of 6×1010 Pa. Considering everything, our model is not too bad,

though our numbers are probably a little high for reasons that will become evident.

Now let’s calculated the energy needed to stretch the rod to the breaking point. Again

this is an easy matter. We have already calculated the energy needed to stretch a bond to

rFmax to be 85.2 kJ/mole. Multiply this by the number of stretched bonds and we have the

answer.

The number of stretched bonds will be the total number of bond in the rod. There are
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4×1014 strings of atoms running through the rod and the bonds in each string are 2 Å long.

Hence every 10 cm string will contain 5× 108 bonds. Giving us 2× 1023 bonds in the rod.

And the energy need to stretch the rod to its breaking point is 28.3 kJ

This is remarkable, of the energy put into the rod through the stretching process a

negligible amount went to work, the remainder had to go to heat or to some process that

we have yet to identify.
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