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Abstract— In this paper, we derive concentration of measure
inequalities for compressive Toeplitz matrices (having fewer
rows than columns) with entries drawn from an independent
and identically distributed (i.i.d.) Gaussian random sequence.
These inequalities show that the norm of a vector mapped by
a Toeplitz matrix to a lower dimensional space concentrates
around its mean with a tail probability bound that decays
exponentially in the dimension of the range space divided by a
factor that is a function of the sample covariance of the vector.

Motivated by the emerging field of Compressive Sensing
(CS), we apply these inequalities to problems involving the
analysis of high-dimensional systems from convolution-based
compressive measurements. We discuss applications such as
system identification, namely the estimation of the impulse
response of a system, in cases where one can assume that
the impulse response is high-dimensional, but sparse. We also
consider the problem of detecting a change in the dynamic
behavior of a system, where the change itself can be modeled
by a system with a sparse impulse response.

I. INTRODUCTION

We live in an era that one might call “the century of data
explosion”—indeed, we have now reached a point where all
of the data generated by intelligent sensors, digital cameras,
and so on exceeds the world’s total data storage capacity [1].
Motivated to reduce the burdens of acquiring, transmitting,
storing, and analyzing such vast quantities of data, signal
processing researchers have over the last few decades devel-
oped a variety of techniques for data compression and dimen-
sionality reduction. Unfortunately, many of these techniques
require a raw, high-dimensional data set to be acquired before
its essential low-dimensional structure can be identified,
extracted, and exploited. In contrast, what would be truly
desirable are sensors that require fewer raw measurements
yet still capture the essential information in a data set. One
positive outcome of this past work, however, has been the
development of sparse and compressible representations as
concise models for high-dimensional data sets.

Building on these principles, Compressive Sensing (CS)
has very recently emerged as a powerful paradigm for
combining measurement with compression. First introduced
by Candès, Romberg and Tao [2]–[4], and Donoho [5],
the CS problem can be viewed as recovery of an s-sparse
signal a ∈ Rn from just d < n (or even d� n) observations
y = Xa ∈ Rd, where X ∈ Rd×n is a matrix representing
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the linear measurement process. An s-sparse signal a ∈ Rn
is a signal of length n with s < n nonzero (significant)
entries. The notation s := ‖a‖0 denotes the sparsity level of
a. Since the null space of X is non-trivial, exact recovery of
the signal depends on whether the solution set for y = Xa
contains only one solution of the required sparseness. It has
been shown that if X is a fully populated random matrix
with entries drawn from an independent and identically
distributed (i.i.d.) Gaussian random sequence, then exact
recovery of a can be guaranteed with high probability from
d = O

(
s log

(
n
s

))
measurements [6]. In addition, recovery

is possible by solving a convex optimization problem and
is robust to measurement noise [7]. As an extension of CS,
there is also recent work on the detection of sparse signals
from compressive measurements [8].

Concentration of measure inequalities are one of the lead-
ing techniques used in the theoretical analysis of randomized
compressive operators [9]. A typical concentration inequality
takes the following form [10]. For any fixed signal a ∈ Rn,
and a suitable random matrix X , the norm of the projected
signal by X will be highly concentrated around the norm of
the original signal with high probability. In other words, there
exist constants c1 and c2, such that for any fixed a ∈ Rn,

P
{∣∣‖Xa‖22 −E

[
‖Xa‖22

]∣∣ ≥ εE [‖Xa‖22]} ≤ c1e−c2dc0(ε),
where c0 (ε) is a function of ε ∈ (0, 1). In this paper, we
derive concentration of measure inequalities for random,
compressive Toeplitz matrices and discuss applications to
detection and system identification.

A. Compressive Toeplitz Matrices

While the recovery results discussed in the previous
section are for a measurement matrix X with indepen-
dent elements, many applications will require X to have a
particular structure. In particular, when dynamical systems
are involved, the measurement process may involve the
convolution of an (unknown) system impulse response with
a (known) input. Consider identifying the impulse response
of a linear time-invariant (LTI) system from its input-output
observations. Let {xk}n+d−1k=1 be the applied input sequence
to an LTI system characterized by its finite impulse response
{ak}nk=1. Then the corresponding output y is calculated from
the time-domain convolution y = x ∗ a. Considering the xk
and ak sequences to be zero-padded from both sides, each



output sample yi can be written as

yi =

n∑
j=1

ajxi−j . (1)

If we only keep d observations of the system, {yk}n+dk=n+1,
then (1) can be written in a matrix-vector multiplication
format as

y = Xa, (2)

where

X =


xn xn−1 · · · x1
xn+1 xn · · · x2

...
...

