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Setup

We denote the signals by xj, j ∈ {1, . . . , J}, and assume that each signal xj ∈ R
N . Our

DCS II model for joint sparsity concerns the case of multiple sparse signals that share
common sparse components, but with different coefficients. For example,

xj = Ψαj,

where each αj is supported only on Ω ⊂ {1, 2, . . . , N}, with |Ω| = K. The matrix Ψ is
orthonormal, with dimension N × N (we consider only signals sparse in an orthonormal
basis).

We denote by Φj the measurement matrix for signal j, where Φj is of dimension M ×N ,
where M < N . We let yj = Φjxj = ΦjΨαj be the observations of signal j.

We assume that the measurement matrix Φj is random with i.i.d entries taken from a
N (0, 1) distribution. Clearly, the matrix ΦjΨ also has i.i.d N (0, 1) entries, because Ψ is
orthonormal. For convenience, we assume Ψ to be identity IN×N . The results presented can
be easily extended to a more general orthonormal matrix Ψ by replacing Φj with ΦjΨ.

Recovery

After gathering all of the measurements, we compute the following statistic for each n ∈
{1, . . . , N}:

θn =

∑J

j=1
〈yj, φj,n〉2
J

, (1)

where φj,n denotes column n of measurement matrix Φj. To estimate Ω we choose the K
largest statistics θn. We have the following results.



Theorem 1 Assume the M × N measurement matrices Φj contain i.i.d. N (0, 1) entries
and that the coefficient vectors xj contain i.i.d. N (0, σ2) entries. Let yj = Φjxj and let θn

be defined as in Equation (1). The mean and variance of θn are given by

Eθn =

{

mb if n /∈ Ω
mg if n ∈ Ω

and

V ar(θn) =

{

σ2
b if n /∈ Ω

σ2
g if n ∈ Ω,

where

mb = MKσ2,

mg = M(M + K + 1)σ2,

σ2

b =
2MKσ4

J
(MK + 3K + 3M + 6), and

σ2

g =
Mσ4

J
(34MK + 6K2 + 28M2 + 92M + 48K + 90 + 2M 3 + 2MK2 + 4M2K).

Theorem 2 The one shot algorithm recovers Ω with a probability of success ps given by
approximately

ps ≈
1

2N−1

(N − K)

σb

√
2π

∫ ∞

−∞

[

1 + erf

(

x − mb

σb

√
2

)]N−K−1 [

1 − erf

(

x − mg

σg

√
2

)]K

exp

[

−
(

x − mb

σb

√
2

)2
]

dx.

Corollary 1 The one-stage algorithm recovers Ω with probability approaching 1 as J → ∞.

Remark 1 The mean and variance of θn are independent of N .

Remark 2 The variance of θn goes to zero as J → ∞.

Proof of Theorem 1

We first present a short sketch of the strategy we adopt to prove the result. The main idea is
to compute the statistics of 〈yj, φj,n〉 up to first four moments, for n ∈ Ω and n /∈ Ω. Based
on these results, we derive the mean and variance of θn.

We use the following ideas in our proof. Let X1 and X2 be two independent random
variables. Define random variables Y and Z as Y = X1 × X2 and Z = X1 + X2. Then, the
pth moment of Y — which we denote by mp(Y ) — is given by mp(Y ) = mp(X1) × mp(X2).
Furthermore, the pth cumulant [1] of Z — denoted by cp(Y ) — is given by cp(Z) = cp(X1)+
cp(X2). When we multiply independent random variables, we work with their moments.
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While working with the sum of independent random variables, we work with their cumulants.
We use the standard formulae [1] to convert from moments to cumulants and vice versa.

We use the notation X = Moments(m1, m2, ..., mp) to keep track of the first p moments
of the random variable X. Likewise, we denote X = Cumulants(c1, c2, ..., cp) to keep track
of the first p cumulants of X. The conversion from cumulants to moments and vice versa
for up to two orders is as follows:

Cumulants(c1, c2) ≡ Moments(m1, m2)

if c1 = m1, and m2 = c2 + c2
1 (or equivalently c2 = m2−m2

1). The first and second cumulants
correspond, respectively, to the mean and variance.

