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A HYBRID HIGH-ORDER ALGORITHM FOR RADAR CROSS
SECTION COMPUTATIONS∗

M. GANESH† AND S. C. HAWKINS‡

Abstract. We describe a high-order method for computing the monostatic and bistatic radar
cross section (RCS) of a class of three-dimensional targets. Our method is based on an electric field
surface integral equation reformulation of the Maxwell equations. The hybrid nature of the scheme
is due to approximations based on a combination of tangential and nontangential basis functions on
a parametric reference spherical surface. A principal feature of the high-order algorithm is that it
requires solutions of linear systems with substantially fewer unknowns than existing methods. We
demonstrate that very accurate RCS values for medium (electromagnetic-) sized scatterers can be
computed using a few tens of thousands of unknowns. Thus linear systems arising in the high-
order method for low to medium frequency scattering can be solved using direct solves. This is
extremely advantageous in monostatic RCS computations, for which transmitters and receivers are
co-located and hence the discretized electromagnetic linear system must be solved for hundreds of
right-hand sides corresponding to receiver locations. We demonstrate the high-order convergence
of our method for several three-dimensional targets. We prove the high-order spectral accuracy
of our approximations to the RCS for a class of perfect conductors described globally in spherical
coordinates.
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1. Introduction. Computer simulations of the radar cross section (RCS) of
three-dimensional model targets through electromagnetic scattering are a cost effec-
tive tool for designing stealth objects. The RCS values (measured using simulated
transmitters and receivers) reflect the stealth property of an obstacle [20]. Hence a
prerequisite for manufacturing vehicles such as stealth aircraft is to simulate the mono-
static and bistatic RCS of various geometries [30] at several frequencies to high-order
accuracy. Such simulations are also useful in biological applications. For example,
it is common to use light scattering measurements in laboratories to count erythro-
cytes (red bloods cells). Of recent interest [19, 31] is the simulation of the RCS of
a celebrated model of an erythrocyte, which is biconcave, for an incident plane wave
whose wavelength is about one tenth the diameter of the erythrocyte. Computational
electromagnetic scattering algorithms with high-order accuracy facilitate efficient sim-
ulations of the RCS values.

In this work we develop, implement, and analyze a high-order algorithm to com-
pute the monostatic and bistatic RCS of a perfectly conducting obstacle D ⊆ R3,
with surface ∂D, situated in a homogeneous medium with vanishing conductivity, the
free space permittivity ε0 = 107/(4πc2)F/m, and permeability μ0 = 4π × 10−7H/m,
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where c = 299 792 458m/s is the speed of light. Our simulation geometries include
benchmark radar targets [30] and erythrocytes [19, 31].

The RCS of the obstacle, induced by a transmitter located in the direction −d̂0

and measured in decibels by a receiver located in the direction

(1.1) x̂ = p(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ)T , θ, φ ∈ R,

is a functional on the unit sphere (denoted by ∂B) and is defined as

(1.2) σdB(x̂; d̂0) = 10 log10

(
4π |E∞(x̂)|2 /k2

)
, x̂, d̂0 ∈ ∂B,

where

(1.3) E∞(x̂) = lim
|x|→∞

Es(x)e−ik|x||x|, x̂ = x/|x| ∈ ∂B,

is the far field pattern of the scattered field, which has frequency ω and wavenumber
k = 2πω/c. The scattered electric field Es and magnetic field Hs satisfy the time
harmonic Maxwell equations

(1.4) curl E(x) − ikH(x) = 0, curl H(x) + ikE(x) = 0, x ∈ R3 \D,

and the Silver–Müller radiation condition

lim
|x|→∞

[Hs(x) × x− |x|Es(x)] = 0,

subject to the perfect conductor boundary condition

(1.5) n(x) ×Es(x) = −n(x) ×Ei(x) =: f(x), x ∈ ∂D,

where n(x) denotes the unit outward normal at x ∈ ∂D. The boundary condition in
(1.5) (and hence the RCS in (1.2)) is induced by the incident plane wave

[
Ei,H i

]
,

with direction d̂0 and polarization p̂0 (perpendicular to d̂0), which originates from
the transmitter and is defined as

(1.6) Ei(x̂) = ikp̂0e
ikx·d̂0 , H i(x̂) = ik(d̂0 × p̂0)e

ikx·d̂0 .

When the transmitter and receiver are co-located, d̂0 = −x̂, and σdB in (1.2) is called

the monostatic RCS. When the transmitter and receiver are not co-located and d̂0 is
fixed, σdB in (1.2) is called the bistatic RCS. The RCS with receiver polarization p̂1

is defined by

(1.7) σdB(x̂, p̂1; d̂0) = 10 log10

(
4π |E∞(x̂) · p̂1|

2
/k2

)
, x̂, p̂1, d̂0 ∈ ∂B.

The industrial standard tool for simulation of electromagnetic scattering from a
perfect conductor is the Fast Illinois Solver Code (FISC); see [25, 6] and references
therein for related boundary integral algorithms. FISC is based on a surface integral
reformulation of the Maxwell equations and is solved using the method of moments.
For medium frequency scattering problems, implementation of FISC requires solu-
tion of a dense complex linear system with hundreds of thousands of unknowns to
achieve a couple of digits of accuracy. (For example, in a FISC simulation exterior to
a sphere of diameter 12 times the incident wavelength, 602 112 unknowns are required
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to compute the RCS with just one decimal place of accuracy [25].) Solution of large
dense linear systems in FISC calculations is made possible only by using an itera-
tive solver with matrix vector products implemented using the fast multipole method
(FMM), and recently by using modified FMM algorithms based on efficient spheri-
cal harmonic expansions. A high-order algorithm for acoustic scattering was given
in [4] and applied to electromagnetic scattering in [3, p. 56]. We refer the reader
to [2, 3, 6, 9, 10, 19, 21, 23, 31] and references therein for the current state of the art
in computational electromagnetics. The existing three-dimensional electromagnetic
scattering algorithms with demonstrated numerical experiments do not achieve spec-
tral accuracy. Spectral boundary integral methods for three-dimensional model prob-
lems in acoustic, elasticity, and potential theory were considered in [12, 13, 14, 17, 29].

In [15] we considered an electromagnetic counterpart of [12] using vectorial basis
functions that are tangential on the reference surface. Such vector spherical harmon-
ics are widely used in many applications involving vector valued quantities on the
sphere [11, 26, 28]. However, the approach in [15] does not yield spectrally accurate
approximations [16, Remark 2]. In [16] we used a componentwise basis that is not
tangential, for which we proved and demonstrated spectral accuracy. However, tan-
gential basis functions are a natural choice for the surface integral formulation of the
Maxwell equations. Further, for spherical scatterers, approximation of surface cur-
rents using tangential spherical harmonics can give almost a one third reduction in
the number of unknowns required in [16]. This work is motivated by the desire to ob-
tain this reduction by using tangential harmonics and yet obtain a spectrally accurate
algorithm. We achieve the reduction and spectral accuracy in this paper with hybrid
approximations, combining ideas from [15] and [16] and involving a combination of
tangential and nontangential harmonics.

A clearly described parametrization of the two-dimensional manifold ∂D (based
on a reference domain or surface) is essential for computer implementation of any
surface integral equation algorithm. We assume throughout the paper that each
coordinate (x, y, z) on the bounded target surface ∂D can be parametrized as

(1.8) (x, y, z)T = (q1(θ, φ), q2(θ, φ), q3(θ, φ))
T
, (x, y, z)T ∈ ∂D, θ, φ ∈ R,

for some nonlinear functionals qj : R2 → R for j = 1, 2, 3 that yield, via p in (1.1),
a bijective parametrization map q : ∂B → ∂D. In fact, it is sufficient to know
a suitable approximation to the parametrization map q, for example, based on the
Fourier coefficients of qj for j = 1, 2, 3. Our algorithm has spectral accuracy only
when q is smooth.