. . .
...

xn+d−1 xn+d−2 · · · xd

 (3)

is a d × n Toeplitz matrix. Supposing the system has an
s-sparse impulse response, we are interested in efficiently
acquiring and retrieving a via its multiplication by the d×n
compressive Toeplitz matrix X . We call this a compressive
Toeplitz matrix because d < n. In addition to the application
to convolution measurement problems, it is worth noting that
while fully populated random matrices require nd elements
to be generated, Toeplitz matrices require only n + d − 1
distinct random entries, which may provide an advantage in
other CS applications.

B. Related Results

Compressive Toeplitz matrices and convolution have been
previously studied in the context of compressive sensing
in [11]–[17], with applications including channel estimation
and synthetic aperture radar. The work in this paper is most
closely related to [17], which also derives a concentration of
measure bound for compressive Toeplitz matrices and utilizes
this bound to study recovery. A comparison between our
work and this work is given in the next section, with further
discussion of related work postponed to later sections.

C. Main Result

In this paper, we derive a concentration of measure bound
for compressive Toeplitz matrices as given in (3) with entries
drawn from an i.i.d. Gaussian random sequence. Our main
result, detailed in Theorem 1, states that the upper and
lower probability tail bounds depend on the number of
measurements d and on the eigenvalues of the measurement
covariance matrix P = P (a) defined as:

P =


Ra (0) Ra (1) · · · Ra (d− 1)
Ra (1) Ra (0) · · · Ra (d− 2)

...
...

. . .
...

Ra (d− 1) Ra (d− 2) · · · Ra (0)

 , (4)

where

Ra (τ) :=

n−τ∑
i=1

aiai+τ

denotes the un-normalized sample autocorrelation function
of a ∈ Rn.

Theorem 1: Let a ∈ Rn be fixed. Define two quantities
ρ(a) and µ(a) associated with the eigenvalues of the mea-
surement covariance matrix P = P (a) as:

ρ(a) =
maxi λi
‖a‖22

(5)

and

µ(a) =

∑d
i=1 λ

2
i

d‖a‖42
(6)

where {λi} are the eigenvalues of P . Suppose X is a
random compressive Toeplitz matrix with i.i.d. Gaussian
entries having zero mean and unit variance. Then for any
ε ∈ (0, 1), the upper tail probability bound is

P
{
‖y‖22 > d‖a‖22 (1 + ε)

}
≤
(
(1 + ε) e−ε

) d
2ρ(a) (7)

and the lower tail probability bound is

P
{
‖y‖22 < d‖a‖22 (1− ε)]

}
≤
(
e
−2ε3−ε2

2(1+ε)2

) d
2µ(a)

. (8)

In [17], an upper and lower bound essentially identical to
(7) is given, but only for a range of ε bounded away from
0. Our result (8) and proof technique appear to be new.

D. Organization

The rest of the paper is organized as follows. In Section
II, we state the proof of the main result. In Section III,
we provide bounds on the spectral norm of the covariance
matrix P . A system identification application is considered in
Section IV. In Section V, we explore the problem of detection
with compressive sensing and present experimental results.
We conclude in Section VI.

II. PROOF OF MAIN RESULT

Our analysis begins with the observation that, for fixed a
and random Gaussian X , y = Xa will be a Gaussian random
vector.

Lemma 1: If {xk}n+d−1k=1 is a zero mean, unit variance
i.i.d. Gaussian random sequence, then y = Xa is a d × 1
Gaussian random vector with zero mean and d×d covariance
matrix P = P (a) given in (4).

Proof: See Appendix A.
From Lemma 1, it quickly follows that E

[
‖y‖22

]
= d‖a‖22.