We also use the results for the moments of a Gaussian Random variable X ∼ N (0, 1):
EX4 = 3 and EX6 = 15.

We begin by computing statistics of operations on the columns of the matrix Φj. These
results are presented in the form of five Lemmas.

Lemma 1 For 1 ≤ j ≤ J , 1 ≤ n, l ≤ N and n 6= l,

E〈φj,n, φj,l〉2 = M.

Proof of Lemma: Let φj,n be the column vector [a1, a2, ..., aM ]T , where each element in
the vector is iid N (0, 1). Likewise, let φj,l be the column vector [b1, b2, ..., bM ]T where the
elements are iid N (0, 1). We have

〈φj,n, φj,l〉2 = (a1b1 + a2b2 + ...aMbM)2

=
M
∑

q=1

a2

qb
2

q + 2
M−1
∑

q=1

M
∑

r=q+1

aqarbqbr.

Taking expectations,

E
[

〈φj,n, φj,l〉2
]

= E

[

M
∑

q=1

a2

qb
2

q

]

+ 2E

[

M−1
∑

q=1

M
∑

r=q+1

aqarbqbr

]

=
M
∑

q=1

E(a2

qb
2

q) + 2
M−1
∑

q=1

M
∑

r=q+1

E(aqarbqbr)

=

M
∑

q=1

E(a2

q)E(b2

q) + 2

M−1
∑

q=1

M
∑

r=q+1

EaqEarEbqEbr

(because the random variables are independent)

=
M
∑

q=1

(1) + 0

(because E(a2

q) = E(b2

q) = 1 and E(aq) = E(bq) = 0)

= M.
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This completes the proof of the Lemma.

Lemma 2 For 1 ≤ j ≤ J , 1 ≤ n, l ≤ N and n 6= l,

E〈φj,n, φj,l〉4 = 3M(M + 2).

Proof of Lemma: As before, let φj,n be the column vector [a1, a2, ..., aM ]T , where each
element in the vector is iid N (0, 1). Likewise, let φj,l be the column vector [b1, b2, ..., bM ]T

where the elements are iid N (0, 1). We have

E〈φj,n, φj,l〉4 = E(a1b1 + a2b2 + ...aMbM )4

= E

[

M
∑

q=1

a4

qb
4

q

]

+

(

4

2

)

E

[

M−1
∑

q=1

M
∑

r=q+1

(aqbq)
2(arbr)

2

]

+E(cross terms with zero expectation)

=
M
∑

q=1

Ea4

qEb4

q + 6
M−1
∑

q=1

M
∑

r=q+1

Ea2

qEb2

qEa2

rEb2

r (by independence)

= 9M + 6
M(M − 1)

2
(because Ea4

q = 3 and Ea2

q = 1)

= 3M(M + 2).

This completes the proof of the Lemma.

Lemma 3 For 1 ≤ j ≤ J , 1 ≤ n, l, q ≤ N and unique n, l and q,

E
[

〈φj,n, φj,l〉2〈φj,n, φj,q〉2
]

= M(M + 2).

Proof of Lemma: As before, let φj,n be the column vector [a1, a2, ..., aM ]T , where each
element in the vector is iid N (0, 1). Likewise, let φj,n be the column vector [b1, b2, ..., bM ]T

and φj,q be the column vector [c1, c2, ..., cM ]T . From the statement of the Lemma,

LHS = E
[

〈φj,n, φj,l〉2〈φj,n, φj,q〉2
]

= E
[

(a1b1 + a2b2 + ...aMbM )2(a1c1 + a2c2 + ...aMcM)2
]