Such a specific description of the target is required in our mathematical analysis
to prove the spectral accuracy of the method. Many benchmark radar targets, such
as those described in [30], satisfy the specific description (1.8) after converting the
material construction (cylindrical) coordinates [30] to spherical coordinates [12], and
biologically interesting models such as the erythrocyte [19, 31] can be written in the
parametric form (1.8). Simulation geometries considered in this work and those in [12,
16] demonstrate the wealth of obstacles satisfying (1.8). Application of the algorithm
in this paper to complicated geometries is restricted by the difficulty of finding globally
smooth parametrizations. Application to such geometries would require partition of
the conductor surface into several charts, with appropriate use of local mappings.
This approach was used in combination with a partition of unity to evaluate weakly
singular integrals to spectral accuracy in [4]. Such an extension to our algorithm is
nontrivial and not considered in this paper.
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In many cases the obstacle restriction imposed in this paper is not a disadvantage.
For example, in forward scattering by complex structures the surface integral equa-
tion often arises through introduction of a smooth artificial interface surrounding the
scatterer [1, 2, 21]. A partial differential equation form of the Maxwell equations—
formulated in the interior of the artificial interface and coupled with the surface in-
tegral equation on the interface—is solved by finite elements. In inverse scattering,
obtaining general qualitative information about the scatterer is more important than
resolving fine details such as corners and edges.

We test our algorithm on a range of perfectly conducting scatterers. We include
scatterers with concave surface features, and nonsmooth scatterers. We show that
just a few tens of thousands of unknowns are sufficient in our algorithm to obtain
satisfactory solutions for medium electromagnetic-sized scatterers. Such relatively
small linear systems allow us to use direct solves as well as iterative solves. In the
case of smooth scatterers our solutions are very accurate, with several decimal places
of accuracy. In the case of nonsmooth scatterers with singularity points in their
surface, our algorithm yields visually accurate solutions but does not yield the rapid
convergence demonstrated for smooth scatterers. In general, only a few decimal places
of global accuracy are possible for nonsmooth scatterers.

The possibility of using direct solves is a great advantage in monostatic RCS com-
putations. For the monostatic case, since the transmitter and receiver are co-located
and because hundreds of receiver measurements are required for the RCS analysis,
the exterior Maxwell equations are to be solved with hundreds of boundary conditions
induced by various receiver directions. This leads to the requirement of solving hun-
dreds of linear systems with one electromagnetic discretization matrix and hundreds
of different right-hand sides. A direct LU factorization of the electromagnetic matrix
is very cost effective in this case. Such factorizations are not possible using surface
discretization based algorithms such as FISC, because they lead to dense complex
linear systems with hundreds of thousands of unknowns. We demonstrate that we
can compute the monostatic RCS of medium (electromagnetic-) sized scatterers at
over one thousand points in a few hours of CPU time.

The structure of the paper follows that in [16], and we recall various derivations
from [16] that are essential for this paper. We follow [16] in section 2 to describe the
electric field surface integral equation reformulation of (1.4)–(1.5) using a standard
ansatz for electromagnetic fields exterior to the conductor surface ∂D, and we use
(1.8) to appropriately transplant the equation onto the surface ∂B, the set of all unit
directional vectors. In section 3 we give the details of our method based on tangential
and nontangential bases for computing a spectrally accurate approximation to the
surface current on ∂D that solves the surface integral equation. In section 4 we de-
scribe an efficient way to use the surface current to compute the RCS of the scatterer.
In section 5 we present numerical results showing the high-order convergence of our
method.

Throughout the paper we denote by C(∂D) and C0,α(∂D), respectively, the spaces
of all continuous and uniformly Hölder continuous vector fields on ∂D, where α is the
Hölder exponent. We denote by T (∂D) and T 0,α(∂D), respectively, the spaces of all
continuous and uniformly Hölder continuous tangential vector fields on ∂D.

2. Reformulation of the exterior Maxwell equations. Standard boundary
integral formulations for the time harmonic Maxwell equations restrict the domain of
the magnetic dipole operator to T (∂D) [8, p. 167]. The restriction is useful because
it reduces the order of the singularity of the operator. In fact, it is sufficient to
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project the density in the integral operator to T (∂D) (rather than restricting the
domain) to achieve the reduction in the order of the singularity. Any vector field in
C(∂D) can be projected onto T (∂D) by applying the 3 × 3 matrix projection operator
P(y) = I − n(y)n(y)T for y ∈ ∂D. For a ∈ T (∂D), since Pa = a, the generalized
magnetic dipole operator

(2.1) (Ma) (x) = 2

∫
∂D

n(x) × curlx {Φ(x,y)P(y)a(y)} ds(y), x ∈ ∂D,

is the same as the standard magnetic dipole operator [8, p. 167]. In (2.1),

(2.2) Φ(x,y) =
1

4π

eik|x−y|

|x− y|

is the fundamental solution of the Helmholtz equation. Application of [8, Theo-
rem 6.13] shows that the linear operator M is bounded from C(∂D) into T 0,α(∂D)
for 0 < α < 1.

Using (1.5), the boundary data f ∈ T 0,α(∂D), and so if w ∈ C(∂D) is a solution
of the surface integral equation

(2.3) w(x) + (Mw) (x) = 2f(x), x ∈ ∂D,

then w ∈ T 0,α(∂D). If the wavenumber k is not an interior Maxwell eigenvalue, then
(2.3) has a unique solution [7, Theorem 4.23]. Throughout the paper we assume that
k is not an interior Maxwell eigenvalue.

Using the unique tangential solution w of (2.3), we define

(2.4) E(x) = curl

∫
∂D

Φ(x,y)w(y) ds(y), H(x) =
1

ik
curl E(x), x ∈ R3 \D.

Then E,H comprise a unique radiating solution of the harmonic Maxwell equations
that satisfies the boundary condition n(x)×E(x) = f(x), x ∈ ∂D [7, Theorem 4.19].
A representation of the far field pattern required for RCS calculations can be obtained
from the following asymptotics of the fundamental solution in (2.2): For a ∈ C(∂D)
and as |x| → ∞ uniformly for all y ∈ ∂D [8, p. 164],

(2.5) curlx {a(y)Φ(x,y)} =
ik

4π

eik|x|

|x|

{
e−ikx̂·yx̂× a(y) + O

(
|a(y)|
|x|

)}
,

where x̂ = x/|x| ∈ ∂B. Using (2.4) and (2.5) in (1.3), the electric far field pattern of
the scattered electric field E in (2.4) can be represented as

(2.6) E∞(x̂) =
ik

4π

∫
∂D

e−ikx̂·yx̂×w(y) ds(y), x̂ ∈ ∂B.

Thus high-order approximate solutions of (2.3) facilitate accurate simulation of the
electromagnetic waves and measurement of the RCS using (2.6) and (1.2)–(1.7).

Using the following identity for a tangential field b [8, p. 166],

n(x) × curlx {Φ(x,y)b(y)} = gradxΦ(x,y) [n(x) − n(y)]
T
b(y)

−b(y)n(x)TgradxΦ(x,y),(2.7)
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and (2.1), (2.7), and (2.2), the generalized magnetic dipole operator can be written
as

(2.8) Ma(x) =

∫
∂D

[
1

|x− y|m1(x,y) + m2(x,y)

]
P(y)a(y) ds(y), x ∈ ∂D,

where for i = 1, 2,

mi(x,y) = mi,1(x,y)
1

|x− y|2 (x− y) [n(x) − n(y)]
T

+ mi,2(x,y)
1

|x− y|2n(x)T (x− y)I + mi,3(x,y),(2.9)

with I being the 3 × 3 identity matrix, m2,3 = 0 the 3 × 3 zero matrix, and

m1,1(x,y) = − 1

2π
t(x,y), m1,2(x,y) =

1

2π
t(x,y),

m1,3(x,y) =
1

2π
ks(x,y)

[
n(x)T (x− y)I − (x− y) (n(x) − n(y))

T
]
,

m2,1(x,y) =
1

2π
[ikt(x,y) − is(x,y)] , m2,2(x,y) =

1

2π
[is(x,y) − ikt(x,y)] ,

s(x,y) =

{
sin(k|x− y|)/|x− y| if x �= y,
k if x = y,

t(x,y) = cos(k|x− y|).

(2.10)

Each mi,j (i = 1, 2, j = 1, 2, 3) is infinitely differentiable on R3 ×R3. It is important
for our spectrally accurate method to separate the kernel of M in (2.1) into its weakly
singular and smooth parts in this way. Next we use the bijective parametrization
q : ∂B → ∂D to transplant (2.8) onto the reference spherical surface, which facilitates
exact treatment of the weakly singular part using a singularity division technique.

