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ABSTRACT

In this paper we study the “compressive matched filter,” a
correlation-based technique for estimating the unknown delay
and amplitude of a signal using only a small number of ran-
domly chosen (and possibly noisy) frequency-domain samples
of that signal. To study the performance of this estimator, we
model its output as a random process and—borrowing from an-
alytical techniques that have been used to derive state-of-the-art
signal recovery bounds in the field of compressive sensing—
we derive a lower bound on the number of samples needed to
guarantee successful operation of the compressive matched fil-
ter. Our analysis allows the roles of time and frequency to be ex-
changed, and we study the particular problem of estimating the
frequency of a pure sinusoidal tone from a small number of ran-
dom samples in the time domain. Thus, for signals parameter-
ized by an unknown translation in either the time or frequency
domain, our theoretical bounds and experimental results con-
firm that random measurements provide an economical means
for capturing and recovering such information.

Keywords— Compressive sensing, Matched filtering, Tone
estimation, Random processes

1. INTRODUCTION

In the field of compressive sensing (CS) it is known that certain
signals of high dimension but low complexity (namely, sparse
signals) can be fully recovered from small numbers of random
measurements. Several strong analytical bounds in CS have
been derived using principles from the modern theory of empir-
ical processes and the concentration of measure phenomenon.
For example, the restricted isometry property, which is a suf-
ficient condition for robust and stable signal recovery, can be
recast as a supremum of a random process [10–14]. Such prob-
lems are the concern of a vast literature in statistics. One classic
result, namely the Dudley inequality [4], provides a sharp upper
bound for the expectation of the supremum of a random process.
Such an expectation bound can then be extended to a probabilis-
tic tail bound using arguments from the theory of concentration
of measure [9].

The effectiveness of compressive measurements is not lim-
ited to problems involving the recovery of low-complexity sig-
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nals. Compressive techniques can also be applied to variety of
low-complexity inference problems (concerning possibly arbi-
trary high-dimensional signals) that do not require the full-scale
signals to be reconstructed [1, 2, 7, 8]. In Section 2 of this pa-
per, for example, we study the problem of estimating the car-
rier frequency of a pure sinusoidal tone from a small number
of noisy, randomly chosen time-domain samples. We present
strong bounds on the performance of a simple correlation-based
technique for estimating the unknown frequency.

The roles of time and frequency can be easily exchanged in
our analysis. This allows us to also consider the more general
problem of matched filtering (i.e., estimating the unknown delay
and amplitude of a known template signal) from a small num-
ber of noisy, randomly chosen frequency-domain samples. In
Section 3, we provide the appropriate bounds for this problem.
Our work complements past analysis of the so-called “smashed
filter,” which viewed the estimation problem as a search along
a parametric manifold embedded in the low-dimensional mea-
surement space [1, 2]. In contrast, our methods provide a more
direct characterization of the correlation statistics and allow the
consideration of continuous-time signals.

Due to space limitations, we are unable to include proofs of
our theorems in this paper. However, we note that our bounds
have been derived by adopting an analytical framework very
similar to those that have proved useful for studying CS signal
recovery. The interested reader is referred to [5] for detailed
proofs of our results based on the Dudley inequality and sup-
porting concentration of measure arguments.

2. TONE ESTIMATION

2.1. Problem Setup and Noise-free Analysis

To set the stage for a general characterization of the compressive
matched filter, we first consider the slightly narrower problem of
tone estimation from a small number of randomly chosen sam-
ples in time. More precisely, suppose we observe samples of a
pure complex exponential A · eiω0t with fixed but unknown fre-
quency ω0 ∈ Ω and amplitude A ∈ C. Let t1, t2, . . . , tm ∈ T
denote sampling times drawn randomly from a uniform distri-
bution on an interval T = [−tmax, tmax], and form the vector of
observations y ∈ Cm as

y[k] = A · eiω0tk , k = 1, 2, . . . ,m.

Given y, we are interested in estimating ω0 ∈ Ω.



One natural strategy is to use the least-squares estimate for
ω0, which is given by

ω̂0 = arg max
ω∈Ω
|〈y, ψω〉| , (1)

where ψω ∈ Cm is the test vector given by

ψω[k] = eiωtk , k = 1, 2, . . . ,m.

Having computed ω̂0, it is also straightforward to compute a
least-squares estimate for A.