= E

[(

M
∑

r=1

a2

rb
2

r +
M
∑

r=1

M
∑

s=1,s6=r

arbrasbs

)(

M
∑

r=1

a2

rc
2

r +
M
∑

r=1

M
∑

s=1,s6=r

arcrascs

)]

.
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Collecting only those terms with non-zero expectations,

LHS = E

[

M
∑

r=1

a4

rb
2

rc
2

r +
M
∑

r=1

M
∑

s=1,s6=r

a2

ra
2

sb
2

rc
2

s

]

=

M
∑

r=1

Ea4

rEb2

rEc2

r +

M
∑

r=1

m
∑

s=1,s6=r

Ea2

rEa2

sEb2

rEc2

s

= 3M + M(M − 1)

= M(M + 2).

Jhis completes the proof of the Lemma.

Lemma 4 For 1 ≤ j ≤ J , 1 ≤ n, l ≤ N and n 6= l,

E
[

‖φj,l‖4〈φj,n, φj,l〉2
]

= M(M + 2)(M + 4).

Proof of Lemma: As before, let φj,n be the column vector [a1, a2, ..., aM ]T , where each
element in the vector is iid N (0, 1). Likewise, let φj,l be the column vector [b1, b2, ..., bM ]T

where the elements are iid N (0, 1). We have

E
[

‖φj,l‖4〈φj,n, φj,l〉2
]

= E
[

(a2

1 + a2

2 + ...a2

M )2(a1b1 + a2b2 + ...aMbM)2
]

= E

[(

M
∑

r=1

a4

r +

M
∑

r=1

M
∑

s=1,s6=r

a2

ra
2

s

)(

M
∑

r=1

a2

rb
2

r +

M
∑

r=1

M
∑

s=1,s6=r

arbrasbs

)]

.

Collecting only the terms with non-zero expectations,

E
[

‖φj,l‖4〈φj,n, φj,l〉2
]

= E

[

M
∑

r=1

a6

rb
2

r +
M
∑

r=1

M
∑

s=1,s6=r

a4

ra
2

sb
2

s

+ 2

M
∑

r=1

M
∑

s=1,s6=r

a4

ra
2

sb
2

r +

M
∑

r=1

M
∑

s=1,s6=r

M
∑

t=1,t6=r,s

a2

ra
2

sa
2

t b
2

t

]

= 15M + 3M(M − 1) + 6M(M − 1) + M(M − 1)(M − 2)

(because for X ∼ N (0, 1), EX4 = 3 and EX6 = 15)

= M(M + 2)(M + 4).

This completes the proof of the Lemma.

Lemma 5 For 1 ≤ j ≤ J , E‖φj,l‖4 = M(M +2), and E‖φj,l‖8 = M(M +2)(M +4)(M +6).

Proof of Lemma: Let φj,n be the column vector [a1, a2, ..., aM ]T , Define the random variable

Z = ‖φj,l‖2 =
∑M

q=1
a2

q. From the theory of random variables, we know that Z is chi-

squared distributed with m degrees of freedom. Thus, EZ2 = M(M + 2) and EZ4 =
M(M + 2)(M + 4)(M + 6), which proves the lemma.
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Statistics of θn when n /∈ Ω

Assume without loss of generality that Ω = {1, 2, . . . , K} for convenience of presentation.
Let us compute the mean and variance of the test statistic θn for the case when n /∈ Ω.
Consider one of these statistics by choosing n = K + 1.

Let B = 〈yj, φj,K+1〉 =
∑K

l=1
xi(l)〈φj,l, φj,K+1〉. Clearly, the expectations of odd powers

of B are zero, because E(xj(l)) = 0 and xj(l) is independent of the other factors in each
term of the summation. We will now compute EB2 and EB4. First, consider EB2.

