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IX.  ENTROPY  

9-1 STATES AND SYSTEMS 

We learned in Chapter 4 that Nature prescribes a specific energy distribution given 

by the Boltzmann equation:  

𝒑 𝜺𝒐 = 𝑨	𝒆(
)*
𝒌	𝑻																																																 

where 𝒑 𝜺𝒐 	is the probability that a particle will have an energy 𝜺𝒐.  We called Nature’s 

energy preference the second law of thermodynamics. There is, however, a tremendously 

powerful way to think about the second law that follows from the Boltzmann equation and 

that is the topic of this chapter.  Before proceeding however we need to be specific with 

our terminology, which up until now has been a little fuzzy.  Among the terms that demand 

great specificity are state and system. 

We know that energy is conserved and so if we are observing a lone particle that 

interacts with nothing else, its energy must be fixed.  It can neither gain nor lose energy.  

The state of this lone particle—its past and subsequent behavior—is determined by its 

energy.  We say that the particle is in an energy state and often use the Greek letter psi, y, 

with a subscript to denote this energy state. For example, ye  signifies the energy state of a 

particle that possesses energy e.  

Lone particles are not particularly interesting.  We generally want to understand 

systems containing many particles. For the moment, we will confine ourselves to the study 

of isolated systems of particles.  By isolated we mean that there is some boundary (real or 

imagined) around the system, and contained inside are some number of particles that 

cannot change.  In addition, energy can neither enter or leave the system.  Simply, neither 

mass nor energy can cross the boundary. We can approximate an isolated system in a 

laboratory using well insulated flasks or other containers. The universe as a whole is 

thought to be an isolated system, as its mass-energy does not appear to change with time.  

Hence anything that is true for an isolated system is true for the universe.   

Just as we characterize the states of a particle by its energy, we characterize the states 

of a system by its energy.  In analogy to particle states we use YE to represent the state of 

a system with total energy of E.   
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Consider an isolated system containing a mole of interacting particles.  The total 

energy of the system we will call Esys, so the system is in a state designated as YEsys that 

does not change with time.  However, the particles in the system are colliding and 

constantly changing their state.  We can designate the state of one of these particles as y1e, 

where the 1 indicates this is the state of particle 1 with an energy e.  Recall there are a mole 

of particles in this system and therefore we know that the particle energies must sum to the 

system energy, i.e., 

𝐸𝑠𝑦𝑠 = 	 𝜀1
1

 

where the sum runs over all of the particles in the system, from 1 to Avogadro’s number.  

There are an infinite number of ways to distribute the system’s energy among its 

particles so as to satisfy equation 1.  And it should not come as a surprise that Nature picks 

the Boltzmann distribution.  But why?  What is it about this distribution that makes it so 

attractive to Nature?  

9-2 A TWO STATE SYSTEM 

Let’s imagine that we have an isolated system containing a very large number, N, of 

particles.  Each of these particles can be in one of two states A or B with energies eA or eB, 

where eA < eB. Clearly the energy of the system is given by, 

𝐸𝑠𝑦𝑠 = 𝑁3𝜀3 +	𝑁5𝜀5 	= 𝑁(𝑝3	𝜀3 +	𝑝5𝜀5) 

where NA and NB are the number of particles in state A and state B and pA and pB are the 

probabilities of being in state A and B as given by Boltzmann’s equation. 

The system’s minimum energy occurs when all particles are in state A, which 

requires pA = 1 and pB = 0.  Energy can only be added to the system—its temperature 

increased—by increasing the number of particles in state B and hence increasing pB, which 

necessarily requires a decreasing the number of particles in state A and hence a decrease in 

pA.    

As we have done before (you should verify that you can derive this equation), we 

can use Boltzmann’s equation to show that, 

9:
9;
= 	 𝑒(

(=:>=;)
?	@      (1)  
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Only when T = 0 is pB = 0 and as the temperature increases pB increases.  At very high 

temperatures the ratio pB to pA approaches 1.  To summarize: at T = 0 all the particles are 

in state A, as the temperature increases more particles are found in state B. At very high 

temperature, the numbers of particles in state A and state B are nearly equal.  Apparently, 

no matter how hot the system becomes, there will never be more particles in state B than 

in A. 