Due to the randomness of the sample times, the output of
the correlation-based estimator in (1) is a random variable. In
order to study the performance of this estimator, we define the
random process X(ω) := 〈y, ψω〉 on Ω. To ensure the accuracy
and robustness of our estimator, we would like guarantee that
the empirical supremum of |X(ω)| happens close to ω0 and that
there is an ample margin between the peak of this process and
the values of |X(ω)| away from ω0. Later in this section, we
extend our analysis to account for the measurement noise.

To get a rough idea of how X(ω) behaves, we first compute
the mean of this process:

EX(ω) = A ·m · sinc (0.5 |T | (ω0 − ω)) , (2)

where sinc (α) := sin (α) /α. Informally, then, one expects
that on average |X(ω)| will have a clear peak near ω0 (where
the sinc function has its main lobe) and decay away from this
point (following the sidelobes of the sinc). This is indeed likely
to be the case even for a small number of samples, as evidenced
by the following theorem.

Theorem 1 [5, Theorem 1] Suppose that |Ω||T | ≥ 3. Then

E sup
ω∈Ω
|X(ω)− EX(ω)| ≤ C1 · |A| ·

√
m log(|Ω||T |), (3)

where C1 is a known universal constant.

Comparing (2) with (3), we see that while the peak of |EX(ω)|
scales with |A|m, the maximum expected deviation of X(ω)
from its mean function scales only with |A|

√
m log(|Ω||T |),

and so even for small values of m, the peak of |X(ω)| can be
expected to occur in the main lobe of the sinc function. Theo-
rem 3 below translates this argument into a formal lower bound
on the requisite number of measurements.

2.2. Robustness to Measurement Noise

Our analysis can be extended to account for additive observa-
tion noise. Let n = [n1, n2, . . . , nm]T denote a vector of inde-
pendent zero-mean complex-valued Gaussian random variables
with variance σ2

n, and define the vector of noisy observations
yn ∈ Cm as

yn[k] = A · eiω0tk + nk, k = 1, 2, . . . ,m.

By correlating yn against the test vector ψω for all ω ∈ Ω, we
obtain the random process

Xn(ω) := 〈yn, ψω〉 = X(ω) +N(ω),

where X(ω) is as defined above, and the zero-mean noise pro-
cess is given by

N(ω) := 〈n, ψω〉 .

We can bound the peak of the noise process as follows.

Theorem 2 [5, Theorem 4] Suppose that |Ω| |T | ≥ 3. Then

E sup
ω∈Ω
|N(ω)| ≤ C2 · σn ·

√
m log(|Ω||T |),

where C2 is a known universal constant.

Since the peak of |EX(ω)| scales with |A|m, Theorem 2 sug-
gests that the compressive estimator can withstand noise levels

of σn ∼ |A|
√
m log−1(|Ω||T |).

It can be shown that the arguments in both Theorems 1 and
2 hold not only on average, but also with a small failure prob-
ability. In other words, except with a small probability, both
|X(ω) − EX(ω)| and |N(ω)| are guaranteed to be uniformly
small over Ω. This enables us to quantify the number of sam-
ples needed to ensure, with high probability, a clear margin be-
tween the peak of |Xn(ω)| and the function away from the peak.
From this, we can quantify the performance of the least-squares
estimator as follows.

Theorem 3 [5, Corollary 8] Let δ > 0. Suppose that |Ω| |T | ≥
3 and that

m ≥ C3 · log(|Ω||T |/δ) ·max

(
1,

σ2
n

|A|2

)
, (4)

where C3 is a known universal constant. Then with probability
at least 1− δ, the maximum value of |Xn(ω)| must be attained
for some ω̂0 within the interval [ω0 − 2π|T |−1, ω0 + 2π|T |−1].

2.3. Simulations

We illustrate the concentration behavior of the compressive
least-squares estimator with a short collection of simulations.
To begin, we set ω0 = 100 and consider the pure complex
exponential signal Aeiω0t with A = 1. We collect m ran-
dom samples of this signal over the interval T = [−1/2, 1/2].
For various values of m, Figure 1 plots the resulting corre-
lation statistics |X(ω)| (solid blue line) as well as |EX(ω)|
(dashed red line—a shifted, scaled sinc function) over the do-
main Ω = [−300, 300]. We observe the expected concentration
of |X(ω)| around |EX(ω)|, with the relative maximum devia-
tion decreasing as a function of m.

Next, we fix m = 50 and add to the measurements complex-

valued Gaussian noise with σn = c|A|
√
m log−1(|Ω||T |).

For various values of c, Figure 2 plots the resulting correla-
tion statistics |Xn(ω)| (solid blue line) as well as |EXn(ω)|
(dashed red line—a shifted, scaled sinc function exactly equal
to |EX(ω)|) over the domain Ω = [−300, 300]. We again ob-
serve the expected concentration of |Xn(ω)| around |EXn(ω)|,
with the relative deviation increasing as a function of c.

