Analysis of the DCS one-stage Greedy Algorothm for Common Sparse Supports

Shriram Sarvotham, Michael B. Wakin, Dror Baron, Marco F. Duarte and Richard G. Baraniuk

October 5, 2005

Setup

We denote the signals by $x_{j}, j \in\{1, \ldots, J\}$, and assume that each signal $x_{j} \in \mathbb{R}^{N}$. Our DCS II model for joint sparsity concerns the case of multiple sparse signals that share common sparse components, but with different coefficients. For example,

$$
x_{j}=\Psi \alpha_{j},
$$

where each α_{j} is supported only on $\Omega \subset\{1,2, \ldots, N\}$, with $|\Omega|=K$. The matrix Ψ is orthonormal, with dimension $N \times N$ (we consider only signals sparse in an orthonormal basis).

We denote by Φ_{j} the measurement matrix for signal j, where Φ_{j} is of dimension $M \times N$, where $M<N$. We let $y_{j}=\Phi_{j} x_{j}=\Phi_{j} \Psi \alpha_{j}$ be the observations of signal j.

We assume that the measurement matrix Φ_{j} is random with i.i.d entries taken from a $\mathcal{N}(0,1)$ distribution. Clearly, the matrix $\Phi_{j} \Psi$ also has i.i.d $\mathcal{N}(0,1)$ entries, because Ψ is orthonormal. For convenience, we assume Ψ to be identity $I_{N \times N}$. The results presented can be easily extended to a more general orthonormal matrix Ψ by replacing Φ_{j} with $\Phi_{j} \Psi$.

Recovery

After gathering all of the measurements, we compute the following statistic for each $n \in$ $\{1, \ldots, N\}$:

$$
\begin{equation*}
\theta_{n}=\frac{\sum_{j=1}^{J}\left\langle y_{j}, \phi_{j, n}\right\rangle^{2}}{J} \tag{1}
\end{equation*}
$$

where $\phi_{j, n}$ denotes column n of measurement matrix Φ_{j}. To estimate Ω we choose the K largest statistics θ_{n}. We have the following results.

Theorem 1 Assume the $M \times N$ measurement matrices Φ_{j} contain i.i.d. $\mathcal{N}(0,1)$ entries and that the coefficient vectors x_{j} contain i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ entries. Let $y_{j}=\Phi_{j} x_{j}$ and let θ_{n} be defined as in Equation (1). The mean and variance of θ_{n} are given by

$$
E \theta_{n}=\left\{\begin{array}{lll}
m_{b} & \text { if } n \notin \Omega \\
m_{g} & \text { if } n \in \Omega
\end{array}\right.
$$

and

$$
\operatorname{Var}\left(\theta_{n}\right)=\left\{\begin{array}{lll}
\sigma_{b}^{2} & \text { if } n \notin \Omega \\
\sigma_{g}^{2} & \text { if } n \in \Omega
\end{array}\right.
$$

where

$$
\begin{aligned}
m_{b} & =M K \sigma^{2} \\
m_{g} & =M(M+K+1) \sigma^{2}, \\
\sigma_{b}^{2} & =\frac{2 M K \sigma^{4}}{J}(M K+3 K+3 M+6), \quad \text { and } \\
\sigma_{g}^{2} & =\frac{M \sigma^{4}}{J}\left(34 M K+6 K^{2}+28 M^{2}+92 M+48 K+90+2 M^{3}+2 M K^{2}+4 M^{2} K\right) .
\end{aligned}
$$

Theorem 2 The one shot algorithm recovers Ω with a probability of success p_{s} given by approximately
$p_{s} \approx \frac{1}{2^{N-1}} \frac{(N-K)}{\sigma_{b} \sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[1+\operatorname{erf}\left(\frac{x-m_{b}}{\sigma_{b} \sqrt{2}}\right)\right]^{N-K-1}\left[1-\operatorname{erf}\left(\frac{x-m_{g}}{\sigma_{g} \sqrt{2}}\right)\right]^{K} \exp \left[-\left(\frac{x-m_{b}}{\sigma_{b} \sqrt{2}}\right)^{2}\right] d x$.
Corollary 1 The one-stage algorithm recovers Ω with probability approaching 1 as $J \rightarrow \infty$.

Remark 1 The mean and variance of θ_{n} are independent of N.
Remark 2 The variance of θ_{n} goes to zero as $J \rightarrow \infty$.

Proof of Theorem 1

We first present a short sketch of the strategy we adopt to prove the result. The main idea is to compute the statistics of $\left\langle y_{j}, \phi_{j, n}\right\rangle$ up to first four moments, for $n \in \Omega$ and $n \notin \Omega$. Based on these results, we derive the mean and variance of θ_{n}.