This may seem counterintuitive, so let’s look at it from another vantage point. At T 

= 0, we are absolutely certain that every particle is in state A.  We call such systems ordered.  

A person who keeps their bedroom orderly is one who knows where everything is.  On the 

other hand, at elevated temperatures, we are less certain in what state a particle will be 

found.  The system is becoming less ordered.  At nearly infinite temperatures, we will be 

maximally uncertain as to a particle’s state.  Such a system is said to be disordered.  (Note 

that a system where pB is greater than pA would be more ordered than the case where pB = 

pA.)  A system where the particles are equally distributed between all possible states is 

maximally disordered. 

We can define a quantity that measures the extent of disorder.  We call this quantity 

entropy, S, and it can be found through the equation, 

𝑆 𝑇 = −𝑘	 𝑝1	ln
1

(𝑝1) 

where the sum is taken over all the states of the system, pi is the probability of being in 

state i and k is the Boltzmann constant.  Note that entropy is a function of temperature.  As 

an example, let’s calculate the entropy of our two-state system at 0 K and as T goes to 

infinity.   

𝑆 0 = −𝑘	 𝑝1	ln
1

𝑝1 = 1 ln 1 + 0	ln 0 = 0 

and 

lim
K→M

𝑆 𝑇 = −𝑘	 𝑝1	ln
1

𝑝1 = −𝑘 N
O
ln N

O
+ N

O
	ln N

O
= 𝑘	ln(2) 

It is not too difficult to show that S(T) reaches it maximum value when all pi are equal.  I 

leave it to interested readers to do so.  

Entropy provides a measure of disorder, a system where S = 0 is totally ordered and 
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the entropy increases in value as system becomes more disordered.  The Boltzmann 

distribution gives the maximum value of entropy for a given temperature.  In a system 

composed of particles that can be in any number of states, at a given temperature the 

probabilities as given by the Boltzmann distribution give the maximum value of entropy.  

In short, Nature want to distribute energy in the most disordered—random—way possible.  

9-3 NEGATIVE TEMPERATURES 

Equation (1) tells us how energy is distributed as a function of temperature.  But we 

can imagine a number of distribution that apparently cannot be realized.  In particular, why 

can’t we put all of the particles of our two-state system into state B?  In fact, there is a 

temperature that would give rise to exactly this distribution.  It is -0 K.  Let’s check.  We 

begin by inverting Equation 1,  

𝑝5
𝑝3

(N
= 	 𝑒(

():();)
Q	K

(N

= 	 𝑒
():();)
Q	K = 		

𝑝3
𝑝5

 

At T= -0 
𝑝3
𝑝5

= 	 𝑒
(():();)

Q	R = 		0 

which is satisfied only if pA = 0 and pB = 1.  The entropy for this state is zero. Meaning it 

is fully ordered, as it must be because all particles must be in state B.  As the temperature 

becomes increasingly negative, the probability of being in state B decreases and hence the 

probability of being in state A increases. At very large negative temperatures the 

probabilities of being in state A and state B are nearly equal and the entropy approaches it 

maximum value.   

 A system at negative temperatures contains more available energy than a system at 

positive temperatures, and at -0 K the system contains the greatest amount of energy 

possible.  Though this may seem contrary from our typical picture of temperature, it makes 

perfect sense from the order-disorder perspective.  The temperature of a system is positive, 

if the entropy increase with addition of energy.  It is negative if the entropy decreases with 

the addition of energy.   So, there must be some relationship between the change in entropy 

of a system, the heat added, and the resultant temperature. We postulate that that relation 

takes the following form, 
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𝑇 = 	
𝑞
∆𝑆	 

which is consistent with what we have discovered about negative temperatures predicted 

by the Boltzmann equation.  If the entropy decreases as heat is added to a system, i.e. ∆𝑆 

is negative, then temperature is negative.   