For a given density field A ∈ C(∂B), using the change of variables, we derive the
equivalent form of (2.8),

(2.11) MA(x̂) = M1A(x̂) + M2A(x̂), x̂ ∈ ∂B,

with

M1A(x̂) =

∫
∂B

1

|x̂− ŷ|M1(x̂, ŷ)A(ŷ) ds(ŷ),(2.12)

M2A(x̂) =

∫
∂B

M2(x̂, ŷ)A(ŷ) ds(ŷ),(2.13)

where for each x̂, ŷ ∈ ∂B, M1(x̂, ŷ) and M2(x̂, ŷ) are 3 × 3 matrices defined by

M1(x̂, ŷ) = R(x̂, ŷ)J(ŷ) m1(q(x̂), q(ŷ))P(q(ŷ)),(2.14)

M2(x̂, ŷ) = J(ŷ) m2(q(x̂), q(ŷ))P(q(ŷ)),(2.15)

J is the Jacobian of q, and

(2.16) R(x̂, ŷ) :=
|x̂− ŷ|

|q(x̂) − q(ŷ)| .

The integral operator M2 has a smooth kernel that can be approximated to
spectral accuracy using spherical polynomials. Spectrally accurate approximation of
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the weakly singular operator M1 can be achieved by introducing a rotated coordinate
system on ∂B, under which the weak singularity in the transformed operator occurs
only at the north pole. To this end, we first define the 3 × 3 rotation matrices
corresponding to positive rotations by ψ about the z-axis and y-axis:

(2.17) Rz(ψ) :=

⎛⎝ cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎞⎠ , Ry(ψ) :=

⎛⎝ cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

⎞⎠ .

For each x̂ = p(θ, φ), the orthogonal matrix

(2.18) Tx̂ := Rz(φ)Ry(−θ)Rz(−φ)

maps x̂ to the north pole n̂ = (0, 0, 1)T . The matrix Tx̂ induces a linear transforma-
tion

(2.19) Tx̂A(ẑ) := A(T−1
x̂ ẑ), ẑ ∈ ∂B, A ∈ C(∂B),

and its bivariate analogue

(2.20) Tx̂A(ẑ1, ẑ2) := A(T−1
x̂ ẑ1, T

−1
x̂ ẑ2), ẑ1, ẑ2 ∈ ∂B, A ∈ C(∂B × ∂B).

Using the orthogonality of Tx̂, we have, for x̂, ẑ ∈ ∂B and ŷ = T−1
x̂ ẑ,

(2.21) |x̂− ŷ| = |T−1
x̂ (n̂− ẑ)| = |n̂− ẑ|.

Using (2.12) and the fact that the surface measure on ∂B is invariant,

(2.22) M1A(x̂) =

∫
∂B

1

|n̂− ẑ|Tx̂M1(n̂, ẑ) Tx̂A(ẑ) ds(ẑ), A ∈ C(∂B).

The transformed coordinate system has two crucial benefits. First, in spherical po-
lar coordinates, with ẑ = p(θ′, φ′), the denominator |n̂ − ẑ| = 2 sin θ′/2 in (2.22) is
canceled out by the surface element sin θ′ dθ′ dφ′. Second, the operator (θ′, φ′) �→
Tx̂M1(n̂,p(θ′, φ′)) is infinitely continuously differentiable, with all derivatives 2π-
periodic in each variable, and each partial derivative is uniformly bounded with respect
to x̂ ∈ ∂B (see the proof of [16, Theorem 1]).

Finally, we write W (x̂) = w(q(x̂)) and F (x̂) = f(q(x̂)), and we use (2.22) and
(2.13) to derive the transplant of (2.3) onto ∂B,

(2.23) W (x̂) + MW (x̂) = 2F (x̂), x̂ ∈ ∂B, W = w ◦ q, F = f ◦ q.

In (2.23) we have an ideal reformulation of (2.3) to obtain high-order approximation
of the surface current w through a spectrally accurate evaluation of (2.11), where we
approximate both the smooth kernels and the transplanted surface current in a hybrid
way from the space of vector spherical polynomials.

3. A computer implementable spectral algorithm. In this section, we de-
scribe a high-order fully discrete algorithm that requires no further approximations
(such as approximations of Galerkin integrals) to compute spectrally accurate ap-
proximate solutions of (2.23). Details required for computer implementation of our
algorithm are in section 3.3.
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In the special case where the scatterer ∂D is spherical, we seek a spectrally accu-
rate tangential approximation to the solution of (2.23) in the tangential harmonics

Tn = span
{
Y

(k̃)
l,j : 1 ≤ l ≤ n, |j| ≤ l, k̃ = 1, 2

}
,

where

(3.1) Y
(1)
l,j (x̂) =

1√
l(l + 1)

Grad Yl,j(x̂), Y
(2)
l,j (x̂) = x̂× Y

(1)
l,j (x̂), x̂ ∈ ∂B,

where Grad is the surface gradient [8, p. 167] and using (1.1),

(3.2) Yl,j(x̂) = (−1)(j+|j|)/2

√
2l + 1

4π

(l − |j|)!
(l + |j|)!P

|j|
l (cos θ)eijφ, 0 ≤ l ≤ n, |j| ≤ l,

with P
|j|
l being the associated Legendre functions. The vector spherical harmonics

Y
(1)
l,j and Y

(2)
l,j are tangential on ∂B.

In the case of a nonspherical scatterer, since the solution of the transplanted equa-
tion (2.23) need not be tangential on ∂B, we seek a spectrally accurate approximation
in the augmented space

(3.3) Q
n

= Tn ⊕ span
{
Y

(3)
l,j : 0 ≤ l ≤ n, |j| ≤ l

}
,

where

(3.4) Y
(3)
l,j (x̂) = x̂Yl,j(x̂), x̂ ∈ ∂B.

Using (1.1), (3.2), (3.1), and (3.4), for k̃ = 1, 2, 3, we have the convenient repre-
sentation

(3.5) Y
(k̃)
l,j (x̂) =

3∑
t=1

α
(k̃,t)
l,j (θ)eijφv(t)(θ, φ), x̂ ∈ ∂B,

where, denoting the normalizing coefficient in (3.2) by cjl ,

v(1)(θ, φ) = (cos θ cosφ, cos θ sinφ,− sin θ)T , v(2)(θ, φ) = (− sinφ, cosφ, 0)T ,

v(3)(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ)T ,

α
(1,1)
l,j (θ) = α

(2,2)
l,j (θ) = cjlP

|j|
l

′
(cos θ)/

√
l(l + 1),

α
(1,2)
l,j (θ) = −α

(2,1)
l,j (θ) = cjl (ij/ sin θ)P

|j|
l (cos θ)/

√
l(l + 1),

α
(3,3)
l,j (θ) = cjlP

|j|
l (cos θ),

α
(1,3)
l,j (θ) = α

(2,3)
l,j (θ) = α

(3,1)
l,j (θ) = α

(3,2)
l,j (θ) = 0.

The standard Galerkin scheme for (2.23) requires evaluation of the L2 inner prod-
uct integrals

(3.6) (G,H) = I(H
T
G) =

∫
∂B

H(x̂)
T
G(x̂) ds(x̂), G,H ∈ C(∂B).
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In practice, a quadrature rule on ∂B is required to evaluate the integrals in (3.6). We
approximate the inner product integrals using the Gauss-rectangle quadrature rule

(3.7)

∫
∂B

G(x̂) ds(x̂) ≈ QN (G) =

2N+1∑
r=0

N+1∑
s=1

μN
r νNs G(ẑN

rs), G ∈ C(∂B),

where, using (1.1), ẑN
rs = p(θNs , φN

r ), θNs = cos−1 zs, zs are the zeros of the Legendre
polynomial of degree N + 1, νNs are the corresponding Gauss–Legendre weights (s =
1, . . . , N + 1), and

(3.8) μN
r =

π

N + 1
, φN

r =
rπ

N + 1
, r = 0, . . . , 2N + 1.

