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Abstract—The theory of Compressive Sensing (CS) has enabled
the efficient acquisition of high-bandwidth (but sparse) signals via
nonuniform low-rate sampling protocols. While most work in CS
has focused on reconstructing the high-bandwidth signals from
nonuniform low-rate samples, in this work, we consider the task
of inferring the modulation of a communications signal directly in
the compressed domain, without requiring signal reconstruction.
We show that the N th power nonlinear features used for
Automatic Modulation Recognition (AMR) are compressible in
the Fourier domain, and hence, that AMR of M -ary Phase-
Shift-Keying (MPSK) modulated signals is possible by applying
the same nonlinear transformation on nonuniform compressive
samples. We provide analytical support for the accurate ap-
proximation of AMR features from nonuniform samples, present
practical rules for classification of modulation type using these
samples, and validate our proposed rules on simulated data.

I. INTRODUCTION

A. Overview

Automatic modulation recognition (AMR)—the process of
inferring a received signal’s modulation type by exploiting
certain signal features—has varied applications in spectral
monitoring, surveillance, and spectrum sensing in cognitive
radios. With a wide variety of approaches available for a
wide variety of modulation types, AMR is a well-established
research arena [1], [3]. To apply most of the classical AMR
techniques, however, Nyquist-rate (or faster) samples of the
received analog signal must be available. When the signal has
high bandwidth, this can place a significant burden on the
front-end sampler, even though in AMR one wishes only to
extract a very simple piece of information from the data.

Meanwhile, in a separate research field known as Com-
pressive Sensing (CS) [5], [6], it has been shown that certain
high-bandwidth signals can actually be recovered from small
numbers of random, nonuniform samples collected at a rate
far below Nyquist. In particular, such reconstruction is possible
for signals that—within their high bandwidth—have very few
large Fourier coefficients. (Such signals are said to be sparse in
the frequency domain.) Reconstruction in CS from the low-rate
samples is typically achieved by solving a regularized inverse
problem with a sparsity-promoting signal penalty; the number
of measurements required for reconstruction scales with the
sparsity level of the signal.

In order to significantly reduce the measurement burden
compared to classical Nyquist-rate AMR strategies, in this
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paper we consider the task of solving the AMR problem from
a small set of nonuniform compressive samples (NCS). While
one natural approach to solving this problem would be to
fully reconstruct a Nyquist-rate sample vector from the NCS
and then apply a classical AMR algorithm to this vector, we
ask the question of whether such full-scale reconstruction is
truly necessary. Because we only wish to extract a very simple
piece of information from the data, we propose to identify this
information in a more direct fashion that requires only a crude
estimate of the reconstructed signal. Our proposed technique
is computationally very simple and requires far fewer NCS
than would be needed to perfectly reconstruct the Nyquist-rate
sample vector. This work could potentially enable AMR for
signals with much higher bandwidth than is currently possible
or lead to new radio system designs with smaller footprints
and lower power requirements.

B. AMR for Spectrum Sensing

Cognitive radios change transmission or reception param-
eters to communicate efficiently and avoid interference with
non-cooperative users present in the network. This capability
is achieved via active monitoring of several factors, such as
the radio frequency spectrum, user behavior, and the network
state [2]. Hence, cognitive radios must be able to characterize
the RF spectrum accurately despite having little or no a priori
knowledge of the received signal characteristics. Among the
important signal parameters that one might want to identify
are symbol rate, carrier frequency, and modulation type. In this
paper, we focus our discussion on recognizing the modulation
type, although our proposed technique can also be used to
estimate the carrier frequency.

For our NCS-based modulation classifier, we propose to use
a decision theoretic technique relying on features obtained
from the N th power nonlinear tranformation (NPT) [4]. In
more classical settings, the NPT has been used for AMR
on signals with Amplitude Shift Keying (ASK), Phase Shift
Keying (PSK), and Minimum Shift Keying (MSK) modulation
types. In this paper we focus on signals with M -ary Phase-
Shift-Keying (MPSK) modulation. We detail our signal model
in Section II and explain the NPT more fully in Section III.