EB2 = E

[

K
∑

l=1

xj(l)〈φj,l, φj,K+1〉
]2

= E

[

K
∑

l=1

(xj(l))
2 (〈φj,l, φj,K+1〉)2

]

+ E

[

K
∑

q=1

K
∑

l=1,l 6=q

xj(l)xj(q)〈φj,l, φj,K+1〉〈φj,q, φj,K+1〉
]

=
K
∑

l=1

E (xj(l))
2 E (〈φj,l, φj,K+1〉)2 +

K
∑

q=1

K
∑

l=1,l 6=q

E(xj(l))E(xj(q))E(〈φj,l, φj,K+1〉〈φj,q, φj,K+1〉)

(because the terms are independent)

=
K
∑

l=1

E (xj(l))
2 E (〈φj,l, φj,K+1〉)2 (because E(xj(l)) = E(xj(q)) = 0)

=

K
∑

l=1

σ2M (from Lemma 1)

= MKσ2.

Next, consider EB4.

EB4 = E

[

K
∑

l=1

xi(l)〈φj,l, φj,K+1〉
]4

= E

[

K
∑

l=1

(xj(l))
4 (〈φj,l, φj,K+1〉)4

]

+

(

4

2

)

E

[

K
∑

q=1

K
∑

l=1,l 6=q

(xj(l))
2(xj(q))

2(〈φj,l, φj,K+1〉)2(〈φj,q, φj,K+1〉)2

]

.

The cross terms that involve xj(l), xj(q), (xj(l))
3, (xj(q))

3 factors have zero expectation, and
hence not shown in the above equation. To explain the

(

4

2

)

factor in the above expression,
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note that we have
(

4

2

)

ways of obtaining the product of two squared factors when we expand
EB4. Thus,

EB4 =
K
∑

l=1

E (xj(l))
4 E (〈φj,l, φj,K+1〉)4 +

6

K
∑

q=1

K
∑

l=1,l 6=q

E(xj(l))
2E(xj(q))

2E(〈φj,l, φj,K+1〉2〈φj,q, φj,K+1〉2)

(because the terms are independent)

Let us consider the two terms in the above equation separately. Simplifying the first term,
we get

K
∑

l=1

E (xj(l))
4 E (〈φj,l, φj,K+1〉)4 = 3kσ2E (〈φj,l, φj,K+1〉)4

= 9Kσ4M(M + 2) (from Lemma 2).

The second term can be reduced to

6
K
∑

q=1

K
∑

l=1,l 6=q

E(xj(l))
2E(xj(q))

2E(〈φj,l, φj,K+1〉2〈φj,q, φj,K+1〉2)

= 6
K(K − 1)

2
σ4M(M + 2) (from Lemma 3)

= 3σ4K(K − 1)M(M + 2).

Summing the two terms, we get

EB4 = 9Kσ4M(M + 2) + 3σ4K(K − 1)M(M + 2)

= 3MKσ4(M + 2)(K + 2).

Thus, we have

B = 〈yj, φj,K+1〉 = Moments(0, MKσ2, 0, 3MKσ4(M + 2)(K + 2)).

Thus the first two moments for 〈yj, φj,K+1〉2 are

〈yj, φj,K+1〉2 = Moments(MKσ2, 3MKσ4(M + 2)(K + 2)).

Writing in terms of cumulants,

〈yj, φj,K+1〉2 = Cumulants(MKσ2, 3MKσ4(M + 2)(K + 2) − M 2K2σ4)

= Cumulants
(

MKσ2, 2MKσ4(MK + 3K + 3M + 6)
)

.
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Summing J such independent random variables,

J
∑

j=1

〈yj, φj,K+1〉2 = Cumulants
(

MKJσ2, 2MKJσ4(MK + 3K + 3M + 6)
)

.

Dividing by J ,

1

J

J
∑

j=1

〈yj, φj,K+1〉2 = Cumulants

(

MKσ2,
2MKσ4

J
(MK + 3K + 3M + 6)

)

.

The above equation gives the mean and the variance of the test statistic θn when n /∈ Ω.