It is also easy to see that P is a d × d symmetric Toeplitz
matrix with tr (P ) = d‖a‖22 where {λi (P )}di=1 denote the
eigenvalues of P . Note that λi (P ) ≥ 0 for all i = 1, 2, . . . , d.

The proof of the main theorem utilizes Markov’s inequal-
ity along with a suitable bound on the moment generating
function of ‖y‖22. This bound depends on the following
lemma.

Lemma 2: If y ∈ Rd is a Gaussian random vector with
covariance matrix P , then

E
[
e±ty

′y
]

=
1√

det (I ∓ 2tP )
, (9)

where we require t ∈ (0, 1
2(maxi λi)

) for the case involving
det (I − 2tP ), and y′ denotes the transpose of y.



Proof:

E
[
e±ty

′y
]

=

∫
1

(2π det (P ))
1
2

e±ty
′ye−

1
2y
′P−1ydy

=

∫
1

(2π det (P ))
1
2

e−
1
2y
′(P−1∓2tI)ydy

=
det

1
2

((
P−1 ∓ 2tI

)−1)
det

1
2 (P )

=
1

(det (P−1 ∓ 2tI) detP )
1
2

=
1√

det (I ∓ 2tP )
.

Remark 1: As a special case of Lemma 2, if y ∈ R is a
scalar Gaussian random variable of unit variance, then we
obtain the well known result

E
[
e±ty

2
]

=
1√

1∓ 2t
. (10)

The main objective of this paper is to find bounds on

P
{
‖y‖22 > d‖a‖22(1 + ε)

}
(11a)

and
P
{
‖y‖22 < d‖a‖22(1− ε)

}
. (11b)

We use Markov’s inequality and Chernoff’s bounding
method for computing the upper and lower probability tail
bounds (11a) and (11b). Specifically, for a random variable
Z, and all t > 0,

P {Z > ε} = P
{
etZ > etε

}
≤

E
[
etZ
]

etε
(12)

(see e.g. [18]). Applying (12) to (11a) yields

P
{
‖y‖22 > d‖a‖22 (1 + ε)

}
≤

E
[
ety
′y
]

ed‖a‖
2
2(1+ε)t

. (13)

Using Lemma 2, we rewrite the right hand side of (13) as

E
[
ety
′y
]

ed‖a‖
2
2(1+ε)t

= (det (I − 2tP ))
− 1

2 e−d‖a‖
2
2(1+ε)t. (14)

In (14), t > 0 is a free variable which can be varied to find
the tightest possible bound, resulting in the Chernoff bound
approximation of the inequality.

Claim 1: The value of t that minimizes (14) satisfies
d∑
i=1

λi
1− 2tλi

= d‖a‖22(1 + ε). (15)

Proof: See Appendix B.
Unfortunately, (15) is difficult to use for further analysis.
However, since (14) is valid for all t, we are free to choose
a suboptimal, but still useful value. We propose to use

t =
ε

2(1 + ε)f(a)‖a‖22
,

where f is a function of a that will be chosen later in a way
that leads to tighter bounds. Now we are ready to prove the

main theorem. We state the upper tail probability bound in
Lemma 3 and the lower tail probability bound in Lemma 4.

Lemma 3: Let y = Xa ∈ Rd be a zero mean Gaussian
random vector with d×d covariance matrix P , where X is a
d×n compressive Toeplitz matrix populated with i.i.d. zero
mean, unit variance Gaussian random variables, and a is an
s-sparse vector of length n. Then, for any ε ∈ (0, 1),

P
{
‖y‖22 > d‖a‖22 (1 + ε)

}
≤
(
(1 + ε) e−ε

) d
2ρ(a) . (16)

Proof: From (13) and (14), we get

P
{
‖y‖22 > d‖a‖22 (1 + ε)

}
≤(

(det (I − 2tP ))
− 1
d e−2‖a‖

2
2(1+ε)t

) d
2

. (17)

Choosing t as

t =
ε

2 (1 + ε) ρ (a) ‖a‖22
, (18)

the right hand side of (17) can be written as((
det

(
I − ε

(1 + ε)

P

ρ (a) ‖a‖22

))− 1
d

e−
ε

ρ(a)

) d
2

. (19)

This expression can be simplified by applying the previous
lemmas. Note that

det

(
I − ε

(1 + ε)

P

ρ (a) ‖a‖22

)
=

d∏
i=1

1− ε

(1 + ε)

λi
ρ (a) ‖a‖22

= e

∑d
i=1 log

(
1− ε

(1+ε)

λi
ρ(a)‖a‖22

)
.