C. Representative Experiment

The use of the NPT for AMR requires positive detection
of features (peaks) in the spectrum of a signal which has
undergone the NPT. Depending on the location of the peaks,



Fig. 1: Comparison of classification features generated from Nyquist-
rate samples and from NCS. The presence of a peak in the dashed curve
at the proper frequency confirms that AMR may indeed be possible
from NCS without requiring full-scale, exact signal recovery.

different modulation types can be inferred. Here we show a
simple experiment to demonstrate that such peaks can indeed
be generated and detected from small numbers of NCS; the
complete details of our technique are presented in Sections IV
through VII, and we present several additional experiments in
Section VIII.

Figure 1 shows two spectral estimates constructed for a
5000-symbol portion of a Binary Phase Shift Keying (2PSK)
signal having carrier frequency 1.574× the symbol rate. The
Nyquist-rate curve (top) is the result of applying the NPT on a
collection of 100000 uniform time samples (this sampling rate
is ≈ 9.64× the Nyquist rate). A discriminating feature—the
prominent peak—is clearly visible in this spectrum. The NCS
curve (bottom, dashed), on the other hand, was generated by
applying our modified NPT technique to a collection of only
2700 NCS (this sampling rate is ≈ 1

2× the symbol rate and
≈ 1

4× the Nyquist rate). As we explain, the presence of a
peak in the NCS curve at the proper frequency confirms that
AMR may indeed be possible from NCS without requiring
full-scale, exact signal recovery, although because the spectral
estimate from NCS is imperfect, the strength of the peak is
significantly lower than the peak in the Nyquist-rate curve.

In the typical CS setting, one would acquire NCS and
subsequently reconstruct the underlying signal from its NCS.
However, additional algorithmic complexity would be incurred
due to the reconstruction process. Hence, in this work, we
propose a low-complexity classifier that involves estimating
the spectral peaks directly from the NCS. In the sections
that follow, we provide analytical justification for the success
of our technique using CS principles, and we empirically
quantify the carrier-to-noise ratio margin loss of our estimator
compared to one that uses full Nyquist-rate samples.

II. SIGNAL MODEL AND PROBLEM STATEMENT

We assume that a received signal has the general MPSK
analytic form

r(t) =

∞∑
n=−∞

Ag(t−nT − t0)ej2π
(mn−1)
M ej(2πfct+θc) + v(t),

(1)
where A is the signal amplitude, t0 is the timing offset, T is
the symbol period, M ∈ {2, 4, 8} is the number of unique

phases used, mn ∈ {1, 2, . . . ,M} is the nth transmitted
symbol, fc is the carrier frequency, θc is the carrier phase,
g(t) = sin(πt/T )

πt/T
cos(πβt/T )
1−4β2t2/T 2 is the Root Raised Cosine Pulse

Shape (RRC), β is the roll-off factor, and v(t) is complex
noise.

In the AMR problem, we are interested in determining M ,
the number of unique phases used in PSK modulation, from
samples of r(t). In Section III we discuss the NPT technique
for AMR proposed in [4] that uses Nyquist-rate samples. In
Sections IV through VII, we adapt this technique to operate
using only NCS.

III. GENERATION OF FEATURES FROM NYQUIST SAMPLES

In [4], the use of the NPT was covered rigorously and here
we focus on its application to MPSK signals. The idea behind
the NPT is that by raising an MPSK signal to an appropriate
power, one can convert the finite number of symbol phases
to a constant phase and thus completely remove the effects
of phase modulation due to data. Subsequent analysis in the
Fourier domain gives a dominant spike at product of the carrier
frequency and the raised power, and this spike acts as a useful
feature for subsequent classification.

To be more precise, when a noiseless MPSK signal is raised
to some integer power N , where N = kM for some integer k,
the resulting signal can be shown to have the following form:

(r(t))N =

∞∑
n=−∞

ANgN (t− nT − t0)ej(2πkMfct+kθc)

+

∞∑
n=−∞

Cross Terms. (2)

What is remarkable about (2) is that in this expression, the
effect of carrier phase modulation has been removed. The
result is a strong, constant-phase sinusoid at frequency Nfc.