As discussed in the preceding sections, the correlation statis-
tics |Xn(ω)| will be useful for estimating ω0 when the peak of
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Fig. 1. The correlation statistics |X(ω)| (solid blue line) as well as
|EX(ω)| (dashed red line) for (a) m = 10, (b) m = 20, (c) m = 50,
and (d)m = 100 noiseless random samples. The empirical correlation
statistics become more tightly clustered around the mean function with
increasing m. The coincidence of the peaks of the red and blue curves
means that ω0 can be accurately determined from the random samples.
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Fig. 2. The correlation statistics |Xn(ω)| (solid blue line) as well
as |EXn(ω)| (dashed red line) for m = 50 samples corrupted by
complex-valued Gaussian with σn = c|A|

√
m log−1(|Ω||T |), where

(a) c = 0.5 and (b) c = 1.5. Increasing amounts of noise cause the
amount of deviation between the two curves to increase; as a third point
of comparison, Figure 1(c) corresponds to the noise level σn = 0.

this curve coincides with the main lobe of the mean function
(a sinc centered at ω0). However, as Figures 1 and 2 illustrate,
the concentration of Xn(ω) about its mean depends both on the
number of samples collected and on the level of noise. Thus,
for various values of m and σn, we run 1000 trials described
as follows. In each trial, we construct a random set of sam-
ple times and a random noise vector, compute the correlation
statistics |Xn(ω)| over a grid of resolution π

4 , and let ω̂0 de-
note the frequency at which this quantity is maximized. Fig-
ure 3(a) plots, as a function of m and σn, the percentage of
trials in which |ω̂0 − ω| ≤ 2π|T |−1, i.e., in which the empirical
peak of |Xn(ω)| falls within the main lobe of the sinc function.
In behavior that is consistent with (4), the compressive estima-

tor withstands noise levels of σn ≈ 0.5|A|
√
m log−1(|Ω||T |)

across a range of m. (The vertical axis is logarithmic, so the
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Fig. 3. The percentage of trials in which the frequency ω0 is correctly
estimated (to within±2π|T |−1) as a function of the number of samples
m and the noise level σn = c|A|

√
m log−1(|Ω||T |). The experiments

are run using the search bandwidth (a) Ω = [−300, 300] and (b) Ω =
[−3000, 3000]. White indicates 100% success, while black indicates
0% success.

tested number of samples m ranges from 2 to 1024.) Fig-
ure 3(b) reproduces the same experiment with a 10× larger
search bandwidth, i.e., with Ω = [−3000, 3000]. Once again,
the compressive estimator withstands noise levels of σn ≈
0.5|A|

√
m log−1(|Ω||T |) across a range of m.

3. TIME OF ARRIVAL ESTIMATION

3.1. Problem Setup and Noise-free Analysis

One can easily exchange the roles of time and frequency
throughout our analysis. In doing so, the problem becomes that
of estimating the unknown delay and amplitude of a known tem-
plate signal using only a small number of randomly chosen (and
possibly noisy) frequency-domain samples of that signal. For
the special case of the tone estimation problem considered in
Section 2, the so-called “template signal” corresponds to a sinc
function. Our analysis, however, is not restricted to this choice
of template function, and so in this section we study what we
dub the compressive matched filtering problem at a more gen-
eral level.

Let s(t) denote a known template signal with Fourier trans-
form ŝ(ω) that is bandlimited to some range of frequencies
Ω = [−ωmax, ωmax]. Let ω1, ω2, . . . , ωm denote sampling
times drawn randomly from a uniform distribution on Ω, and
suppose we observe m samples of the Fourier transform of the
signalA ·s(t−τ0) at the frequencies ω1, ω2, . . . , ωm. The delay
τ0 is unknown (but is assumed to belong to some known interval
T ), and the amplitude A ∈ C is unknown.