Using the fact that log (1− c1c2) ≥ c2 log (1− c1) for any
c1, c2 ∈ [0, 1] and tr (P ) = d‖a‖22, we have

e

∑d
i=1 log

(
1− ε

(1+ε)

λi
ρ(a)‖a‖22

)
≥ e

∑d
i=1

λi
ρ(a)‖a‖22

log(1− ε
1+ε )

= e
tr(P )

ρ(a)‖a‖22
log( 1

1+ε )

= e
d
ρ(a)

log( 1
1+ε )

=

(
1

1 + ε

) d
ρ(a)

. (20)

Combining (17), (19), and (20) gives us

P
{
‖y‖22 > d‖a‖22 (1 + ε)

}
≤

((
1

1 + ε

)− 1
ρ(a)

e−
ε

ρ(a)

) d
2

=
(
(1 + ε) e−ε

) d
2ρ(a) .

Lemma 4: Using the same assumptions as in Lemma 3,
for any ε ∈ (0, 1),

P
{
‖y‖22 < d‖a‖22 (1− ε)

}
≤
(
e
−2ε3−ε2

2(1+ε)2

) d
2µ(a)

.



Proof: Applying Markov’s inequality to (11b), we
obtain

P
{
‖y‖22 < d‖a‖22(1− ε)

}
= P

{
−‖y‖22 > −d‖a‖22(1− ε)

}
≤

E
[
e−ty

′y
]

e−d‖a‖
2
2(1−ε)t

. (21)

Using Lemma 2, this implies

P
{
‖y‖22 < d‖a‖22(1− ε)

}
≤(

(det (I + 2tP ))
− 1
d e2‖a‖

2
2(1−ε)t

) d
2

. (22)

In this case, we choose

t =
ε

2(1 + ε)µ(a)‖a‖22
.

Plugging t into (22) and following similar steps as for the
upper tail bound, we get

det(I + 2tP ) = det

(
I +

ε

(1 + ε)

P

µ(a)‖a‖22

)
=

d∏
i=1

1 +
ε

(1 + ε)

λi
µ(a)‖a‖22

= e

∑d
i=1 log

(
1+ ε

(1+ε)

λi
µ(a)‖a‖22

)
. (23)

Since log (1 + c) ≥ c− c2

2 for c > 0,

log

(
1 +

ε

(1 + ε)

λi
µ(a)‖a‖22

)
≥

ε

(1 + ε)

λi
µ(a)‖a‖22

− 1

2

(
ε

(1 + ε)

λi
µ(a)‖a‖22

)2

.

Thus,

d∑
i=1

log

(
1 +

ε

(1 + ε)

λi
µ(a)‖a‖22

)

≥
d∑
i=1

ε

(1 + ε)

λi
µ(a)‖a‖22

− 1

2

(
ε

(1 + ε)

λi
µ(a)‖a‖22

)2

=
ε

(1 + ε)

∑d
i=1 λi

µ(a)‖a‖22
− 1

2

(
ε

(1 + ε)µ(a)‖a‖22

)2 d∑
i=1

λ2i

=
ε

(1 + ε)

d

µ(a)
− 1

2

(
ε

1 + ε

)2
d

µ(a)

=
d

µ(a)

(
ε2 + 2ε

2 (1 + ε)
2

)
.

Using this in (23) gives the bound

det(I + 2tP ) ≥ e
d

µ(a)

(
ε2+2ε

2(1+ε)2

)

=

(
e
ε2+2ε

2(1+ε)2

) d
µ(a)

. (24)
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Fig. 1. Comparison between upper and lower tail bound functions.

By substituting (24) in (22), we obtain

P
{
‖y‖22 < d‖a‖22 (1− ε)

}
≤
(
e
−ε2−2ε

2(1+ε)2 e
ε(1−ε)
1+ε

) d
2µ(a)

=

(
e
−2ε3−ε2

2(1+ε)2

) d
2µ(a)

.