We use the following ideas in our proof. Let X_{1} and X_{2} be two independent random variables. Define random variables Y and Z as $Y=X_{1} \times X_{2}$ and $Z=X_{1}+X_{2}$. Then, the $p^{t h}$ moment of Y - which we denote by $m_{p}(Y)$ - is given by $m_{p}(Y)=m_{p}\left(X_{1}\right) \times m_{p}\left(X_{2}\right)$. Furthermore, the $p^{t h}$ cumulant [1] of Z - denoted by $c_{p}(Y)$ - is given by $c_{p}(Z)=c_{p}\left(X_{1}\right)+$ $c_{p}\left(X_{2}\right)$. When we multiply independent random variables, we work with their moments.

While working with the sum of independent random variables, we work with their cumulants. We use the standard formulae [1] to convert from moments to cumulants and vice versa.

We use the notation $X=\operatorname{Moments}\left(m_{1}, m_{2}, \ldots, m_{p}\right)$ to keep track of the first p moments of the random variable X. Likewise, we denote $X=\operatorname{Cumulants}\left(c_{1}, c_{2}, \ldots, c_{p}\right)$ to keep track of the first p cumulants of X. The conversion from cumulants to moments and vice versa for up to two orders is as follows:

$$
\operatorname{Cumulants}\left(c_{1}, c_{2}\right) \equiv \operatorname{Moments}\left(m_{1}, m_{2}\right)
$$

if $c_{1}=m_{1}$, and $m_{2}=c_{2}+c_{1}^{2}$ (or equivalently $c_{2}=m_{2}-m_{1}^{2}$). The first and second cumulants correspond, respectively, to the mean and variance.

We also use the results for the moments of a Gaussian Random variable $X \sim \mathcal{N}(0,1)$: $E X^{4}=3$ and $E X^{6}=15$.

We begin by computing statistics of operations on the columns of the matrix Φ_{j}. These results are presented in the form of five Lemmas.

Lemma 1 For $1 \leq j \leq J, 1 \leq n, l \leq N$ and $n \neq l$,

$$
E\left\langle\phi_{j, n}, \phi_{j, l}\right\rangle^{2}=M
$$

Proof of Lemma: Let $\phi_{j, n}$ be the column vector $\left[a_{1}, a_{2}, \ldots, a_{M}\right]^{T}$, where each element in the vector is iid $\mathcal{N}(0,1)$. Likewise, let $\phi_{j, l}$ be the column vector $\left[b_{1}, b_{2}, \ldots, b_{M}\right]^{T}$ where the elements are iid $\mathcal{N}(0,1)$. We have

$$
\begin{aligned}
\left\langle\phi_{j, n}, \phi_{j, l}\right\rangle^{2} & =\left(a_{1} b_{1}+a_{2} b_{2}+\ldots a_{M} b_{M}\right)^{2} \\
& =\sum_{q=1}^{M} a_{q}^{2} b_{q}^{2}+2 \sum_{q=1}^{M-1} \sum_{r=q+1}^{M} a_{q} a_{r} b_{q} b_{r} .
\end{aligned}
$$

Taking expectations,

$$
\begin{aligned}
E\left[\left\langle\phi_{j, n}, \phi_{j, l}\right\rangle^{2}\right] & =E\left[\sum_{q=1}^{M} a_{q}^{2} b_{q}^{2}\right]+2 E\left[\sum_{q=1}^{M-1} \sum_{r=q+1}^{M} a_{q} a_{r} b_{q} b_{r}\right] \\
& =\sum_{q=1}^{M} E\left(a_{q}^{2} b_{q}^{2}\right)+2 \sum_{q=1}^{M-1} \sum_{r=q+1}^{M} E\left(a_{q} a_{r} b_{q} b_{r}\right) \\
& =\sum_{q=1}^{M} E\left(a_{q}^{2}\right) E\left(b_{q}^{2}\right)+2 \sum_{q=1}^{M-1} \sum_{r=q+1}^{M} E a_{q} E a_{r} E b_{q} E b_{r} \\
& =\sum_{q=1}^{M}(1)+0 \\
& =M .
\end{aligned}
$$