Figures 2(a) and (b) show the spectrum of a 2PSK signal
raised to the powers 2 and 4, respectively; a dominant peak is
apparent in both cases because all carrier phase modulations
have been converted to a constant phase. Figures 2(c) and (d)
show the spectrum of a 4PSK signal raised to the powers 2
and 4, respectively; a dominant peak is visible only in the
second plot, and it occurs at 4fc where fc = 0.4628 rad/s.
Figures 2(e) and (f) show the spectrum of an 8PSK signal
raised to the powers 2 and 4, respectively; no peaks are visible
because the carrier phase modulation has decreased only from
8 unique phases to 4 and 2 phases, respectively (rather than
1). Thus, for an 8PSK signal, it is necessary to raise the signal
to a power ≥ 8 to generate peaks in its spectrum.

The secondary peaks visible in the spectrum of (r(t))N

such as those occurring to the left and right of the dominant
(strongest) peak in Fig. 2(b) are due to symbol rate related
periodicity after the NPT is applied on the received signal.

IV. GENERATION OF FEATURES FROM NCS

A. CS, NCS, and Reconstruction

CS has in recent years shown promise as a method for
efficient signal acquisition. The idea behind CS is that certain



Fig. 2: (a) Spectrum of a 2PSK signal raised to the power 2; a
dominant peak is apparent, suggesting that N = 2 is an integer
multiple of the number M of phase modulation levels. (b) Spectrum
of a 2PSK signal raised to the power 4; a dominant peak is apparent.
(c) Spectrum of a 4PSK signal raised to the power 2; no peak is
apparent, since N = 2 is not an integer multiple of M = 4.
(d) Spectrum of a 4PSK signal raised to the power 4; a dominant peak
is apparent. (e) Spectrum of an 8PSK signal raised to the power 2.
(f) Spectrum of an 8PSK signal raised to the power 4; no peak is
apparent for the final two plots since N = 2 and N = 4 are not
integer multiples of M = 8.

high-bandwidth signals that obey sparse models can be recov-
ered from a number of measurements that is far below what the
Nyquist theorem would suggest. One way in which sparsity
can be manifested is as follows: let z denote a hypothetical
length-L vector of Nyquist-rate samples of some underlying
analog signal. We say that z has an s-sparse representation in
some L × L dictionary or basis Φ if we can write z = Φα,
where the length-L coefficient vector α has only s � L
nonzero entries.

The sparsity of α suggests that Nyquist-rate sampling of the
analog signal may in fact be capturing redundant information.
For example, it is possible to define a nonadaptive P × L
compressive measurement matrix R with P � L and actually
recover the vector z from the length-P vector of measurements
y = Rz = RΦα. Defining the P × L matrix A := RΦ, one
can solve the undetermined system of equations y = Aα if A
satisfies a condition known as the Restricted Isometry Property
(RIP) [5]. A matrix A is said to obey the RIP of order s with
isometry constant δs ∈ (0, 1) if it satisfies

(1− δs)||α||22 ≤ ||Aα||22 ≤ (1 + δs)||α||22 (3)

for all s-sparse vectors α. Exact recovery of α from y = Aα
is possible via a sparsity-promoting `1-minimization algorithm
if A satisfies the RIP of order 2s with δ2s sufficiently small. It
has also been shown that the recovery is robust to noise, and
approximate recovery is possible if the signal is nearly but not
exactly sparse.

In the nonuniform compressive sampling scenario, an ana-
log signal is sampled nonuniformly with random intervals
between the sample times. Usually these random intervals are
integer multiples of a fixed finer sampling interval (which is
at least as small as the Nyquist-rate sampling interval). In our
problem, let us define z to be a hypothetical length-L vector
of uniform samples of the received signal r(t):

z = [r(t0) r(t1) · · · r(tL−1)]T , (4)

where t` = `Ts and Ts is a sampling interval that is equal to
or smaller than the Nyquist-rate sampling interval. We assume
that we do not measure z directly, but rather that we collect
only a random subset of P samples from the L entries in z. We
can represent the length-P vector of NCS as y = Rz, where
R is a randomly generated binary selection matrix containing
a single 1 on each row. For example, if P = 3, L = 8, and

R =

0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 ,
then we will collect the values y[0] = z[1] = r(Ts), y[1] =
z[4] = r(4Ts), and y[2] = z[6] = r(6Ts).

As a sparsifying basis, we choose Φ to be the L× L DFT
synthesis matrix (i.e., one which implements the inverse DFT
transform). Then we can write z = Φα, where α is a length-L
vector of DFT coefficients of z. Additionally, we can write

y = Rz = RΦα.