III. CONCENTRATION BOUNDS FOR SPARSE
SIGNALS

As can be seen the statement of Theorem 1, the upper and
lower tail probability bounds are functions of the quantities
ρ (a) and µ (a). For any ε ∈ (0, 1), we have the upper tail
probability bound

P
{
‖y‖22 > d‖a‖22 (1 + ε)

}
≤ fupper (ε)

d
2ρ(a)

and the lower tail probability bound

P
{
‖y‖22 < d‖a‖22 (1− ε)

}
≤ flower (ε)

d
2µ(a) ,

where

fupper (ε) = (1 + ε) e−ε and flower (ε) = e
−2ε3−ε2

2(1+ε)2 .

Figure 1 shows a comparison between fupper (ε) and flower (ε)
for ε ∈ (0, 1). These functions are similar, and behave as
e−

ε2

4 for small ε. Typically, we are seeking to find values of d
for which the bound is small for a particular class of signals,
which in our case will be s-sparse signals. Consequently, it is
necessary to obtain an upper bound for the quantities ρ (a)
and µ (a) for the class of signals of interest. It is easy to
show that for all a, µ (a) ≤ ρ (a). Therefore, we limit our
problem to finding the sharpest bound for ρ (a).

Note that P is a d × d symmetric Toeplitz matrix which
can be decomposed as:

P = A′A,



where A is an (n+ d− 1)× d Toeplitz matrix formed by a,

A =



a1 0 . . . 0
...

. . . (0)
...

an . . . a1

0
. . . . . . 0

... an a1

(0)
. . .

...
0 . . . 0 an


,

and A′ is the transpose of A. By the Cauchy Interlacing
Theorem [19],

maxλi(P ) = maxλi(A
′A) ≤ maxλi(Ã

′Ã),

where Ã is an (n + d − 1) × (n + d − 1) circulant matrix
with

ã = [a1, a2, . . . , an, 0, . . . , 0],

as its first row. Since λi(Ã′Ã) = |λi(Ã)|2, an upper bound
for ρ (a) is provided by the maximum eigenvalue of Ã. Since
Ã is circulant, λi(Ã) simply equals the un-normalized (n+
d− 1)-length Discrete Fourier Transform (DFT) of the first
row of Ã. As a result,

λi(Ã) =

n∑
k=1

ake
−j2π(i−1)k/(n+d−1). (25)

When a is an s-sparse signal, only s < (n + d − 1) terms
in this summation are nonzero, therefore λi(Ã) ≤

√
s‖a‖2.

This results in the bound

ρ (a) ≤ s.

Remark 2: Although µ(a) ≤ ρ(a) ≤ s for all s-sparse
signals, this appears to be a highly pessimistic bound for
most signals. Numerical experiments have shown that for
Gaussian random s-sparse signals, E [ρ(a)] ∼ log(s). How-
ever, it remains to be seen if this non-uniformity can be
exploited.

IV. SYSTEM IDENTIFICATION / TOEPLITZ
RECOVERY

In this section, we address problem of recovering a sparse
signal after convolution. We seek to find a number of
measurements d of an s-sparse signal a using a random,
compressive Toeplitz measurement matrix X that are suffi-
cient to ensure that a can be recovered with high probability.

A. Related Work

Considering structure in the measurement matrix X was
addressed by Tropp et al., as one of the early papers
which considered reconstruction of a signal from its con-
volution with a fixed Finite Impulse Response (FIR) filter
having random taps [11]. Bajwa et al. [12] studied Toeplitz-
structured compressed sensing matrices with applications to
sparse channel estimation. They allowed the entries of the
measurement matrix be drawn from a symmetric Bernoulli
distribution. Later they extended this to random matrices

whose entries are bounded or Gaussian-distributed. It is
shown that d = O

(
s2 log (n)

)
measurements are sufficient

in order to have exact signal recovery [14], [15], which
appears to be the best result to date. This compares to
d = O (s log (n/s)) measurements when X is unstructured,
see e.g. [20].