This completes the proof of the Lemma.
Lemma 2 For $1 \leq j \leq J, 1 \leq n, l \leq N$ and $n \neq l$,

$$
E\left\langle\phi_{j, n}, \phi_{j, l}\right\rangle^{4}=3 M(M+2)
$$

Proof of Lemma: As before, let $\phi_{j, n}$ be the column vector $\left[a_{1}, a_{2}, \ldots, a_{M}\right]^{T}$, where each element in the vector is iid $\mathcal{N}(0,1)$. Likewise, let $\phi_{j, l}$ be the column vector $\left[b_{1}, b_{2}, \ldots, b_{M}\right]^{T}$ where the elements are iid $\mathcal{N}(0,1)$. We have

$$
\begin{aligned}
E\left\langle\phi_{j, n}, \phi_{j, l}\right\rangle^{4}= & E\left(a_{1} b_{1}+a_{2} b_{2}+\ldots a_{M} b_{M}\right)^{4} \\
= & E\left[\sum_{q=1}^{M} a_{q}^{4} b_{q}^{4}\right]+\binom{4}{2} E\left[\sum_{q=1}^{M-1} \sum_{r=q+1}^{M}\left(a_{q} b_{q}\right)^{2}\left(a_{r} b_{r}\right)^{2}\right] \\
& +E(\text { cross terms with zero expectation) } \\
= & \sum_{q=1}^{M} E a_{q}^{4} E b_{q}^{4}+6 \sum_{q=1}^{M-1} \sum_{r=q+1}^{M} E a_{q}^{2} E b_{q}^{2} E a_{r}^{2} E b_{r}^{2} \quad \text { (by independence) } \\
= & \left.9 M+6 \frac{M(M-1)}{2} \quad \text { (because } E a_{q}^{4}=3 \text { and } E a_{q}^{2}=1\right) \\
= & 3 M(M+2) .
\end{aligned}
$$

This completes the proof of the Lemma.
Lemma 3 For $1 \leq j \leq J, 1 \leq n, l, q \leq N$ and unique n, l and q,

$$
E\left[\left\langle\phi_{j, n}, \phi_{j, l}\right\rangle^{2}\left\langle\phi_{j, n}, \phi_{j, q}\right\rangle^{2}\right]=M(M+2)
$$

Proof of Lemma: As before, let $\phi_{j, n}$ be the column vector $\left[a_{1}, a_{2}, \ldots, a_{M}\right]^{T}$, where each element in the vector is iid $\mathcal{N}(0,1)$. Likewise, let $\phi_{j, n}$ be the column vector $\left[b_{1}, b_{2}, \ldots, b_{M}\right]^{T}$ and $\phi_{j, q}$ be the column vector $\left[c_{1}, c_{2}, \ldots, c_{M}\right]^{T}$. From the statement of the Lemma,

$$
\begin{aligned}
L H S & =E\left[\left\langle\phi_{j, n}, \phi_{j, l}\right\rangle^{2}\left\langle\phi_{j, n}, \phi_{j, q}\right\rangle^{2}\right] \\
& =E\left[\left(a_{1} b_{1}+a_{2} b_{2}+\ldots a_{M} b_{M}\right)^{2}\left(a_{1} c_{1}+a_{2} c_{2}+\ldots a_{M} c_{M}\right)^{2}\right] \\
& =E\left[\left(\sum_{r=1}^{M} a_{r}^{2} b_{r}^{2}+\sum_{r=1}^{M} \sum_{s=1, s \neq r}^{M} a_{r} b_{r} a_{s} b_{s}\right)\left(\sum_{r=1}^{M} a_{r}^{2} c_{r}^{2}+\sum_{r=1}^{M} \sum_{s=1, s \neq r}^{M} a_{r} c_{r} a_{s} c_{s}\right)\right] .
\end{aligned}
$$

Collecting only those terms with non-zero expectations,

$$
\begin{aligned}
L H S & =E\left[\sum_{r=1}^{M} a_{r}^{4} b_{r}^{2} c_{r}^{2}+\sum_{r=1}^{M} \sum_{s=1, s \neq r}^{M} a_{r}^{2} a_{s}^{2} b_{r}^{2} c_{s}^{2}\right] \\
& =\sum_{r=1}^{M} E a_{r}^{4} E b_{r}^{2} E c_{r}^{2}+\sum_{r=1}^{M} \sum_{s=1, s \neq r}^{m} E a_{r}^{2} E a_{s}^{2} E b_{r}^{2} E c_{s}^{2} \\
& =3 M+M(M-1) \\
& =M(M+2) .
\end{aligned}
$$

Jhis completes the proof of the Lemma.
Lemma 4 For $1 \leq j \leq J, 1 \leq n, l \leq N$ and $n \neq l$,

$$
E\left[\left\|\phi_{j, l}\right\|^{4}\left\langle\phi_{j, n}, \phi_{j, l}\right\rangle^{2}\right]=M(M+2)(M+4) .
$$