It has previously been shown [10] that when Φ is an L × L
DFT synthesis matrix and R is a P × L random selection



matrix, the composition A = RΦ of these two operators will
satisfy the RIP of order P/ log4(L) with high probability. This
means that from P random samples, one can recover signals
that are nearly P -sparse in the DFT domain.

In our problem of interest, where z represents uniform
samples of an MPSK signal r(t), the corresponding DFT
coefficient vector α will not necessarily be sparse, due to
the PSK modulation. As we discuss in the next subsection,
however, the application of the NPT to the samples can lead
us to a sparse coefficient vector to which we may apply CS
inference techniques.

B. Sparsity and the NPT
Define zN to be the length-L vector that would result if we

had access to z and could apply the NPT to this vector:

zN [`] := (z[`])N , ` = 0, 1, . . . , L− 1.

Letting αN denote the DFT coefficients of zN , we can write
zN = ΦαN , and as discussed in Section III, if N = kM for
some integer k, we can expect αN to be exactly (or more
likely, approximately) sparse.

As an example, in Fig. 2(d), one can see that the spectrum
of a 4PSK signal when raised to the power of 4 contains three
prominent peaks. In fact, in this example, a full 33% of the
total signal energy is captured in just the three largest DFT
coefficients. While such spectra do not satisfy the technical
definition of sparsity, they are approximately sparse in some
sense, and so this suggests that CS-based recovery or inference
techniques could possibly be used to recognize the presence
of the prominent peaks. We discuss the application of such
techniques in Section IV-C below.

Lastly, we remark that as with any spectral analysis, win-
dowing of the samples is helpful for concentrating energy
in the main lobe and attenuating energy in the sidelobes,
especially when the dominant NPT peaks do not occur at
integer multiples of the frequency resolution of the DFT.

C. The NPT with NCS
We have argued that zN , the result of applying the NPT to

z, is approximately sparse. Unfortunately, in our measurement
scenario, we do not have direct access to z and cannot apply
the NPT directly. Rather, we observe only y = Rz, where R is
a random selection matrix as discussed in Section IV-A. What
is remarkable about our setup, however, is that the selection
operator R commutes with the NPT:1 by applying the NPT to
the compressive samples, we obtain the same measurements
that would be obtained by taking compressive samples of the
NPT version of z. More formally, define yN to be the length-P
vector that results by applying the NPT to y:

yN [p] := (y[p])N , p = 0, 1, . . . , P − 1.

We see immediately that we can write this vector yN—which
we can compute—as

yN = RzN = RΦαN = AαN , (5)

1Such commutativity would not hold with many other compressive matrices
used in CS, such as those fully populated with independent Gaussian entries.

despite the fact that we have no direct access to zN itself.
D. Estimation of the NPT Spectrum

From (5), we see that it is possible to compute what are
equivalent to compressive samples of the Nyquist-rate NPT
vector, and the matrix A that relates this vector to its com-
pressive samples is very likely to satisfy the RIP. Assuming a
sufficient number of measurements P are collected (relative to
the sparsity level of αN ), one could consider applying various
CS recovery algorithms to exactly or approximately recover
αN from yN , and then solve the AMR problem in a classical
setting.

However, accurately recovering the vector αN may not
be necessary if we consider ideas from the sub-field of CS
known as compressive signal processing (CSP) [7], where one
attempts to solve various detection, classification, or estimation
problems directly from compressive measurements without
attempting to reconstruct the full-length signal. CSP tech-
niques, when successful, can be much more computationally
efficient than CS recovery, and they can succeed using far
fewer measurements.

In the spirit of CSP, let us define the very simple estimate
of αN :

α̂N = AHyN = ΦHRHyN ,

where the superscript H denotes the conjugate transpose. The
estimate α̂N can be computed simply by constructing a length-
L vector containing the entries of yN at the appropriate sample
times (and zeros elsewhere), and taking the DFT of this vector.

CSP theory allows us to place certain guarantees on the
accuracy of this estimate. In particular, if αN is exactly s-
sparse and A satisfies the RIP of order s+ 1, then it follows
from results in [8] that

|α̂N [`]− αN [`]| ≤ δs+1‖αN‖2 (6)

for all ` = 0, 1, . . . , L−1. One implication of (6) is that, if αN
were strongly dominated by one coefficient (say, at position
`∗) such that |αN [`∗]| > |αN [`]|+2δs+1‖αN‖2 for all ` 6= `∗,
it would follow that the peak of |α̂N [`]| must occur at position
`∗.