Rauhut considered circulant and Toeplitz matrices whose
entries are independent Bernoulli ±1 random variables.
Furthermore, they constrained the signs of the non-zero
entries of the s-sparse signal to be drawn from a Bernoulli
distribution as well. Considering this configuration, they
proposed that the required number of measurements for exact
recovery scales linearly with sparsity up to a log-factor of the
signal length [16]. Xiang et al. proposed convolution with a
white noise waveform followed by deterministic subsampling
as a framework for CS. Imposing a uniformly random sign
pattern on the non-zero entries of the signal, they required
d = O

(
s log1.5 (n/δ)

)
measurements to have exact recovery

with probability exceeding (1− δ) [17].

B. Recovery Condition: The Restricted Isometry Property

Introduced by Candès and Tao [21], the Restricted Isome-
try Property (RIP) is an isometry condition on measurement
matrices used in CS.

Definition 1: X satisfies the RIP of order s if there exists
a δs ∈ (0, 1) such that

(1− δs) ‖a‖22 ≤ ‖Xa‖22 ≤ (1 + δs) ‖a‖22 (26)

holds for all s-sparse signals a.
�

Given a matrix X ∈ Rd×n and any set T of column indices,
we denote by XT the d × |T | submatrix of X composed
of these columns. Equation (26) can be interpreted as a
requirement that all of the eigenvalues of the Grammian
matrix X ′TXT lie in the range [1− δs, 1 + δs] for all sets
T with |T | ≤ s. When the RIP is satisfied of order 2s with
δ2s <

√
2 − 1, then correct recovery of an s-sparse signal

can be obtained by finding the minimizer of the following
optimization problem [7]:

min
a∈Rn

‖a‖1 subject to y = Aa.

In [7], it is also shown that robust recovery is possible in the
presence of measurement noise.

Verifying the RIP is generally a difficult task. This prop-
erty requires bounded condition number for all submatrices
built by selecting s = |T | arbitrary columns. Therefore,
there are

(
n
s

)
such submatrices to check, and computing

the spectral norm of a matrix is not generally an easy task.
However, for certain random constructions of X , the RIP
follows in a simple way from concentration of measure
inequalities.

An important result in this vein concerns the d × n
matrix X whose entries xi,j are independent realizations of
Gaussian random variables, xi,j ∼ N

(
0, 1d

)
. (All Gaussian

random variables mentioned in this section will have this
same mean and variance.) Note that in this realization of X ,
there are d × n fully independent Gaussian random entries.



{xk}n+d−1k=1
{ak}nk=1

{zk}n+dk=n+1

+
y = Xa+ z

Fig. 2. FIR filter with impulse response ak .

We call such realizations simply Unstructured X comparing
to Toeplitz X which have the form of (3). In previous work,
a concentration of measure inequality has been used to show
that Unstructured X satisfy the RIP with high probability.

The relevant concentration of measure inequality for Un-
structured X is as follows (see e.g. [10]). For any ε ∈ (0, 1)

P
{(∣∣‖Xa‖22 − ‖a‖22∣∣ ≥ ε‖a‖22)} ≤ 2e−dc0(ε) (27)

with c0 (ε) = ε2

4 −
ε3

6 . Based on this this concentration
inequality, the following result was proven in [20].

Theorem 2: An Unstructured X with i.i.d. Gaussian en-
tries satisfies the RIP of order s with high probability for
d = O

(
s log

(
n
s

))
An approach identical to the one taken in [20] can be

used to establish the RIP for Toeplitz X based on the
concentration of measure inequalities given in Theorem 1.
In particular, some basic bounding gives us the following
result for Toeplitz X . For any ε ∈ (0, 1),

P
{(∣∣‖Xa‖22 − ‖a‖22∣∣ ≥ ε‖a‖22)} ≤ 2e−

d
ρ(P )

c0(ε). (28)

Comparing inequality (28) with (27) indicates that these
concentration inequalities differ only by the factor ρ(a).
Since for sparse signals, ρ(a) is bounded by s, we have the
following result, whose proof is omitted for space.

Theorem 3: A Toeplitz X with i.i.d. Gaussian entries
satisfies the RIP of order s with high probability if d =
O
(
s2 log

(
n
s

))
.