Proof of Lemma: As before, let $\phi_{j, n}$ be the column vector $\left[a_{1}, a_{2}, \ldots, a_{M}\right]^{T}$, where each element in the vector is iid $\mathcal{N}(0,1)$. Likewise, let $\phi_{j, l}$ be the column vector $\left[b_{1}, b_{2}, \ldots, b_{M}\right]^{T}$ where the elements are iid $\mathcal{N}(0,1)$. We have

$$
\begin{aligned}
E\left[\left\|\phi_{j, l}\right\|^{4}\left\langle\phi_{j, n}, \phi_{j, l}\right\rangle^{2}\right] & =E\left[\left(a_{1}^{2}+a_{2}^{2}+\ldots a_{M}^{2}\right)^{2}\left(a_{1} b_{1}+a_{2} b_{2}+\ldots a_{M} b_{M}\right)^{2}\right] \\
& =E\left[\left(\sum_{r=1}^{M} a_{r}^{4}+\sum_{r=1}^{M} \sum_{s=1, s \neq r}^{M} a_{r}^{2} a_{s}^{2}\right)\left(\sum_{r=1}^{M} a_{r}^{2} b_{r}^{2}+\sum_{r=1}^{M} \sum_{s=1, s \neq r}^{M} a_{r} b_{r} a_{s} b_{s}\right)\right] .
\end{aligned}
$$

Collecting only the terms with non-zero expectations,

$$
\begin{aligned}
E\left[\left\|\phi_{j, l}\right\|^{4}\left\langle\phi_{j, n}, \phi_{j, l}\right\rangle^{2}\right]= & E\left[\sum_{r=1}^{M} a_{r}^{6} b_{r}^{2}+\sum_{r=1}^{M} \sum_{s=1, s \neq r}^{M} a_{r}^{4} a_{s}^{2} b_{s}^{2}\right. \\
& \left.+2 \sum_{r=1}^{M} \sum_{s=1, s \neq r}^{M} a_{r}^{4} a_{s}^{2} b_{r}^{2}+\sum_{r=1}^{M} \sum_{s=1, s \neq r}^{M} \sum_{t=1, t \neq r, s}^{M} a_{r}^{2} a_{s}^{2} a_{t}^{2} b_{t}^{2}\right] \\
= & 15 M+3 M(M-1)+6 M(M-1)+M(M-1)(M-2) \\
& \text { (because for } \left.X \sim \mathcal{N}(0,1), E X^{4}=3 \text { and } E X^{6}=15\right) \\
= & M(M+2)(M+4) .
\end{aligned}
$$

This completes the proof of the Lemma.
Lemma 5 For $1 \leq j \leq J, E\left\|\phi_{j, l}\right\|^{4}=M(M+2)$, and $E\left\|\phi_{j, l}\right\|^{8}=M(M+2)(M+4)(M+6)$.

Proof of Lemma: Let $\phi_{j, n}$ be the column vector $\left[a_{1}, a_{2}, \ldots, a_{M}\right]^{T}$, Define the random variable $Z=\left\|\phi_{j, l}\right\|^{2}=\sum_{q=1}^{M} a_{q}^{2}$. From the theory of random variables, we know that Z is chisquared distributed with m degrees of freedom. Thus, $E Z^{2}=M(M+2)$ and $E Z^{4}=$ $M(M+2)(M+4)(M+6)$, which proves the lemma.

Statistics of θ_{n} when $n \notin \Omega$

Assume without loss of generality that $\Omega=\{1,2, \ldots, K\}$ for convenience of presentation. Let us compute the mean and variance of the test statistic θ_{n} for the case when $n \notin \Omega$. Consider one of these statistics by choosing $n=K+1$.

Let $B=\left\langle y_{j}, \phi_{j, K+1}\right\rangle=\sum_{l=1}^{K} x_{i}(l)\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle$. Clearly, the expectations of odd powers of B are zero, because $E\left(x_{j}(l)\right)=0$ and $x_{j}(l)$ is independent of the other factors in each term of the summation. We will now compute $E B^{2}$ and $E B^{4}$. First, consider $E B^{2}$.

$$
\begin{aligned}
E B^{2}= & E\left[\sum_{l=1}^{K} x_{j}(l)\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\right]^{2} \\
= & E\left[\sum_{l=1}^{K}\left(x_{j}(l)\right)^{2}\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\right)^{2}\right]+E\left[\sum_{q=1}^{K} \sum_{l=1, l \neq q}^{K} x_{j}(l) x_{j}(q)\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\left\langle\phi_{j, q}, \phi_{j, K+1}\right\rangle\right] \\
= & \sum_{l=1}^{K} E\left(x_{j}(l)\right)^{2} E\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\right)^{2}+ \\
& \sum_{q=1}^{K} \sum_{l=1, l \neq q}^{K} E\left(x_{j}(l)\right) E\left(x_{j}(q)\right) E\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\left\langle\phi_{j, q}, \phi_{j, K+1}\right\rangle\right)
\end{aligned}
$$