In our settings we do not expect αN to be exactly sparse
or exactly dominated by just one coefficient. However, our
experimental results confirm that α̂N provides a suitable,
computationally efficient estimate for αN even when the
number of measurements P is very small. In Fig. 1, for
example, the dashed red curve shows |α̂N | while the solid
blue curve shows |αN |. We see that the estimate |α̂N | does
indeed reveal a dominant peak and that the location of this
peak coincides with the peak of |αN |.

V. DETECTION OF FEATURES

In order to achieve AMR, we must be able to detect
the prominent features (peaks) previously identified in [4].
However, when computing α̂N from NCS, secondary peaks
due to symbol rate periodicity may no longer be evident when
P � L. Hence our focus is on implementing a robust detector
with the goal of finding the dominant peak in |α̂N |.



Fig. 3: Proposed classification scheme for determining M .

In particular, the Constant False Alarm Rate (CFAR) detec-
tor [9] is widely used for peak detection and here we propose
to use the standard Cell Averaging CFAR (CA-CFAR) detector
[9] for classification feature (peak) detection. For the sake
of brevity, the interested reader is referred to [9] for exact
algorithm specifications. In our simulations, we have used
1000 noise cells (NC) and 2 guard cells (GC).

VI. CLASSIFICATION RULE

Based on the discussions in Section III, when applying
the NPT to an MPSK signal, a dominant spectral peak will
be generated when the NPT power N is an integer multiple
of M . In our simulations, we assume that we must choose
between three possible modulation schemes: M = 2, M = 4,
or M = 8. To solve this problem, we propose the classification
procedure shown in Fig. 3.

VII. IMPACT OF NOISE

A. Generation of Features with Nyquist-Rate Samples

To illustrate the potential impact of measurement noise,
observe that when a noisy MPSK signal of the form (1) is
raised to the power N = 2, the resulting signal can be shown
to have the following form:

(r(t))2 = sF (t) + sCT (t) + 2s(t)v(t) + (v(t))2 (7)

where v(t) is complex noise,

s(t) =

∞∑
n=−∞

Ag(t− nT − t0)ej2π(mn−1)/Mej(2πfct+θc),

sF (t) =

∞∑
n=−∞

A2g2(t− nT − t0)ej[2π(2fct)+2θc], and

sCT (t) =

∞∑
n=−∞

Cross Terms.

When M = 2, sF (t) generates the required features (peaks)
similar to the noiseless case described in (2). Compared
to (2), however, (7) has 2 more terms: 2s(t)v(t) and (v(t))2.
These terms affect the features (peaks) by decreasing the
overall power of the peaks relative to the noise floor. Similar
conclusions hold for the cases N = 4 and N = 8.

B. Generation of Features with NCS

Applying the NPT to a noisy NCS sample vector y, we have

yN = A(αN + αN,noise),

where A and αN are as in (5), and αN,noise represents the
DFT coefficients of the 2 additional noise terms in (7).

Besides decreasing the overall power of the features (peaks)
relative to the noise floor, αN,noise diminishes the sparsity of

the desired spectrum. Because the number P of NCS required
to accurately approximate the classification features depends
on the sparsity level of αN + αN,noise or the proximity of
αN+αN,noise to a sparse vector, it follows that we will require
more measurements in order to ensure robust classification
performance in the presence of noise. We quantify this tradeoff
in our experiments in Section VIII, and we see that in a range
of interesting problem scenarios the NCS-based classifier can
succeed using sub-Nyquist sampling rates.

C. Detection and Classification

When applying the CA-CFAR detector to features generated
from noisy data, we only require a change in the threshold ε.
Through an iterative approach, we have found that ε = 5 dB is
an appropriate margin to use in our range of noise levels. No
modification to the proposed classifier in Fig. 3 is required.