Statistics of θn when n ∈ Ω

Again, we assume without loss of generality that Ω = {1, 2, . . . , K} for ease of presentation.
Let us compute the mean and variance of the test statistic θn for the case when n ∈ Ω.
Consider one of these statistics by choosing n = 1.

Let G = 〈yj, φj,1〉 = xj(1)‖φj,1‖2 +
∑K

l=2
xj(l)〈φj,l, φj,1〉. As before, the expectations of

odd powers of G are zero, because of the leading xj(.) factor in each term. We will now
compute EG2 and EG4. First, consider EG2.

EG2 = E

[

xj(1)‖φj,1‖2 +

K
∑

l=2

xj(l)〈φj,l, φj,1〉
]2

= E
[

(xj(1))2 ‖φj,1‖4
]

+ E

[

K
∑

l=2

(xj(l))
2 〈φj,l, φj,1〉2

]

(All other cross terms have zero expectation)

= E (xj(1))2 E‖φj,1‖4 +

K
∑

l=2

E (xj(l))
2 E〈φj,l, φj,1〉2 (by independence)

= σ2M(M + 2) + (K − 1)σ2M (from Lemmas 1 and 5)

= M(M + K + 1)σ2.
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Next, consider EG4.

EG4 = E

[

xj(1)‖φj,1‖2 +

K
∑

l=2

xj(l)〈φj,l, φj,1〉
]4

= E
[

xj(1)‖φj,1‖2
]4

+E

[

K
∑

l=2

xj(l)〈φj,l, φj,1〉
]4

+

(

4

2

)

E





(

xj(1)‖φj,1‖2
)2

(

K
∑

l=2

xj(l)〈φj,l, φj,1〉
)2




(all other cross terms have zero expectation).

We use the result from Lemma 5 to simplify the first term, and the result from the fourth
moment of the statistic θn when n /∈ Ω for the second term, to get

EG4 = 3σ4M(M + 2)(M + 4)(M + 6) + 3M(K − 1)σ4(M + 2)(K + 1)

+6E





(

xj(1)‖φj,1‖2
)2

(

K
∑

l=2

xj(l)〈φj,l, φj,1〉
)2


 . (2)

The last term in the above equation can be written as

E





(

xj(1)‖φj,1‖2
)2

(

K
∑

l=2

xj(l)〈φj,l, φj,1〉
)2


 = E

[

(xj(1))2 ‖φj,1‖4

K
∑

l=2

(xj(l))
2 〈φj,l, φj,1〉2

]

(all other cross terms have zero expectation)

= σ4E

[

K
∑

l=2

‖φj,1‖4〈φj,l, φj,1〉2
]

= σ4(K − 1)E
[

‖φj,1‖4〈φj,2, φj,1〉2
]

= σ4(K − 1)M(M + 2)(M + 4)

(using result from Lemma 4).

Substituting this result in Equation 2, we get

EG4 = 3σ4M(M + 2)(M + 4)(M + 6) + 3M(K − 1)σ4(M + 2)(K + 1)

+6(K − 1)M(M + 2)(M + 4)σ4

= 3Mσ4(M3 + 10M2 + 31M + MK2 + 2M2K + 12MK + 2K2 + 16K + 30)

Thus, we have

G = 〈yj, φj,1〉 = Moments(0, Mσ2(M + K + 1), 0,

3mσ4(M3 + 10M2 + 31M + MK2 + 2M2K + 12MK + 2K2 + 16K + 30)).
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Thus the first two moments of 〈yj, φj,1〉2 are

〈yj, φj,1〉2 = Moments(Mσ2(M + K + 1),

3Mσ4(M3 + 10M2 + 31M + MK2 + 2M2K + 12MK + 2K2 + 16K + 30)).