Form the vector of observations y ∈ Cm as y[k] = A ·
e−iωkτ0 ŝ(ωk), k = 1, 2, . . . ,m. Given y, the least-squares
estimate for τ0 is equal to τ̂0 = arg maxτ∈T |〈y, ψτ 〉|, where
ψτ ∈ Cm is the test vector given by ψτ [k] = e−iωkτ ŝ(ωk), k =
1, 2, . . . ,m. Having computed τ̂0, it is also straightforward to
compute a least-squares estimate for A. The random process
X(τ) = 〈y, ψτ 〉 on T has mean function

EX(τ) = 2πAm|Ω|−1Rss(τ − τ0),

where Rss(·) = (s(t) ? s∗(−t))(·) denotes the autocorrelation



function of s(t). (When s is a sinc function as arises in the
tone estimation problem, Rss will also be a sinc function.) This
mean function is guaranteed to peak at τ = τ0 with maximum
amplitude |EX(τ0)| = |A|m|Ω|−1‖ŝ‖22; away from this value,
the mean function may or may not have significant sidelobes,
depending on the nature of the template signal.

Using similar arguments to those in Section 2.1, one can
guarantee that, with very high probability, the maximum de-
viation of X(τ) from its mean function will be small when m
is sufficiently large. Such results, however, will also now de-
pend on the degree to which the spectrum ŝ(ω) of the template
signal is spread over the sampling domain Ω. Not surprisingly,
signals with a relatively flat spectrum over Ω require the small-
est number of uniformly distributed random samples. On the
other extreme, if the support of ŝ is restricted to only a small set
within Ω, one must take many more uniform samples over Ω to
gather the same amount of information. To quantify this effect,
let us introduce

µ1 =
√
|Ω| · ‖ŝ‖24 · ‖ŝ‖−2

2 and µ2 = |Ω| · ‖ŝ‖2∞ · ‖ŝ‖−2
2 .

It follows from the Hölder inequality that µ1, µ2 ≥ 1 with
equality if |ŝ(ω)| is constant on Ω. In general, smaller values
of µ1, µ2 correspond to more uniformly spread spectra. We can
now state a counterpart of Theorem 1, generalized to account
for arbitrary template signals.

Theorem 4 [5, Theorem 1] Suppose that |Ω||T | ≥ 3. Then

E sup
τ∈T

∣∣X(τ)− 2πAm|Ω|−1Rss(τ − τ0)
∣∣

≤ C1 · µ1|A||Ω|−1 ‖ŝ‖22 ·
√
m log(|Ω||T |). (5)

3.2. Robustness to Measurement Noise

Once again, our analysis can be extended to account for ad-
ditive measurement noise through the appropriate definition of
the noisy random process Xn(τ). It turns out that the com-
pressive matched filter can withstand noise levels of σn ∼
|A|‖ŝ‖2

√
m|Ω|−1 log−1(|Ω||T |). Furthermore, expectation

bounds such as (5) can be replaced with strong probabilistic
statements. These arguments allow us to quantify the number
of samples needed to control the maximum deviation of Xn(τ)
from its mean function, which equals the scaled and shifted au-
tocorrelation function of the template signal. This result is par-
ticularly interesting when the underlying autocorrelation func-
tion Rss(τ) has one main peak (a “main lobe”) centered at
τ = 0 and is relatively small away from the origin (small “side
lobes”). When this condition is met, it is possible to guarantee
a clear separation between the peak of |Xn(τ)| near τ0 and the
values of |Xn(τ)| away from this peak. This notion is formal-
ized in the next result.

Theorem 5 [5, Corollary 6] Suppose there exist constants
α1 ∈ [0, 1) and α2 > 0 such that |Rss(τ)| ≤ α1Rss(0) for
all |τ | > α2. Suppose also that |Ω| |T | ≥ 3 and that

m ≥ C4 ·
log(|Ω||T |/δ)

(1− α1)2
·max

(
µ2

1, µ2,
σ2
n|Ω|

|A|2‖ŝ‖22

)
,

where C4 is a known universal constant. Then with probability
at least 1 − δ, the maximum value of |Xn(τ)| must be attained
for some τ̂0 within the interval [τ0 − α2, τ0 + α2].

4. CONCLUSIONS

In line with other results from CS (such as [3, 6, 14], which con-
sider the recovery of frequency-sparse and other continuous-
time signals), our work helps confirm that random measure-
ments can provide an efficient, robust, and universal means for
capturing signal information. In particular, for signals parame-
terized by a translation in either the time or frequency domain,
our theoretical bounds and experimental results confirm that
the unknown parameters can be recovered via a simple least-
squares estimator from a number of random measurements that
is only logarithmic in the Nyquist bandwidth. Because we do
not require the signal to be recovered, our measurement bounds
show no dependence on the sparsity level of the signal. All of
our results in this paper have been proved using a probabilistic
analytical framework very similar to those that have proven suc-
cessful for studying the signal recovery problem in CS [10–14].
By extending this framework, one could consider incorporating
additional measurement nonidealities such as clock jitter.
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