Since the quadrature (3.7) is exact for spherical polynomials of degree at most 2N , it
induces the discrete inner product

(3.9) (G,H)N = QN (H
T
G) =

2N+1∑
r=0

N+1∑
s=1

μN
r νNs H(ẑN

rs)
T

G(ẑN
rs), G,H ∈ C(∂B),

on PN , the space of vector spherical polynomials whose Euclidean components are
spherical polynomials of degree not greater than N . That is, (G,H) = (G,H)N for

G,H ∈ PN . Since Y
(k̃)
n,j for k̃ = 1, 2, 3 in (3.1)–(3.4) is a vector spherical polynomial

of degree n + 1, we have Q
n
⊆ Pn+1, and hence the vector spherical harmonics in

(3.1) and (3.4) are orthonormal with respect to the discrete inner product (3.9) with
N = n + 1.

We approximate the transplanted surface current in (2.23) by a computable pro-
jection onto the finite dimensional space Q

n
. In particular, we approximate the the-

oretical solution W of (2.23) using a computable representation OnW , where On is
a fully discrete projection operator defined as

(3.10) OnA =

n∑
l=0

∑
|j|≤l

3∑
k̃=1

(A,Y
(k̃)
l,j )n+1Y

(k̃)
l,j , A ∈ C(∂B),

where, for convenience, throughout the paper, we use the notation Y
(1)
00 = Y

(2)
00 = 0.

Using the orthonormality of the vector harmonics with respect to the discrete inner

product in (3.10), we get OnY
(k̃)
l,j = Y

(k̃)
l,j for 0 ≤ l ≤ n, |j| ≤ l, 1 ≤ k̃ ≤ 3.

Throughout the paper, when ∂D is a sphere, we replace
∑3

k̃=1 in (3.10) by
∑2

k̃=1,
and Q

n
by Tn.

3.1. Fully discrete approximations of magnetic dipole integrals. For
evaluation of inner integrals in the Galerkin scheme, for example, M1A(x̂), we need
to approximate the integrand Tx̂M1(n̂, ·) Tx̂A(·) in (2.22) for A ∈ C(∂B), x̂ ∈ ∂B.
One approach is to project this integrand using the fully discrete operator On in
(3.10), as in [15]. However, as described in [16, Remark 2], using a technical analysis,
such an approximation, leads to stagnated convergence instead of the spectral accu-
racy we seek in this work. In this hybrid scheme, to approximate the inner integral,
we use the componentwise nontangential harmonics defined using (3.2) as

(3.11) Y l,j,k̃ = Yl,jek̃, 0 ≤ l ≤ n′, |j| ≤ l, 1 ≤ k̃ ≤ 3,
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where ek̃ denotes the k̃th Euclidean vector. To this end, analogous to (3.10), using the
discrete inner product (3.9), we define a fully discrete orthogonal projection operator

(3.12) Ln′A =

n′∑
l=0

∑
|j|≤l

3∑
k̃=1

(A,Y l,j,k̃)n′Y l,j,k̃, A ∈ C(∂B).

Clearly Ln′Y l,j,k̃ = Y l,j,k̃ for 0 ≤ l ≤ n′, |j| ≤ l, 1 ≤ k̃ ≤ 3. Here, n′ depends on

n and will be specified later in this section. We approximate Tx̂M1(n̂, ·) Tx̂A(·) in
(2.22) by Ln′ {Tx̂M1(n̂, ·) Tx̂A(·)} and follow the details in [16].

More precisely, for A ∈ C(∂B) and x̂ ∈ ∂B, using (2.22) and (3.12), the approx-
imation to M1A(x̂) is

M1,n′A(x̂) =

∫
∂B

1

|n̂− ẑ|Ln′ {Tx̂M1(n̂, ·) Tx̂A(·)} (ẑ) ds(ẑ)

=

∫
∂B

1

|n̂− ẑ|

n′∑
l=0

∑
|j|≤l

3∑
k̃=1

(
Tx̂M1(n̂, ·) Tx̂A(·),Y l,j,k̃(·)

)
n′
Y l,j,k̃(ẑ) ds(ẑ)(3.13)

=
n′∑
l=0

∑
|j|≤l

3∑
k̃=1

(
Tx̂M1(n̂, ·) Tx̂A(·),Y l,j,k̃(·)

)
n′

∫
∂B

1

|n̂− ẑ|Y l,j,k̃(ẑ) ds(ẑ)

=
n′∑
l=0

∑
|j|≤l

3∑
k̃=1

(
Tx̂M1(n̂, ·) Tx̂A(·),Y l,j,k̃(·)

)
n′

4π

2l + 1
Y l,j,k̃(n̂).

In the last step we have used the standard eigenfunction property of the spherical
harmonics [11]. Using (3.9), we expand the discrete inner product and obtain

M1,n′A(x̂)

=

n′∑
l=0

∑
|j|≤l

3∑
k̃=1

n′+1∑
s′=1

2n′+1∑
r′=0

μn′

r′ ν
n′

s′
4π

2l + 1
Y l,j,k̃(ẑ

n′

r′s′)
T

Tx̂M1(n̂, ẑ
n′

r′s′) Tx̂A(ẑn′

r′s′)Y l,j,k̃(n̂)

=
n′∑
l=0

3∑
k̃=1

n′+1∑
s′=1

2n′+1∑
r′=0

μn′

r′ ν
n′

s′
4π

2l + 1
ek̃e

T
k̃
Tx̂M1(n̂, ẑ

n′

r′s′) Tx̂A(ẑn′

r′s′)
∑
|j|≤l

Yl,j(ẑ
n′

r′s′)Yl,j(n̂).

Using the addition theorem for the spherical harmonics [8, Theorem 2.8], this simplifies
to

M1,n′A(x̂) =

n′∑
l=0

3∑
k̃=1

n′+1∑
s′=1

2n′+1∑
r′=0

μn′

r′ ν
n′

s′ ek̃e
T
k̃
Tx̂M1(n̂, ẑ

n′

r′s′) Tx̂A(ẑn′

r′s′)Pl(n̂ · ẑn′

r′s′)

=

n′+1∑
s′=1

2n′+1∑
r′=0

μn′

r′ ν
n′

s′ α
n′

s′ Tx̂M1(n̂, ẑ
n′

r′s′) Tx̂A(ẑn′

r′s′),(3.14)

where αn′

s′ =
∑n′

l=0 Pl(cos θn
′

s′ ), and we have used n̂ · ẑn′

r′s′ = cos θn
′

s′ . Thus M1,n′A is
a fully discrete computable approximation to the transplanted weakly singular part
of the generalized magnetic dipole operator in (2.8).



RADAR CROSS SECTION COMPUTATIONS 1227

We use a similar approximation for the smooth part of the operator. We write
(2.13) in the rotated coordinate system as

(3.15) M2A(x̂) =

∫
∂B

Tx̂M2(n̂, ẑ) Tx̂A(ẑ) ds(ẑ).

Our approximation to M2A is then

M2,n′A(x̂) =

∫
∂B

Ln′ {Tx̂M2(n̂, ·) Tx̂A(·)} (ẑ) ds(ẑ)

=

∫
∂B

n′∑
l=0

∑
|j|≤l

3∑
k̃=1

(
Tx̂M2(n̂, ·) Tx̂A(·),Y l,j,k̃(·)

)
n′
Y l,j,k̃(ẑ) ds(ẑ)(3.16)

=
n′∑
l=0

∑
|j|≤l

3∑
k̃=1

(
Tx̂M2(n̂, ·) Tx̂A(·),Y l,j,k̃(·)

)
n′

∫
∂B

Y l,j,k̃(ẑ) ds(ẑ).

Noting that Y 0,0,k̃ = ek̃/
√

4π, the orthogonality of the Y l,j,k̃ gives

M2,n′A(x̂) =

3∑
k̃=1

(
Tx̂M2(n̂, ·) Tx̂A(·), ek̃

)
n′ ek̃.