We have discovered something amazing:  Temperature is not a measure of the 

average kinetic energy of a system, but in fact the change in entropy associated with 

addition of heat energy to the system.  It just so happens that because second law requires 

that entropy of the universe always increases, we only observe positive temperatures. 

However, we can force systems to negative temperatures though they are not stable.  

Given a chance they will increase their entropy while releasing energy.   Lasers are example 

of systems where electrons have been encouraged to be ordered in a high-energy state.  As 

the electrons increase their entropy, they release energy in the form of laser light.  We will 

talk a little more about this in a couple of weeks.  

9-4 FREE ENERGY 

Up to this point we have considered only isolated systems, and in particular the 

universe.  The second law tells us that any spontaneous process (anything that can happen) 

will lead to an increase in the entropy of the universe.  Unfortunately, we cannot make 

measurements on the entirety of the universe, even with a great many graduate students 

working around the clock.  Instead we typically consider a finite piece of the universe and 

ask if a process in that piece of the universe is spontaneous.  In other words, we are looking 

for a statement of the second law that can be applied to these pieces of the universe.  

We start by defining our terms precisely. The universe is thought of as divided in 

two pieces, one of these is our system of interest, which we call the system and the 

remainder of the universe—everything not included in the system—we call the 

surroundings. There is a real or imagined boundary separating the system from the 

surroundings.  Unlike an isolated system, in an open system mass-energy can cross this 

boundary.  Because there can be an exchange of energy with the surroundings, the system 

and surroundings will be in thermal equilibrium, i.e., will be at the same temperature T. 

Additionally because energy can move across the boundary, the entropy change associated 

with any process occurring in the system may appear both in the surroundings and in the 
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system.  We may describe this fact mathematically as:  

 ∆𝑆UV1W = 	∆𝑆XUY +	∆𝑆XZX (2)  

where the subscripts denote universe, surroundings, and system respectively.  

Now, ∆𝑆XUY is the result of heat crossing the boundary into the surrounding, or 

perhaps coming from the surroundings into the system.  Nonetheless, the heat appearing in 

the surroundings must be equal in magnitude but opposite in sign to the heat leaving the 

system, 

 	𝑞XUY = 	−𝑞XZX. (3)  

We argued above that, 

 ∆𝑆 = 	 \
K
 (4)  

With equations 3 and 4, we may rewrite equation 2 as, 

 ∆𝑆UV1W = 	
(\]^]
K

+	∆𝑆XZX (5)  

Equation 5 is remarkable.  The entropy change of the universe is expressed in terms 

of purely system variables.  Therfore for a system process to be spontaneous, the right hand 

side of equation 5 must be greater than zero!  Let’s manipulate this equation just a bit by 

multiplying through by –T.  Then, 

 −𝑇	∆𝑆UV1W = 	𝑞XZX −	𝑇	∆𝑆XZX (6)  

This quantity is called free energy.  For a spontaneous process the change in free 

energy must be less than zero (Why?).   

We can make a further simplification to this expression by noting that 𝑞XZX  

depends on the nature of the boundary around our system.  If the boundary is rigid, then 

we say that the process is occurring at constant volume and 𝑞XZX = 	∆𝐸.  If the boundary 

can move, then we say that the process is occurring at constant pressure and 𝑞XZX = 	∆𝐻, 

where H is a quantity a called enthalpy.  (Why is 𝑞XZX different if the process is carried 

out at constant pressure or constant volume?) 

We now define two kinds of free energy change, Gibbs free energy,  

∆𝐺	 ≡ 		 ∆𝐻 − 	𝑇∆𝑆 

and Helmholtz free energy, 
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∆𝐴	 ≡ 		 ∆𝐻 − 	𝑇∆𝑆 

We have dropped the sys suffix because all of our variables are now system variable. A 

process occurring at constant pressure will be spontaneous if ∆𝑮 < 0. And a process 

occurring at constant volume will be spontaneous if ∆𝑨 < 0.   

 By and large, the processes we will consider occur at constant pressure, often in 

open containers at atmospheric pressure.  Hence, we will most often refer to Gibbs free 

energy. 