Note that this result is essentially identical to the bounds
given previously in [14], [15]. However, given the extremely
non-uniform distribution of ρ(a) over the set of all s-sparse
signals a, it may be that a modified approach to the RIP
condition will allow the recovery results to be tightened. In
particular, we note that if the sign pattern for the non-zero
entries of the signal a is chosen to be random, ρ (a) ≈ log(s).
This remains an area of current research.

V. DETECTION WITH COMPRESSIVE SENSING

A. Problem Setup

In another application, we consider solving a CS detec-
tion problem. Consider an FIR filter with impulse response
{ak}nk=1. The response of this filter to a test signal xk
is as described in (1). Moreover, suppose the observations
are corrupted by a random additive measurement noise z.
Figure 2 shows the schematic of this filter.

Now a detection problem can be considered as follows:
the impulse response ak is known, but we wish to detect
whether the dynamics of the system change to bk, where the
difference ck = bk − ak is known. The response {yk}n+dk=n+1

to a known input xk is monitored and the goal is to detect
when the impulse response of the system changes using d <
n measurements. Since the the nominal impulse response is
known, the expected response Xa can be subtracted off, and
thus without loss of generality, we can consider a = 0.

The detection problem can be formulated as follows [8].
Define two events E0 and E1 as:

E0 , y = z

E1 , y = Xc+ z

where z is a vector of i.i.d. Gaussian noise. However, due
to the presence of random noise, the algorithm can result in
false detection. This leads to defining the probabilities PFA
and PD as:

PFA = P {(E1 chosen when E0)}
PD = P {(E1 chosen when E1)}

where PFA denotes the false-alarm probability and PD de-
notes the detection probability. A Receiver Operating Curve
(ROC) is a plot of PD as a function of PFA. A Neyman-
Pearson (NP) detector maximizes PD for a given limit on
failure probability, PFA ≤ α. The NP test is based on the
likelihood ratio which in our case can be written as

y′Xc
E1
≷
E0
γ (29)

where the threshold γ is chosen to meet the constraint PFA ≤
α. Consequently, we consider the compressive detector t as

t := y′Xc. (30)

By evaluating t and considering the threshold γ, we are now
able to distinguish between the occurrence of two events, E0
and E1. To fix the failure limit, we set PFA = α which leads
to:

PD(α) = Q

(
Q−1(α)− ‖Xc‖2

σ

)
(31)

where
Q(q) =

1√
2π

∫ ∞
q

e−
u2

2 du. (32)

Since PD(α) is a function of ‖Xc‖2, we postulate that the
ultimate performance of the detector will depend on µ(c),
ρ(c) and consequently on P which is the sample covariance
matrix for c. Furthermore, this dependence would not occur
if the measurement utilized an Unstructured measurement
matrix (which, of course, would not apply to the FIR filter
measurement considered here but is a useful comparison to
the structured measurement imposed by convolution.)

B. Experiments and ROCs

In these experiments, we test different signals c with
different ρ (c) values. Several signal classes are designed
based on the location, sign and the value of their non-zero
elements. For a given fixed signal c, 1000 Unstructured and
Toeplitz X matrices are generated. For each X , a curve of
PD over PFA is computed using (31). Figure 3 shows the
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Fig. 3. ROCs for 1000 X Unstructured and Toeplitz matrices for a fixed
signal c (ρ(c) = 50). The solid black curve is the average of 1000 curves.

result for a special class of signals whose non-zero elements
are put in a block position in front with same value and sign.
In this experiment signal length is n = 250 and number of
measurements d = 125.

As can be seen, the ROCs associated with Toeplitz X are
more scattered comparing to the ROCs when we apply Un-
structured X . This result is due to the weaker concentration
of ‖Xc‖ for Toeplitz X . In order to compare the ROCs of
different signals with different ρ (c) values when projected by
random d × n Toeplitz matrices, we design an experiment
with 6 different signals. Figures 4 and 5 show how these
signals get treated by Unstructured and Toeplitz X matrices.
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Fig. 4. Average ROCs with 1000 Unstructured X for 6 different signals
c. Note that all curves are overlapping.