Expanding the discrete inner product using (3.9),

M2,n′A(x̂) =

3∑
k̃=1

n′+1∑
s′=1

2n′+1∑
r′=0

μn′

r′ ν
n′

s′ ek̃e
T
k̃
Tx̂M2(n̂, ẑ

n′

r′s′) Tx̂A(ẑn′

r′s′)

=

n′+1∑
s′=1

2n′+1∑
r′=0

μn′

r′ ν
n′

s′ Tx̂M2(n̂, ẑ
n′

r′s′) Tx̂A(ẑn′

r′s′).(3.17)

Combining (3.14) and (3.17), we approximate the reformulated and projected
magnetic dipole operator (2.11) by the computable representation

(3.18) Mn′A(x̂) = M1,n′A(x̂) + M2,n′A(x̂).

Finally, we must choose n′ to ensure that Mn′A converges to MA with spectral
accuracy. Following the proof of [16, Theorem 1] it can be shown that if n′ = an + 1
for some fixed constant a > 1, and n′−n ≥ 3, then for any s ∈ N, there exists cs > 0,
independent of n and n′, such that

(3.19) ‖(M−Mn′)P n‖∞,∂B ≤ cs
1

ns
‖P n‖∞,∂B for all P n ∈ Pn+1.

As in [16, Theorem 1], if the conductor surface is smooth then (3.19) holds for any
number s. We remark that in our computational algorithm, the density function of
the fully discrete magnetic dipole operator is a spherical polynomial of degree at most
n + 1. For computations in section 5 we set n′ = 2n + 1.

3.2. Complete algorithm. We are now ready to describe the complete algo-
rithm to solve (2.23), using the various spectrally accurate approximations described
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above. Our fully discrete scheme for (2.23) is as follows: compute W n ∈ Q
n

such
that

(3.20) W n + OnMn′W n = 2Onf .

Since W n ∈ Q
n

can be written as

(3.21) W n(x̂) = w003Y
(3)
00 (x̂) +

n∑
l=1

∑
|j|≤l

3∑
k̃=1

wljk̃Y
(k̃)
l,j (x̂), x̂ ∈ ∂B,

the operator equation (3.20) is equivalent to the requirement that the coefficients wljk̃
solve the fully discrete Galerkin system

(3.22) (W n,Y
(k′)
l′,j′)n+1 + (Mn′W n,Y

(k′)
l′,j′)n+1 = 2(F ,Y

(k′)
l′,j′)n+1, (l′, j′, k′) ∈ I,

where I = {(0, 0, 3)} ∪ {(l̂, ĵ, k̂) : 1 ≤ l̂ ≤ n, |̂j| ≤ l̂, k̂ = 1, 2, 3}. In matrix form,
w = (wljk̃) satisfies

(I + M)w = 2f,

and for (l, j, k̃), (l′, j′, k′) ∈ I,

Ml′j′k′,ljk̃ = (Mn′Y
(k̃)
l,j ,Y

(k′)
l′,j′)n+1, Il′j′k′,ljk̃ = δll′δjj′δk̃k′ ,(3.23)

fl′j′k′ = (F ,Y
(k′)
l′,j′)n+1.

Our corresponding approximation to the solution w of (2.3) is then

(3.24) wn(x) = W n(q−1(x)), x ∈ ∂D.

Using (3.19) and following the proof of [16, Theorem 3] (with Ln replaced by On),
it can be shown that for smooth conductors, wn (and W n) are spectrally accurate
approximations to the unique solutions w (and W ) in the maximum norm: ‖w −
wn‖∞,∂D = O(n−q) (and ‖W − W n‖∞,∂B = O(n−q)) for any positive integer q,
provided that the Lebesgue constant of On is O(nα) for some α < 1. The proof
of [16, Theorem 3] is based on the known result that the Lebesgue constant of Ln is
O(

√
n) [16, 22, 24]. In this work, we conjecture that the Lebesgue constant of On

is the same as that of Ln; a complete proof of this result similar to the theoretical
analyses in [22, 24] is beyond the scope of this paper.

3.3. Computer implementation details. As a prerequisite for implementa-
tion, special care must be taken to avoid overflow in the evaluation of the basis
functions—in particular the associated Legendre values in (3.5) when l is large. We
compute directly the normalized associated Legendre values

P̂ j
l (x) =

√
l − j

l + j
P j
l (x), 0 ≤ l ≤ n, 0 ≤ j ≤ l,

using the relation

P̂ j
l (x) = σj

lQ
j
l (x)
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and the recurrences

(l − j)Qj
l (x) = (2l − 1)xQj

l−1(x) − (l + j − 1)Qj
l−2(x), l > j + 1,

σj
l =

√
l − j

l + j
σj
l−1, l > j + 1,

with the seeds

σj
j = 1, σj

j+1 =

√
1

2j + 1
,

Qj
j(x) = η(j)(1 − x2)j/2, Qj

j+1(x) = x(2l + 1)Qj
j(x), η(j) = (2j − 1)!!/

√
(2j)!.

Overflow in computing η(j) is avoided using the stable expression

η(j) =

j∏
j̃=1

√
2j̃ − 1

2j̃
.

As in [16], we describe an efficient way to set up the N × N electromagnetic
scattering matrix M in only O(N2.5) operations, where N = 3(n + 1)2 − 2. This
complexity can be reduced further by utilizing fast transforms. We also describe a
parallel implementation.

Using (3.23), (3.18), (3.17), (3.14), and (3.9), we write

Ml′j′k′,ljk̃ =

2n+3∑
r=0

n+2∑
s=1

μn+1
r νn+1

s

2n′+1∑
r′=0

n′+1∑
s′=1

μn′

r′ ν
n′

s′ Y
(k′)
l′,j′(x̂rs)

T
[
αn′

s′ Tx̂rs
M1(n̂, ẑr′s′)

+ Tx̂rs
M2(n̂, ẑr′s′)

]
Tx̂rs

Y
(k̃)
l,j (ẑr′s′),(3.25)

where x̂rs = p(θn+1
s , φn+1

r ) and ẑr′s′ = p(θn
′

s′ , φ
n′

r′ ).
Direct computation of M using (3.25) has complexity O(N4) because M has O(N2)

entries, and each entry requires O(N2) function evaluations to approximate a dou-
ble integral over ∂B. The efficient assembly algorithm presented below reduces this
complexity to O(N2.5). Optimal complexity for the matrix would be O(N2), but
the spectrally accurate nature of the algorithm compensates for the slightly higher
complexity.

We write yr′s′

rs = T−1
x̂rs

ẑr′s′ so that

Ml′j′k′,ljk̃ =

2n+3∑
r=0

n+2∑
s=1

μn+1
r νn+1

s

2n′+1∑
r′=0

n′+1∑
s′=1

μn′

r′ ν
n′

s′ Y
(k′)
l′,j′(x̂rs)

T
[
αn′

s′ M1(x̂rs, ŷ
r′s′

rs )

+ M2(x̂rs, ŷ
r′s′

rs )

]
Tx̂rs

Y
(k̃)
l,j (ẑr′s′).

From [11, (12.7.4), p. 341] the rotated vector spherical harmonic Tx̂rs
Y

(k̃)
l,j can be

written as a linear combination of vector spherical harmonics of the same degree. As
in [12], the complexity of computing M can be reduced by taking advantage of this
property. A stable and efficient representation based on [11, (12.7.4), p. 341] using [12,
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p. 224] is

Tx̂rs
Y

(k)
l,j = T−1

x̂rs

∑
|j̃|≤l

Fslj̃je
i(j−j̃)φn+1

r Y
(k)

l,j̃
,(3.26)

Fslj̃j = ei(j−j̃)π/2
∑
|m̃|≤l

d
(l)

j̃m̃
(π/2)d

(l)
jm̃(π/2)eim̃θn+1

s ,

where

d
(l)

j̃j
(π/2) = 2j̃

[
(l + j̃)!(l − j̃)!

(l + j)!(l − j)!

]1/2

P
(j−j̃,−j−j̃)

l+j̃
(0).

For given nonnegative integers a, b and s ≥ 0, P
(a,b)
s (0) is the normalized Jacobi

polynomial evaluated at zero,

P (a,b)
s (0) = 2−s

s∑
t=0

(−1)t
(

s + a
s− t

)(
s + b
t

)
.

When a or b is negative, d
(l)

j̃j
can be computed using the symmetry relations

d
(l)

j̃j
(α) = (−1)j̃−jd

(l)

jj̃
(α) = d

(l)

−j−j̃
(α) = d

(l)

jj̃
(−α).