(because the terms are independent)

$$
\begin{aligned}
& \left.=\sum_{l=1}^{K} E\left(x_{j}(l)\right)^{2} E\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\right)^{2} \quad \text { (because } E\left(x_{j}(l)\right)=E\left(x_{j}(q)\right)=0\right) \\
& =\sum_{l=1}^{K} \sigma^{2} M \quad(\text { from Lemma 1) } \\
& =M K \sigma^{2} .
\end{aligned}
$$

Next, consider $E B^{4}$.

$$
\begin{aligned}
E B^{4}= & E\left[\sum_{l=1}^{K} x_{i}(l)\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\right]^{4} \\
= & E\left[\sum_{l=1}^{K}\left(x_{j}(l)\right)^{4}\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\right)^{4}\right]+ \\
& \binom{4}{2} E\left[\sum_{q=1}^{K} \sum_{l=1, l \neq q}^{K}\left(x_{j}(l)\right)^{2}\left(x_{j}(q)\right)^{2}\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\right)^{2}\left(\left\langle\phi_{j, q}, \phi_{j, K+1}\right\rangle\right)^{2}\right] .
\end{aligned}
$$

The cross terms that involve $x_{j}(l), x_{j}(q),\left(x_{j}(l)\right)^{3},\left(x_{j}(q)\right)^{3}$ factors have zero expectation, and hence not shown in the above equation. To explain the $\binom{4}{2}$ factor in the above expression,
note that we have $\binom{4}{2}$ ways of obtaining the product of two squared factors when we expand $E B^{4}$. Thus,

$$
\begin{aligned}
E B^{4}= & \sum_{l=1}^{K} E\left(x_{j}(l)\right)^{4} E\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\right)^{4}+ \\
& 6 \sum_{q=1}^{K} \sum_{l=1, l \neq q}^{K} E\left(x_{j}(l)\right)^{2} E\left(x_{j}(q)\right)^{2} E\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle^{2}\left\langle\phi_{j, q}, \phi_{j, K+1}\right\rangle^{2}\right)
\end{aligned}
$$

(because the terms are independent)

Let us consider the two terms in the above equation separately. Simplifying the first term, we get

$$
\begin{aligned}
\sum_{l=1}^{K} E\left(x_{j}(l)\right)^{4} E\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\right)^{4} & =3 k \sigma^{2} E\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle\right)^{4} \\
& =9 K \sigma^{4} M(M+2) \quad(\text { from Lemma } 2)
\end{aligned}
$$

The second term can be reduced to

$$
\begin{gathered}
6 \sum_{q=1}^{K} \sum_{l=1, l \neq q}^{K} E\left(x_{j}(l)\right)^{2} E\left(x_{j}(q)\right)^{2} E\left(\left\langle\phi_{j, l}, \phi_{j, K+1}\right\rangle^{2}\left\langle\phi_{j, q}, \phi_{j, K+1}\right\rangle^{2}\right) \\
=6 \frac{K(K-1)}{2} \sigma^{4} M(M+2) \quad \text { (from Lemma 3) } \\
=3 \sigma^{4} K(K-1) M(M+2)
\end{gathered}
$$

Summing the two terms, we get

$$
\begin{aligned}
E B^{4} & =9 K \sigma^{4} M(M+2)+3 \sigma^{4} K(K-1) M(M+2) \\
& =3 M K \sigma^{4}(M+2)(K+2)
\end{aligned}
$$

Thus, we have

$$
B=\left\langle y_{j}, \phi_{j, K+1}\right\rangle=\operatorname{Moments}\left(0, M K \sigma^{2}, 0,3 M K \sigma^{4}(M+2)(K+2)\right) .
$$

Thus the first two moments for $\left\langle y_{j}, \phi_{j, K+1}\right\rangle^{2}$ are

$$
\left\langle y_{j}, \phi_{j, K+1}\right\rangle^{2}=\operatorname{Moments}\left(M K \sigma^{2}, 3 M K \sigma^{4}(M+2)(K+2)\right) .
$$

Writing in terms of cumulants,

$$
\begin{aligned}
\left\langle y_{j}, \phi_{j, K+1}\right\rangle^{2} & =\text { Cumulants }\left(M K \sigma^{2}, 3 M K \sigma^{4}(M+2)(K+2)-M^{2} K^{2} \sigma^{4}\right) \\
& =\text { Cumulants }\left(M K \sigma^{2}, 2 M K \sigma^{4}(M K+3 K+3 M+6)\right) .
\end{aligned}
$$

Summing J such independent random variables,

$$
\sum_{j=1}^{J}\left\langle y_{j}, \phi_{j, K+1}\right\rangle^{2}=\text { Cumulants }\left(M K J \sigma^{2}, 2 M K J \sigma^{4}(M K+3 K+3 M+6)\right)
$$

Dividing by J,

$$
\frac{1}{J} \sum_{j=1}^{J}\left\langle y_{j}, \phi_{j, K+1}\right\rangle^{2}=\text { Cumulants }\left(M K \sigma^{2}, \frac{2 M K \sigma^{4}}{J}(M K+3 K+3 M+6)\right)
$$

The above equation gives the mean and the variance of the test statistic θ_{n} when $n \notin \Omega$.