As can be seen, the average ROCs do not change with
respect to different signals when we apply Unstructured
X . However, they change when applying Toeplitz X . More
importantly, it can be concluded that ρ(c) has a direct
influence on these curves. Generally signals with higher
spectral norm ρ(c) have lower ROCs, although this relation
is not firm. In all of these experiments, we fix ‖c‖2 = 1 and
let the noise standard deviation σ = 0.3.
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Fig. 5. Average ROCs with 1000 Toeplitz X for 6 different signals c. The
curves descend the same order they appear in the legend box.

VI. CONCLUSION

Concentration of measure inequalities for a compressive
Toeplitz matrix are derived in this work. We have considered
two important quantities ρ(a) and µ(a) associated with the
eigenvalues of the covariance matrix P . Two applications
were addressed for these types of matrices. A Toeplitz re-
covery application was considered where we want to recover
an s-sparse signal a from its compressive measurements via
y = Xa, where X is a random, compressive Toeplitz matrix.
We showed that for Toeplitz X , the required number of
measurements should scale with sρ (a) for X to satisfy RIP
of order s for all s-sparse signals a. In another application,
a CS detection problem is considered. Experimental results
show that signals with different ρ (a) values have different
ROCs when measured by a Toeplitz matrix.
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APPENDIX

A. Proof of Lemma 1

Proof: It is easy to show that y is a zero mean vector,
since

E [y] = E [Xa] = E [X] a = 0.

The d × d covariance matrix P associated with y can be
calculated as follows:

P = E [yy′] =


E [y1y1] E [y1y2] · · · E [y1yd]
E [y2y1] E [y2y2] · · · E [y2yd]

...
...

. . .
...

E [ydy1] E [ydy2] · · · E [ydyd]

 .



Now consider one of the elements e.g. E [y`ym]. Without
loss of generality, assume m < `. Then

E [y`ym] =

a′E



xn+`−1
xn+`−2
· · ·
x`

 [xn+m−1 xn+m−2 · · · xm
] a

= a′



0 0 · · · 0 · · · 0
...

...
...

1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

. . .
...

0 0 · · · 1 · · · 0


a = a′



0
...
0
a1
a2
...

an−(`−m)


=

n−(`−m)∑
i=1

aiai+`−m = Ra(`−m),

where the ones start at row ` − m + 1. Clearly, with
E [y`ym] = Ra(`−m), the covariance matrix P has the form
as in (4) which completes the proof. Note that the covariance
matrix is a d× d symmetric Toeplitz matrix.

B. Proof of Claim 1

Proof: We start by taking the derivative of (14) with
respect to t and then putting it equal to zero. Using Jacobi’s
formula for an invertible matrix A,

ddet(A)

dα
= det(A)tr

(
A−1

dA

dα

)
,

we have

d

dt

(
(det (I − 2tP ))

− 1
d e−2‖a‖

2
2(1+ε)t

)
= −1

d
(det (I − 2tP ))

− 1
d−1 e−2‖a‖

2
2(1+ε)t×(

det (I − 2tP )× tr
(

(I − 2tP )
−1

(−2P )
))
−

2‖a‖22 (1 + ε) e−2‖a‖
2
2(1+ε)t (det (I − 2tP ))

− 1
d

= (det (I − 2tP ))
− 1
d e−2‖a‖

2
2(1+ε)t×(

−1

d
× tr

(
(I − 2tP )

−1
(−2P )

)
− 2‖a‖22 (1 + ε)

)
.

Now setting the above equation equal to zero, we get

tr
(

(I − 2tP )
−1

(P )
)

= d‖a‖22 (1 + ε) .

Knowing that P is a symmetric matrix, we can decompose it
using the Singular Value Decomposition (SVD) P = UΣUT ,
where U is an orthogonal matrix and Σ is a diagonal matrix.
Now for 0 < t < 0.5, we get

tr
(

(I − 2tP )
−1

(P )
)

= tr
((
UUT − 2tUΣUT

)−1 (
UΣUT

))
= tr

((
U (I − 2tΣ)UT

)−1 (
UΣUT

))
= tr

(
(I − 2tΣ)

−1
Σ
)
.

From here, we get the following polynomial equation:
d∑
i=1

λi
1− 2tλi

= d‖a‖22(1 + ε)

where λi’s are the eigenvalues of the P matrix which lie
along the diagonal of Σ.
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