Using (3.26), (3.2), and (3.5), we get

Ml′j′k′,ljk̃

=

2n+3∑
r=0

n+2∑
s=1

μn+1
r νn+1

s

2n′+1∑
r′=0

n′+1∑
s′=1

μn′

r′ ν
n′

s′

3∑
t′=1

α
(k′,t′)
l′,j′ (θn+1

s )e−ij′φn+1
r v(t′)(θn+1

s , φn+1
r )T[

αn′

s′ M1(x̂rs, ŷ
r′s′

rs ) + M2(x̂rs, ŷ
r′s′

rs )

] ∑
|j̃|≤l

Fslj̃je
i(j−j̃)φn+1

r

3∑
t=1

α
(k̃,t)

l,j̃
(θn

′

s′ )e
ij̃φn′

r′ T−1
x̂rs

v(t)(θn
′

s′ , φ
n′

r′ ).

The matrix M, which has O(N2) = O(n4) entries, can be computed by successively
computing the following arrays. Each array is a sum with O(n) terms and depends

on four labels (ignoring k̃ and k′). Thus M can be computed in O(n5) = O(N2.5)
operations.

Esrs′ j̃t =

2n′+1∑
r′=0

μn′

r′ e
ij̃φn′

r′
[
αn′

s′ M1(x̂rs, ŷ
r′s′

rs ) + M2(x̂rs, ŷ
r′s′

rs )
]
T−1

x̂rs
v(t)(θn

′

s′ , φ
n′

r′ ),

Dsrlj̃k̃ =

n′+1∑
s′=1

3∑
t=1

νn
′

s′ α
(k̃,t)

l,j̃
(θn

′

s′ )Esrs′ j̃t, Csrljk̃ =
∑
|j̃|≤l

Fslj̃je
i(j−j̃)φn+1

r Dsrlj̃k̃,

Bsj′t′ljk̃ =

2n+3∑
r=0

μn+1
r e−ij′φn+1

r v(t′)(θn+1
s , φn+1

s )TCsrljk̃,

Ml′j′k′,ljk̃ =

n+2∑
s=1

3∑
t′=1

νn+1
s α

(k′,t′)
l′,j′ (θn+1

s )Bsj′t′ljk̃.
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Once E has been used to compute D, it is discarded. Similarly, D is discarded after
it has been used to compute C, and so on. The fast Fourier transform (FFT) can be
used to speed up the computation of the arrays above, and for calculating f and F in
(3.23) and (3.26), respectively. As we shall demonstrate in the numerical experiments
section, 5 ≤ n ≤ 125 is sufficient for low to medium frequency problems because of the
high-order spectral accuracy of our algorithm. Hence we can use direct or iterative
solves in a single or multiprocessor environment.

For a cluster computing-type environment (with multiple processors and limited
RAM for each processor), we consider a parallel implementation of the above algo-
rithm. For a cluster computer implementation with nproc free CPUs, we partition the
s index set {1, . . . , n + 2} into nproc disjoint sets Sp for p = 1, . . . , nproc. The array
Bsj′t′ljk̃ for s ∈ Sp is computed and stored on processing node p.

4. High-order RCS and exterior field approximations. In this section,
we follow a variant of the approach in [16] to describe a fully discrete high-order
approximation to the monostatic and bistatic RCS of the perfect conductor D, and
the exterior electromagnetic fields. We use the spectrally accurate numerical solution
W n of (3.21)–(3.23) for this purpose.

4.1. Spectrally accurate RCS computations. The monostatic and bistatic
RCS measurements in (1.2) and (1.7) require high-order approximations of the electric
far field. Using (2.6), the electric far field corresponding to the unique solution w =
Pw of (2.3) can be written as

E∞(x̂) =
ik

4π

∫
∂D

e−ikx̂·yx̂× P(y)w(y) ds(y)(4.1)

=

∫
∂B

M̂x̂(ŷ)W (ŷ) ds(ŷ), x̂ ∈ ∂B,

where for each fixed x̂ ∈ ∂B, the smooth function M̂x̂ is defined by

(4.2) M̂x̂(ŷ)W (ŷ) =
ik

4π
J(ŷ)e−ikx̂·q(ŷ)x̂× P(q(ŷ))W (ŷ), ŷ ∈ ∂B,

and W is the solution of (2.23).
Using the approximation W n to W given by (3.21)–(3.23), our fully discrete

approximation En,∞(x̂) to E∞(x̂) for x̂ ∈ ∂B is given by

En,∞(x̂) =

∫
∂B

On

{
M̂x̂(·)W n(·)

}
(ŷ) ds(ŷ)(4.3)

=
n∑

l=0

∑
|j|≤l

3∑
k̃=1

wljk̃

∫
∂B

On

{
M̂x̂(·)Y (k̃)

l,j (·)
}

(ŷ) ds(ŷ),(4.4)

where, for convenience, we set w001 = w002 = 0. Using (3.10) and (3.7),

En,∞(x̂) =

n∑
l=0

∑
|j|≤l

3∑
k̃=1

wljk̃

2n+3∑
r=0

n+2∑
s=1

μn+1
r νn+1

s ArsM̂x̂(ẑn+1
rs )Y

(k̃)
l,j (ẑn+1

rs ),

where

Ars =

n∑
l′=0

∑
|j′|≤l

3∑
k′=1

(∫
∂B

Y
(k′)
l′,j′(ŷ) ds(ŷ)

)
Y

(k′)
l′,j′(ẑ

n+1
rs )

T

.
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Only the integrals (l′, j′, k′) ∈ {(0, 0, 3), (1,±1, 1), (1,±1, 2)} are nonzero, and they
can be easily computed analytically. Proceeding as in [16], we have

En,∞(x̂) =

n∑
l=0

∑
|j|≤l

3∑
k̃=1

wljk̃M̂
n+1

ljk̃ (x̂),

M̂
n+1

ljk̃ (x̂) =

2n+3∑
r=0

n+2∑
s=1

μn+1
r νn+1

s ArsM̂x̂(ẑn+1
rs )Y

(k̃)
l,j (ẑn+1

rs ).

The quantities M̂
n+1

ljk̃ do not depend on W n and can be precomputed independently.
As in [16, Theorem 3], assuming the conjecture of section 3.2, we can prove that En,∞
is a spectrally accurate approximation to E∞.

The approximation σdB
n to the RCS σdB is obtained by replacing E∞ by En,∞

in (1.2) and (1.7). That is, we compute the spectrally accurate approximation to the
RCS of the perfect conductor D ⊆ R3 using the fully discrete formulas

σdB
n (x̂; d̂0) = 10 log10

(
4π |En,∞(x̂)|2 /k2

)
,

σdB
n (x̂, p̂1; d̂0) = 10 log10

(
4π |En,∞(x̂) · p̂1|

2
/k2

)
, x̂ ∈ ∂B.(4.5)

For each x̂ ∈ ∂B, direct computation of En,∞(x̂) has complexity O(n4) because

M̂
n+1

has O(n2) entries, and each entry requires O(n2) function evaluations to ap-
proximate an integral over ∂B. However, En,∞(x̂) can be computed in O(n3) opera-

tions by successively computing the quantities below to obtain M̂
n+1

:

B̂
n+1

sjt (x̂) =

2n+3∑
r=0

μn+1
r ArsM̂x̂(ẑn+1

rs )eijφ
n+1
r vt(θn+1

s , φn+1
r ),

M̂
n+1

ljk̃ (x̂) =

n+2∑
s=1

3∑
t=1

νn+1
s α

(k̃,t)
l,j (θn+1

s )B̂
n+1

sjt (x̂).

The computation of B̂
n+1

can be accelerated using the FFT. Once M̂
n+1

(x̂) has been
evaluated, it can be used for computation of the far field induced by many incident
directions in the monostatic RCS approximations.

4.2. Spectrally accurate exterior field computations. We compute a fully
discrete approximation to the electric field E(x) in the exterior region, given by (2.4),
using the approach similar to the far field computation in section 4.1, but we replace
M̂x̂ by M̃x, where

(4.6) M̃x(ŷ)W (ŷ) = J(ŷ) gradxΦ(x, q(ŷ)) × P(q(ŷ))W (ŷ), ŷ ∈ ∂B.