VIII. RESULTS

Using our proposed detector and classifier, Fig. 4(a) shows
a plot of the number of correct classifications for a 2PSK
signal with varying carrier-to-noise ratios (CNR); a total of
1000 Monte Carlo simulations were performed for each CNR.
The 2PSK signal contains 5000 symbols, uses an RRC pulse
shape with β = 0.3, and has fc = 1.574× the symbol rate. The
“Nyquist-rate” curve was generated by applying the NPT on a
collection of L = 21396 uniform time samples (this sampling
rate is ≈ 2× the Nyquist rate). The “NCS” curve in Fig. 4(a)
was generated by applying our modified NPT technique to a
collection of only P = 1070 NCS (this sampling rate is ≈ 1

5×
the symbol rate and ≈ 1

10× the Nyquist rate). We see that
AMR using sub-Nyquist NCS is indeed possible, but compared
to its Nyquist-rate counterpart, requires approximately 5dB
higher CNR for a given probability of successful classification.
Similarly, the “NCS” curve in Fig. 4(b) was generated using
just P = 214 NCS (this sampling rate is ≈ 1

25× the symbol
rate and ≈ 1

50× the Nyquist rate). Here, compared to Nyquist-
rate AMR, AMR using NCS requires approximately 8dB
higher CNR for a given probability of successful classification.

Fig. 4(c) repeats this experiment using a 4PSK signal (all
other simulation parameters such as β, L, P , and the number
of symbols are unchanged). Here, we see that compared to
its Nyquist-rate counterpart, AMR using NCS (with P ≈ L

20 )
requires at least 6dB higher CNR for a given probability of
successful classification. The margin loss is slightly greater
(approximately 10dB) when P ≈ L

100 , as shown in Fig. 4(d).
As compared to the 2PSK signal, there is a greater margin loss
for the 4PSK signal due to the diminished compressibility of
the 4PSK signal.

Fig. 4(e) again repeats the same experiment using an 8PSK
signal having the same β, L, and number of symbols, but
with P ≈ L

5 . Compared to its Nyquist-rate counterpart, we
see that AMR using NCS (for an 8PSK signal) requires at
least an average of 6dB higher CNR for a given probability
of successful classification, and the margin can be as high
as 10dB for some CNR. The average margin loss is slightly
greater (approximately 12dB) when P ≈ L

20 , as shown in



Fig. 4: Number of correct classifications (out of 1000 trials) versus
carrier-to-noise ratio for (a) 2PSK signal with P = 1070 NCS,
(b) 2PSK signal with P = 214 NCS, (c) 4PSK signal with P = 1070
NCS, (d) 4PSK signal with P = 214 NCS, (e) 8PSK signal with
P = 4279 NCS, (f) 8PSK signal with P = 1070 NCS.

Fig. 4(d). As compared to the 2PSK and 4PSK signals, there
is a greater margin loss for the 8PSK signal as it has the
lowest compressibility when the NPT is applied. In general,
we expect the CNR margins to increase with increasing values
of M and do not expect the proposed classifier to be viable
in practice for MPSK signals where M ≥ 16. This does not

mean, however, that a more sophisticated (and algorithmically
complex) classifier could not succeed for larger M using NCS.

IX. CONCLUSION

In order to significantly reduce the measurement burden
compared to classical Nyquist-rate AMR strategies, and in-
spired by the CS research field, we have considered the task
of solving the AMR problem from a small set of NCS.
Specifically, we have proposed a simple estimation scheme
for generating NPT features from NCS, a simple detection
scheme for identifying peaks in the estimated NPT spectrum,
and a simple classification rule for identifying the modulation
parameter M . Our experimental results confirm that AMR
using sub-Nyquist (even far sub-Nyquist) NCS is indeed pos-
sible and viable, but compared to its Nyquist-rate counterpart,
AMR using NCS requires somewhat higher CNR for a given
probability of successful classification. As a general rule,
reduction in the number of NCS used for AMR will result
in a greater margin loss; alternatively, increasing the number
of NCS used for AMR improves the robustness to noise.

Our proposed technique is computationally very simple and
requires far fewer NCS than would be needed to perfectly
reconstruct the Nyquist-rate sample vector. This work could
potentially enable AMR for signals with much higher band-
width than is currently possible or lead to new radio system
designs with smaller footprints and lower power requirements.
In future work, we plan to extend our techniques to incorporate
other types of classification features and to exploit cyclosta-
tionary properties of the signal.
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