Statistics of θ_{n} when $n \in \Omega$

Again, we assume without loss of generality that $\Omega=\{1,2, \ldots, K\}$ for ease of presentation. Let us compute the mean and variance of the test statistic θ_{n} for the case when $n \in \Omega$. Consider one of these statistics by choosing $n=1$.

Let $G=\left\langle y_{j}, \phi_{j, 1}\right\rangle=x_{j}(1)\left\|\phi_{j, 1}\right\|^{2}+\sum_{l=2}^{K} x_{j}(l)\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle$. As before, the expectations of odd powers of G are zero, because of the leading $x_{j}($.$) factor in each term. We will now$ compute $E G^{2}$ and $E G^{4}$. First, consider $E G^{2}$.

$$
\begin{aligned}
E G^{2} & =E\left[x_{j}(1)\left\|\phi_{j, 1}\right\|^{2}+\sum_{l=2}^{K} x_{j}(l)\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle\right]^{2} \\
& =E\left[\left(x_{j}(1)\right)^{2}\left\|\phi_{j, 1}\right\|^{4}\right]+E\left[\sum_{l=2}^{K}\left(x_{j}(l)\right)^{2}\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle^{2}\right]
\end{aligned}
$$

(All other cross terms have zero expectation)

$$
\begin{aligned}
& =E\left(x_{j}(1)\right)^{2} E\left\|\phi_{j, 1}\right\|^{4}+\sum_{l=2}^{K} E\left(x_{j}(l)\right)^{2} E\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle^{2} \quad \text { (by independence) } \\
& =\sigma^{2} M(M+2)+(K-1) \sigma^{2} M \quad \text { (from Lemmas } 1 \text { and 5) } \\
& =M(M+K+1) \sigma^{2} .
\end{aligned}
$$

Next, consider $E G^{4}$.

$$
\begin{aligned}
E G^{4}= & E\left[x_{j}(1)\left\|\phi_{j, 1}\right\|^{2}+\sum_{l=2}^{K} x_{j}(l)\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle\right]^{4} \\
= & E\left[x_{j}(1)\left\|\phi_{j, 1}\right\|^{2}\right]^{4} \\
& +E\left[\sum_{l=2}^{K} x_{j}(l)\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle\right]^{4} \\
& +\binom{4}{2} E\left[\left(x_{j}(1)\left\|\phi_{j, 1}\right\|^{2}\right)^{2}\left(\sum_{l=2}^{K} x_{j}(l)\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle\right)^{2}\right]
\end{aligned}
$$

(all other cross terms have zero expectation).
We use the result from Lemma 5 to simplify the first term, and the result from the fourth moment of the statistic θ_{n} when $n \notin \Omega$ for the second term, to get

$$
\begin{align*}
E G^{4}= & 3 \sigma^{4} M(M+2)(M+4)(M+6)+3 M(K-1) \sigma^{4}(M+2)(K+1) \\
& +6 E\left[\left(x_{j}(1)\left\|\phi_{j, 1}\right\|^{2}\right)^{2}\left(\sum_{l=2}^{K} x_{j}(l)\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle\right)^{2}\right] \tag{2}
\end{align*}
$$

The last term in the above equation can be written as

$$
E\left[\left(x_{j}(1)\left\|\phi_{j, 1}\right\|^{2}\right)^{2}\left(\sum_{l=2}^{K} x_{j}(l)\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle\right)^{2}\right]=E\left[\left(x_{j}(1)\right)^{2}\left\|\phi_{j, 1}\right\|^{4} \sum_{l=2}^{K}\left(x_{j}(l)\right)^{2}\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle^{2}\right]
$$

(all other cross terms have zero expectation)

$$
\begin{aligned}
& =\sigma^{4} E\left[\sum_{l=2}^{K}\left\|\phi_{j, 1}\right\|^{4}\left\langle\phi_{j, l}, \phi_{j, 1}\right\rangle^{2}\right] \\
& =\sigma^{4}(K-1) E\left[\left\|\phi_{j, 1}\right\|^{4}\left\langle\phi_{j, 2}, \phi_{j, 1}\right\rangle^{2}\right] \\
& =\sigma^{4}(K-1) M(M+2)(M+4)
\end{aligned}
$$