We have used (2.4) and the identity curl {φv} = φ curl v + gradφ × v, to derive

M̃x. The fully discrete approximation En(x) to E(x) for x ∈ R3 \D is then

En(x) =

n∑
l=0

∑
|j|≤l

3∑
k̃=1

wljk̃M̃
n+1

ljk̃ (x),

M̃
n+1

ljk̃ (x) =

2n+3∑
r=0

n+2∑
s=1

μn+1
r νn+1

s ArsM̃x(ẑn+1
rs )Y

(k̃)
l,j (ẑn+1

rs ).

These computations can be accelerated as in section 4.1.
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5. Simulated RCS and exterior electromagnetic fields. We consider the
RCS simulation problem (1.1)–(1.7) for various test obstacles including the benchmark
radar target cone-sphere [30] and a biologically interesting erythrocyte in standard
oblate and in oval of Cassini prolate form [19, 31]. For an incident wave with inci-
dent polar and azimuthal angles θ and φ, the direction of the plane wave is given
by d̂0 = −(sin θ cosφ, sin θ sinφ, cos θ)T . The incident wave is then vertically po-
larized when p̂0 = (cos θ cosφ, cos θ sinφ,− sin θ)T and horizontally polarized when
p̂0 = (− sinφ, cosφ, 0)T [27, pp. 8–9]. Throughout this section we denote the RCS

σdB
n (p(θ, φ); d̂0) in (4.5) by σdB

n (θ, φ).
Given the spatial component of an electric field, denoted by E, in R3 \ D, the

corresponding time harmonic electric field is given by

E(x, t) =
1

√
ε0

Re
{
E(x)e−2πiωt

}
, x ∈ R3 \D.

In our numerical experiments we simulate the monostatic and bistatic RCS and
exterior electromagnetic fields induced by smooth convex and nonconvex obstacles,
and by the cone-sphere, a benchmark radar target that has conical singularities. The
smooth obstacles are a sphere, sph(siz obs); a beehive shape, hive(siz obs); a Cassini
shape in prolate form, cas(siz obs); an erythrocyte, eryth(siz obs); and a subma-
rine shape, sub(siz obs). The nonsmooth benchmark radar target is the perfectly
conducting cone-sphere, cone sphere(siz obs). Here siz obs is the diameter of the
obstacle. These obstacles are shown in Figures 1–3. The erythrocyte is constructed
according to [31, equation (3)]. As described in [19, 31], the biconcave cross section of
the erythrocyte has the shape of the Cassini obstacle in two-dimensional form. The
cone-sphere is constructed according to [30]. The hull of the submarine is constructed,
as in [18], from an ellipsoid with aspect ratio 10:1:1. The cone-sphere and submarine
have higher aspect ratios than the other obstacles considered.

For a fixed positive integer n, the linear system we need to solve to achieve the
reported accuracy has 3(n + 1)2 − 2 unknowns in general. For spherical scattering
the linear system has 2(n + 1)2 − 2 unknowns. The maximum n we used in all the
experiments is only 125. Thus we are able to present results obtained with both
direct and iterative linear system solvers. In the case of iterative solvers, we use
GMRES preconditioned with the inverse of the diagonal part of our matrix. For
our experiments, we used a cluster with 2GHz Dual-core Opteron (DcOp) processors.
DcOp CPU time mentioned in this paper is for the combined set up, GMRES solve,
and error calculation phases of the algorithm.

In the case of plane wave scattering by a sphere, an analytical representation
of the scattered field is given by the Mie series. For the sphere case our choice of
frequency for the incident wave (and hence of the electromagnetic scattering problem)
is motivated by those considered in established electromagnetic scattering algorithms
Fastscat [5] and FISC [25]. To compare the efficiency of our algorithm with [5, 25],
in the tabulated results we use the RMS error (denoted by εdB) in the bistatic RCS,
measured in decibels per square meter. The RMS error is defined as

εdB =

{
1

4π

∫
∂B

[
σdB(x̂) − σdB

n (x̂)
]2

ds(x̂)

}1/2

,

where σdB and σdB
n are, respectively, defined by (1.2)–(1.7) and (4.5). We numerically

approximate the integral in εdB using over 1300 quadrature points on ∂B.
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Fig. 1. Cone-sphere.

Fig. 2. Hive, Erythrocyte, and Cassini.

To demonstrate the spectral convergence of our method for plane wave scattering
by nonspherical perfect conductors, we tabulate the monostatic or bistatic RCS at
various receiver direction angles. Similar convergence studies for acoustic scattering
in two and three dimensions are, respectively, in [8, p. 72] and [12, p. 234].

For the erythrocyte an incident wave with wavelength 632.8 nm (or one tenth the
diameter of the erythrocyte) is of considerable recent interest [19, 31]. Hence, for RCS
computations of a fixed target, we choose two incident waves: one with wavelength
equal to the diameter of the target, and the other with wavelength one tenth the
diameter of the target. We observed similar performance for various other targets
considered in [16].

The results in Tables 1–15 demonstrate the spectral accuracy of our algorithm.
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Fig. 3. Submarine.

As would be expected, the spherical perfect conductor requires fewer unknowns than
the high aspect-ratio and nonconvex obstacles. In general, the number of unknowns
depends on the shape and electromagnetic size siz obs/λ of the conductors, where
λ = 2π/k = c/ω is the wavelength. The cone-sphere possesses a conical singularity.
This nonsmoothness in the object surface precludes spectral accuracy, but our effi-
cient algorithm is able to produce visually accurate results using only a few tens of
thousands of unknowns.

We conclude this work by presenting visualizations of RCS values and exterior
fields of all the described obstacles simulated using the medium frequency electro-
magnetic scattering model described in the introduction (see Figures 4–9). The left
colorbar values in the figures correspond to the intensity of the surface current. The
RCS plots (for all geometries considered in this paper) are given in polar form. For
comparison of the experimental and simulated RCS for the cone-sphere benchmark
target in [30], we also give the cone-sphere RCS plot in Cartesian form. (All fig-
ures in this paper are also at http://www.mines.edu/∼mganesh/ GH pap2 figures/
GH RCS figures.html, to facilitate the viewing of larger pictures.)

Table 1

Convergence of bistatic RCS for sph(λ) at 299.8MHz for various observed angles (H-H polar-
ization).

n σdB
n (π/2, 0.0◦) σdB

n (π/2, 59.9◦) σdB
n (π/2, 120.1◦) σdB

n (π/2, 180.0◦)
5 -0.236515555 -2.364344683 -2.364344683 -0.236515555

15 -2.261565541 1.633695466 4.172258451 9.660449813
25 -2.261565541 1.633695466 4.172258451 9.660449813
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Table 2

Convergence of bistatic RCS for sph(10λ) at 3.0GHz for various observed angles (H-H polar-
ization).

n σdB
n (π/2, 0.0◦) σdB

n (π/2, 59.9◦) σdB
n (π/2, 120.1◦) σdB

n (π/2, 180.0◦)
25 14.46493344 6.810093006 6.773474395 23.32394310

35 -1.071614837 -1.100478363 -1.356902718 28.98841095
45 -0.963851816 -1.146497199 -1.226580441 28.98854327
55 -0.963851776 -1.146497197 -1.226580462 28.98854327

Table 3

Convergence of bistatic RCS for hive(λ) at 136.3MHz for various observed angles (H-H polar-
ization).

n σdB
n (π/2, 0.0◦) σdB

n (π/2, 59.9◦) σdB
n (π/2, 120.1◦) σdB

n (π/2, 180.0◦)
45 2.288774212 7.726946931 11.02191340 15.47284506

55 2.289516548 7.727529734 11.02241885 15.47305847
65 2.289501331 7.727506252 11.02243226 15.47305073
75 2.289525690 7.727521530 11.02244076 15.47305490

Table 4

Convergence of bistatic RCS for hive(10λ) at 1.4GHz for various observed angles (H-H polar-
ization).