In terms of cumulants,

〈yj, φj,1〉2 = Cumulants(Mσ2(M + K + 1),

3Mσ4(M3 + 10M2 + 31M + MK2 + 2M2K + 12MK + 2K2 + 16K + 30)

− M2σ4(M + K + 1)2)

= Cumulants(Mσ2(M + K + 1),

Mσ4(34MK + 6K2 + 28M2 + 92M + 48K + 90 + 2M 3 + 2MK2 + 4M2K)).

Summing J such random variables,

J
∑

j=1

〈yj, φj,1〉2 = Cumulants(JMσ2(M + K + 1),

JMσ4(34MK + 6K2 + 28M2 + 92M + 48K + 90 + 2M 3 + 2MK2 + 4M2K)).

Dividing by J ,

1

J

J
∑

j=1

〈yj, φj,1〉2 = Cumulants(Mσ2(M + K + 1),

Mσ4

J
(34MK + 6K2 + 28M2 + 92M + 48K + 90 + 2M 3 + 2MK2 + 4M2K)).

The above equation gives the mean and the variance of the test statistic θn when n ∈ Ω.

Proof of Theorem 2

The statistic θn is the mean of J independent random variables 〈yj, φj,n〉. For large J , we
can invoke the central limit theorem [2–5] to argue that the distribution of θn is Gaussian
with mean and variance as given in Theorem 1.

The one shot algorithm successfully recovers Ω if the following condition is satisfied:
[max(θn), n /∈ Ω] < [min(θn), n ∈ Ω]. To compute the probability that the above condition
holds, we derive the equations that describe the distributions for the maximum and minimum,
respectively, of θn when n /∈ Ω and when n ∈ Ω. Define θmax , [max(θn), n /∈ Ω], and
θmin , [min(θn), n ∈ Ω].

Let x be an arbitrary real number. For n /∈ Ω, the probability that the statistic θn is less
than x is given by its cumulative distribution function (CDF):

Pr[θn < x] =
1

2

(

1 + erf

(

x − mb

σb

√
2

))

.
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Since the cardinality of the set Ω′ is N − K, the probability that all the corresponding
statistics θn, n /∈ Ω are less than x is given by the CDF of θmax:

Pr[θmax < x] =
1

2N−K

(

1 + erf

(

x − mb

σb

√
2

))N−K

. (3)

The above equation assumes that the statistics θn are independent. In reality, this assump-
tion is not valid. However, we make this assumption in order to get an approximate result.

Using similar arguments, the probability that all the corresponding statistics θn, n ∈ Ω
are greater than x is given by

Pr[min(θn, n ∈ Ω) > x] = Pr[θmin > x] =
1

2K

(

1 − erf

(

x − mg

σg

√
2

))K

.

For a given x, the probability that θmax lies between x and x + dx can be computed using
the probability density function (PDF) of θmax. The PDF of θmax in turn can be computed
by differentiating its CDF as given by Eqauation 3. Thus,

Pr(θmax ∈ [x, x + dx]) =
d

dx

[

1

2N−K

(

1 + erf

(

x − mb

σb

√
2

))N−K
]

dx

=
1

2N−K−1

(N − K)

σb

√
2π

exp

[

−
(

x − mb

σb

√
2

)2
]

(

1 + erf

(

x − mb

σb

√
2

))N−K

dx.

Thus the probability of successfully recovering Ω is given by

ps =

∫ x=∞

x=−∞

Pr(θmax ∈ [x, x + dx]).P r(θmin > x)

=
1

2N−1

(N − K)

σb

√
2π

∫ ∞

−∞

[

1 + erf

(

x − mb

σb

√
2

)]N−K−1 [

1 − erf

(

x − mg

σg

√
2

)]K

exp

[

−
(

x − mb

σb

√
2

)2
]

dx.

This proves Theorem 2.
Since we assumed independence between the statistics θn, the above is only an approxi-

mation. Figure 1 illustrates the approximation formula given by Theorem 2 by comparing
with simulation results.
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Figure 1: Illustration of the approximate formula given by Theorem 2. The solid lines

correspond to simulation results, and the dashed lines correspond to the formula given by
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