(using result from Lemma 4).
Substituting this result in Equation 2, we get

$$
\begin{aligned}
E G^{4}= & 3 \sigma^{4} M(M+2)(M+4)(M+6)+3 M(K-1) \sigma^{4}(M+2)(K+1) \\
& +6(K-1) M(M+2)(M+4) \sigma^{4} \\
= & 3 M \sigma^{4}\left(M^{3}+10 M^{2}+31 M+M K^{2}+2 M^{2} K+12 M K+2 K^{2}+16 K+30\right)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
G=\left\langle y_{j}, \phi_{j, 1}\right\rangle= & \operatorname{Moments}\left(0, M \sigma^{2}(M+K+1), 0\right. \\
& \left.3 m \sigma^{4}\left(M^{3}+10 M^{2}+31 M+M K^{2}+2 M^{2} K+12 M K+2 K^{2}+16 K+30\right)\right) .
\end{aligned}
$$

Thus the first two moments of $\left\langle y_{j}, \phi_{j, 1}\right\rangle^{2}$ are

$$
\begin{aligned}
\left\langle y_{j}, \phi_{j, 1}\right\rangle^{2}= & \operatorname{Moments}\left(M \sigma^{2}(M+K+1)\right. \\
& \left.3 M \sigma^{4}\left(M^{3}+10 M^{2}+31 M+M K^{2}+2 M^{2} K+12 M K+2 K^{2}+16 K+30\right)\right) .
\end{aligned}
$$

In terms of cumulants,

$$
\begin{aligned}
\left\langle y_{j}, \phi_{j, 1}\right\rangle^{2}= & \text { Cumulants }\left(M \sigma^{2}(M+K+1)\right. \\
& 3 M \sigma^{4}\left(M^{3}+10 M^{2}+31 M+M K^{2}+2 M^{2} K+12 M K+2 K^{2}+16 K+30\right) \\
& \left.-M^{2} \sigma^{4}(M+K+1)^{2}\right) \\
= & \text { Cumulants }\left(M \sigma^{2}(M+K+1),\right. \\
& \left.M \sigma^{4}\left(34 M K+6 K^{2}+28 M^{2}+92 M+48 K+90+2 M^{3}+2 M K^{2}+4 M^{2} K\right)\right) .
\end{aligned}
$$

Summing J such random variables,

$$
\begin{aligned}
\sum_{j=1}^{J}\left\langle y_{j}, \phi_{j, 1}\right\rangle^{2}= & \operatorname{Cumulants}\left(J M \sigma^{2}(M+K+1)\right. \\
& \left.J M \sigma^{4}\left(34 M K+6 K^{2}+28 M^{2}+92 M+48 K+90+2 M^{3}+2 M K^{2}+4 M^{2} K\right)\right)
\end{aligned}
$$

Dividing by J,

$$
\begin{aligned}
\frac{1}{J} \sum_{j=1}^{J}\left\langle y_{j}, \phi_{j, 1}\right\rangle^{2}= & \text { Cumulants }\left(M \sigma^{2}(M+K+1)\right. \\
& \left.\frac{M \sigma^{4}}{J}\left(34 M K+6 K^{2}+28 M^{2}+92 M+48 K+90+2 M^{3}+2 M K^{2}+4 M^{2} K\right)\right)
\end{aligned}
$$

The above equation gives the mean and the variance of the test statistic θ_{n} when $n \in \Omega$.

Proof of Theorem 2

The statistic θ_{n} is the mean of J independent random variables $\left\langle y_{j}, \phi_{j, n}\right\rangle$. For large J, we can invoke the central limit theorem [2-5] to argue that the distribution of θ_{n} is Gaussian with mean and variance as given in Theorem 1.

The one shot algorithm successfully recovers Ω if the following condition is satisfied: $\left[\max \left(\theta_{n}\right), n \notin \Omega\right]<\left[\min \left(\theta_{n}\right), n \in \Omega\right]$. To compute the probability that the above condition holds, we derive the equations that describe the distributions for the maximum and minimum, respectively, of θ_{n} when $n \notin \Omega$ and when $n \in \Omega$. Define $\theta_{\max } \triangleq\left[\max \left(\theta_{n}\right), n \notin \Omega\right]$, and $\theta_{\text {min }} \triangleq\left[\min \left(\theta_{n}\right), n \in \Omega\right]$.