n σdB
n (π/2, 0.0◦) σdB

n (π/2, 59.9◦) σdB
n (π/2, 120.1◦) σdB

n (π/2, 180.0◦)
75 12.21545719 0.995924035 1.630599480 34.71680622

85 12.21598424 0.994537745 1.629710655 34.71678624
95 12.21595582 0.994581511 1.629615318 34.71679053
105 12.21595283 0.994589476 1.629597682 34.71679052

Table 5

Convergence of bistatic RCS for cas(λ) at 299.8MHz for various observed angles (H-H polar-
ization).

n σdB
n (π/2, 0.0◦) σdB

n (π/2, 59.9◦) σdB
n (π/2, 120.1◦) σdB

n (π/2, 180.0◦)
15 5.943260950 2.430092594 2.390502200 8.643517631

25 5.943542313 2.430600826 2.391709693 8.644488008
35 5.943543764 2.430596856 2.391702443 8.644485832
45 5.943543753 2.430596874 2.391702493 8.644485855

Table 6

Convergence of bistatic RCS for cas(10λ) at 3.0GHz for various observed angles (H-H polar-
ization).

n σdB
n (π/2, 0.0◦) σdB

n (π/2, 59.9◦) σdB
n (π/2, 120.1◦) σdB

n (π/2, 180.0◦)
75 5.254445300 -2.943734543 -1.852919510 27.01202739

85 5.254455451 -2.946501042 -1.852890342 27.01202909
95 5.254455694 -2.946503971 -1.852892016 27.01202911
105 5.254455695 -2.946503957 -1.852891993 27.01202911

Table 7

Convergence of bistatic RCS for eryth(λ) at 47.6THz for various observed angles (V-V polar-
ization).

n σdB
n (0.0◦, 0) σdB

n (59.9◦, 0) σdB
n (120.1◦, 0) σdB

n (180.0◦, 0)
35 -95.26308767 -104.7283471 -104.7901000 -93.60662218

45 -95.26308773 -104.7283471 -104.7900999 -93.60662217
55 -95.26308774 -104.7283471 -104.7900999 -93.60662217
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Table 8

Convergence of bistatic RCS for eryth(10λ) at 475.9THz for various observed angles (V-V
polarization).

n σdB
n (0.0◦, 0) σdB

n (59.9◦, 0) σdB
n (120.1◦, 0) σdB

n (180.0◦, 0)
55 -84.15631909 -107.9716243 -108.5694295 -75.08585121

65 -84.15631929 -107.9716914 -108.5694124 -75.08585126
75 -84.15631929 -107.9716925 -108.5694122 -75.08585127
85 -84.15631929 -107.9716925 -108.5694121 -75.08585127

Table 9

Convergence of bistatic RCS for sub(λ) at 15.0MHz for various observed angles (H-H polar-
ization).

n σdB
n (π/2, 0.0◦) σdB

n (π/2, 59.9◦) σdB
n (π/2, 120.1◦) σdB

n (π/2, 180.0◦)
65 -9.373283806 -21.40500784 -1.314272969 -21.59519924

75 -9.373250028 -21.40486747 -1.314287529 -21.59504994
85 -9.373233746 -21.40481200 -1.314291518 -21.59501892
95 -9.373225148 -21.40478591 -1.314292190 -21.59502340

Table 10

Convergence of bistatic RCS for sub(10λ) at 149.9MHz for various observed angles (H-H po-
larization).

n σdB
n (π/2, 0.0◦) σdB

n (π/2, 59.9◦) σdB
n (π/2, 120.1◦) σdB

n (π/2, 180.0◦)
95 -7.383375719 -5.795755529 3.729626885 11.10711087

105 -7.383132611 -5.795728691 3.729627319 11.10710545
115 -7.383109088 -5.795729699 3.729618894 11.10710286
125 -7.383096050 -5.795728967 3.729613469 11.10710325

Table 11

Convergence of monostatic RCS for cone sph(λ) at 435.10MHz for various observed angles
(V-V polarization).

n σdB
n (π/2, 0.0◦) σdB

n (π/2, 59.9◦) σdB
n (π/2, 120.1◦) σdB

n (π/2, 180.0◦)
65 -19.88430237 -15.40047977 -15.75751788 -19.98539600

75 -19.80017082 -15.37370602 -15.72647896 -19.87851607
85 -19.73890236 -15.35379602 -15.70245764 -19.79750201
95 -19.68627108 -15.33603751 -15.68130174 -19.72927847

Table 12

Convergence of monostatic RCS for cone sph(10λ) at 4.35GHz for various observed angles
(V-V polarization).

n σdB
n (π/2, 0.0◦) σdB

n (π/2, 59.9◦) σdB
n (π/2, 120.1◦) σdB

n (π/2, 180.0◦)
95 -19.24152606 -15.95918276 -30.14099402 -29.16753533

105 -19.44876757 -15.98494703 -30.17249637 -29.38451260
115 -19.47098794 -16.03618277 -30.28330884 -28.94057167
125 -19.43245611 -16.08937090 -30.41726902 -28.72183348
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Table 13

Performance of FastScat, FISC [25, p. 28] and GH (present). Scattering of a plane wave by a
sphere of diameter 5.4λ.

Algorithm Unknowns Computer/CPU CPU time εdB

FastScat 5400 Sparc 10 33688 secs 9.7e-02
(Nystrom)
FastScat 5400 Sparc 10 74956 secs 2.1e-02

(Galerkin)
FISC 5880 Sparc 10 37205 secs 7.2e-01

(Galerkin)
GH 1350 (n = 25) 1 × DcOp 39 secs 1.1e-06

Table 14

Performance of FISC [25, p. 28] and GH (present). Scattering of a plane wave by a sphere of
diameter 24λ.

Algorithm Unknowns Computer/CPU CPU time εdB

FISC 602112 SGI Power 12 hours 3.0e-01
Challenge R8000

GH 13120 (n = 80) 2 × DcOp 0.80 hours 5.7e-02
GH 13120 (n = 80) 4 × DcOp 0.48 hours 5.7e-02
GH 15840 (n = 88) 4 × DcOp 0.80 hours 1.5e-05

Table 15

CPU time for computing monostatic and bistatic RCS with direct solves for 1202 sampling
directions.

Geometry Unknowns Type CPU CPU time
eryth(λ) 6348 (n = 45) Bistatic 2 × DcOp 8.30 mins
eryth(λ) 6348 (n = 45) Monostatic 2 × DcOp 12.22 mins
eryth(10λ) 22188 (n = 85) Bistatic 8 × DcOp 1.13 hours
eryth(10λ) 22188 (n = 85) Monostatic 8 × DcOp 2.11 hours
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Scattered electric field |E(·, t)| and
surface current |w(·)| Bistatic RCS

Fig. 4. Visualizations of the scattered field, surface current, and bistatic RCS induced by a
horizontally polarized plane wave impinging on sph(10λ) at 3.0GHz with d̂0 = (−1, 0, 0)T .

Scattered electric field |E(·, t)| and
surface current |w(·)| Bistatic RCS

Fig. 5. Visualizations of the scattered field, surface current, and bistatic RCS induced by a
horizontally polarized plane wave impinging on hive(10λ) at 1.4GHz with d̂0 = (−1, 0, 0)T .
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Scattered electric field |E(·, t)| and
surface current |w(·)| Bistatic RCS

Fig. 6. Visualizations of the scattered field, surface current, and bistatic RCS induced by a
horizontally polarized plane wave impinging on cas(10λ) at 3.0GHz with d̂0 = (−1, 0, 0)T .

Scattered electric field |E(·, t)| and
surface current |w(·)| Bistatic RCS

Fig. 7. Visualizations of the scattered field, surface current, and bistatic RCS induced by a
horizontally polarized plane wave impinging on sub(10λ) at 149.9MHz with d̂0 = (−1, 0, 0)T .
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Scattered electric field |E(·, t)| and
surface current |w(·)| Bistatic RCS

Fig. 8. Visualizations of the scattered field, surface current, and bistatic RCS induced by a
horizontally polarized plane wave impinging on ery(10λ) at 475.9THz with d̂0 = (0, 0,−1)T .

Monostatic RCS and surface current Monostatic RCS

Fig. 9. Visualizations of the surface current and monostatic RCS induced by a vertically
polarized plane wave impinging on cone sph(10λ) at 4.35GHz.
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