Let x be an arbitrary real number. For $n \notin \Omega$, the probability that the statistic θ_{n} is less than x is given by its cumulative distribution function (CDF):

$$
\operatorname{Pr}\left[\theta_{n}<x\right]=\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{x-m_{b}}{\sigma_{b} \sqrt{2}}\right)\right) .
$$

Since the cardinality of the set Ω^{\prime} is $N-K$, the probability that all the corresponding statistics $\theta_{n}, n \notin \Omega$ are less than x is given by the CDF of $\theta_{\text {max }}$:

$$
\begin{equation*}
\operatorname{Pr}\left[\theta_{\max }<x\right]=\frac{1}{2^{N-K}}\left(1+\operatorname{erf}\left(\frac{x-m_{b}}{\sigma_{b} \sqrt{2}}\right)\right)^{N-K} . \tag{3}
\end{equation*}
$$

The above equation assumes that the statistics θ_{n} are independent. In reality, this assumption is not valid. However, we make this assumption in order to get an approximate result.

Using similar arguments, the probability that all the corresponding statistics $\theta_{n}, n \in \Omega$ are greater than x is given by

$$
\operatorname{Pr}\left[\min \left(\theta_{n}, n \in \Omega\right)>x\right]=\operatorname{Pr}\left[\theta_{\min }>x\right]=\frac{1}{2^{K}}\left(1-\operatorname{erf}\left(\frac{x-m_{g}}{\sigma_{g} \sqrt{2}}\right)\right)^{K} .
$$

For a given x, the probability that $\theta_{\max }$ lies between x and $x+d x$ can be computed using the probability density function (PDF) of $\theta_{\max }$. The PDF of $\theta_{\max }$ in turn can be computed by differentiating its CDF as given by Eqauation 3. Thus,

$$
\begin{aligned}
\operatorname{Pr}\left(\theta_{\max }\right. & \in[x, x+d x])=\frac{d}{d x}\left[\frac{1}{2^{N-K}}\left(1+\operatorname{erf}\left(\frac{x-m_{b}}{\sigma_{b} \sqrt{2}}\right)\right)^{N-K}\right] d x \\
& =\frac{1}{2^{N-K-1}} \frac{(N-K)}{\sigma_{b} \sqrt{2 \pi}} \exp \left[-\left(\frac{x-m_{b}}{\sigma_{b} \sqrt{2}}\right)^{2}\right]\left(1+\operatorname{erf}\left(\frac{x-m_{b}}{\sigma_{b} \sqrt{2}}\right)\right)^{N-K} d x .
\end{aligned}
$$

Thus the probability of successfully recovering Ω is given by

$$
\begin{aligned}
p_{s} & =\int_{x=-\infty}^{x=\infty} \operatorname{Pr}\left(\theta_{\max } \in[x, x+d x]\right) \cdot \operatorname{Pr}\left(\theta_{\min }>x\right) \\
& =\frac{1}{2^{N-1}} \frac{(N-K)}{\sigma_{b} \sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[1+\operatorname{erf}\left(\frac{x-m_{b}}{\sigma_{b} \sqrt{2}}\right)\right]^{N-K-1}\left[1-\operatorname{erf}\left(\frac{x-m_{g}}{\sigma_{g} \sqrt{2}}\right)\right]^{K} \exp \left[-\left(\frac{x-m_{b}}{\sigma_{b} \sqrt{2}}\right)^{2}\right] d x .
\end{aligned}
$$

This proves Theorem 2.
Since we assumed independence between the statistics θ_{n}, the above is only an approximation. Figure 1 illustrates the approximation formula given by Theorem 2 by comparing with simulation results.

References

[1] Athanasios Papoulis, Probability, random variables, and stochastic processes, McGrawHill, New York, third edition, 1991.
[2] D. Baron, M. A. Khojastepour, and R. G. Baraniuk, "How quickly can we approach channel capacity?," in Proc. 38th Asilomar Conf. on Signals, Systems and Computers, Nov. 2004.

Figure 1: Illustration of the approximate formula given by Theorem 2. The solid lines correspond to simulation results, and the dashed lines correspond to the formula given by Theorem 2. The blue curve correspond to $J=5$, red $J=10$, black $J=20$, magenta $J=50$ and green $J=100$.
[3] S. Sarvotham, D. Baron, and R. G. Baraniuk, "Variable-rate universal slepian-wolf coding with feedback," in Proc. 39th Asilomar Conf. on Signals, Systems and Computers, Nov. 2005, to appear.
[4] S. Sarvotham, D. Baron, and R. G. Baraniuk, "Non-asymptotic performance of symmetric slepian-wolf coding," in Proc. 39th Annual Conf. on Inform. Sciences and Systems (CISS2005), Mar. 2005.
[5] J. Wolfowitz, Coding theorems of information theory, Springer-Verlag, New York, third edition, 1978.

