Geometric Toolsfor Image Compression

Michael Wakin, Justin Romberg, Hyeokho Choi, Richard Baraniuk

Department of Electrical and Computer Engineering, Rice University
6100 Main St., Houston, TX 77005

Abstract

Images typically contain strong geometric features, such as
edges, that impose a structure on pixel values and wavelet
coefficients. Modeling the joint coherent behavior of wave-
let coefficients is difficult, and standard image coders fail to
fully exploit this geometric regularity. We introduce wedge-
lets as a geometric tool for image compression. Wedgelets
offer piecewise-linear approximations of edge contours and
can be efficiently encoded. We describe the fundamental
challenges that arise when applying such a tool to image
compression. To meet these challenges, we also propose an
efficient rate-distortion framework for natural image com-
pression using wedgelets.

1. Introduction

Much of the information in a typical image is communi-
cated by the edges of the pictured objects, and these edges
generally contain a great deal of high-frequency energy. For
these reasons, an effective algorithm for image compression
must (explicitly or implicitly) have an efficient means for
compressing edge information. In this paper, we demon-
strate that standard techniques for image compression can
be improved through a better awareness of the geometric
structure that edges impose on an image.

Today’s standard approach for image compression in-
volves the 2-D wavelet transform. Wavelets are indeed well-
suited to compress smooth and textured regions, but due to a
lack of shift-invariance, their behavior is rather complicated
near edges. Many large wavelet coefficients are typically re-
quired to describe an edge contour. These coefficients have
a coherency which is imposed by the structure of the edge,
but most compression schemes fail to fully exploit this geo-
metric regularity. The Estimation-Quantization (EQ) coder
[1], for example, simply models the increased variance of
wavelet coefficients along an edge. As a result, there is a
potential loss of efficiency in encoding these coefficients,
and ringing artifacts are typically introduced when quanti-
zation destroys their coherency.

This work was supported by the NSF, ONR, AFOSR, DARPA, and the
Texas Instruments Leadership University Program.
Email: {wakin, jrom, choi, richb}@rice.edu. Web: dsp.rice.edu

The potential for improvement upon such techniques is
highlighted by the following observation: edges naturally
lend themselves to parsimonious description. A straight
edge, for example, can be completely described by only a
few parameters. Our goal is to reconcile this discrepancy
— to develop an image compression framework which uses
parsimonious descriptions for geometric information.

While the motivation for the problem may be clear, the
optimal solution is somewhat unclear. A variety of recent
attempts at image compression have attempted to capital-
ize on geometric regularity. Curvelets and contourlets [2]
define a basis of elements which provide excellent nonlin-
ear approximations for geometric features. The dictionary,
however, is slightly redundant, and has yet to yield a prac-
tical compression algorithm. Bandelets [3] warp a wave-
let basis around an edge contour, but the procedure is quite
complicated, and questions remain as to how bits should be
allocated among the stages of the procedure.

In this paper, we examine the possibility of image com-
pression using geometric tools: dictionaries of elements
that provide parsimonious descriptions of geometric fea-
tures. The wedgelet dictionary, developed by Donoho [4], is
one such tool. Wedgelets offer piecewise-linear approxima-
tions to edge contours, and the wedgelet dictionary can be
arranged to allow efficient indexing and compression. Sec-
tion 2 discusses wedgelets in detail and introduces an effi-
cient technique for compressing a wedgelet approximation.

The use of any geometric tool for image compression
faces certain fundamental challenges. The geometric tool,
for example, must be integrated into a complete image
coder, and this coder must intelligently decide where and
how to allocate its bitrate. Section 3 uses the wedgelet dic-
tionary to illustrate such challenges.

Finally, in Section 4, we explain how wedgelets may
be integrated into the Space-Frequency Quantization algo-
rithm [5], a powerful wavelet-compression technique. The
resulting coder meets many of the challenges identified in
Section 3. Our Wedgelet-SFQ coder optimizes its bit alloca-
tion between wedgelets (geometry) and wavelets (texture),
and uses an optimized framework for wavelet compression
of residual geometric information. The compression gains
we achieve over SFQ illustrate the true promise of geomet-



Fig. 1. Wedgelet on an N x N dyadic block: a position
index k describes the endpoints of the edge, andm andms
specify the average grayscale intensities on each side.

ric compression techniques.

2. Wedgeletsfor geometric representation

A wedgelet is a dyadic N x N block of pixels containing
a picture of a single straight edge. As shown in Fig. 1, the
edge separates two constant regions of grayscale intensity
my and ma; pixel values along the edge are computed by
an appropriate weighted averaging. We restrict the possible
endpoints of the edge so that the position may be indexed by
a single discrete parameter k € {1,2,..., M}. A properly
selected discrete set leads to fast algorithms for computing
the multiscale wedgelet fits for a given set of data [6]. We
denote by © the collection of parameters {k,m,m2} re-
quired to describe a wedgelet.

The wedgelet dictionary, introduced by Donoho [4], is
the dyadically organized collection of all possible wedge-
lets. As illustrated in Fig. 2, contours in an image may
be approximated by a wedgelet decomposition, a tiling of
wedgelets chosen from this dictionary. A dyadic wedgelet
decomposition can be interpreted as a quadtree, where each
node d; includes a set of wedgelet parameters ©; describ-
ing the corresponding dyadic block. Leaf nodes are used to
assemble the picture of the wedgelet decomposition, while
interior nodes are useful for predicting and encoding param-
eters at the leaf nodes. Finer approximations to a contour
can be obtained by dividing a leaf node into four children.

Wedgelets offer a parsimonious description of geome-
try; we naturally look to use wedgelet decompositions for
geometric image compression. We propose a top-down,
predictive scheme for encoding a wedgelet decomposition.
Our algorithm exploits the redundancy among wedgelet pa-
rameters in the quadtree. In particular, we note that a node
d; and its children describe the same spatial location. Thus,
once wedgelet parameters are encoded for a node, these pa-
rameters offer predictions for its four children. Letting d;
be a child of d;, we can predict @\] by drawing a picture of
the wedgelet described by ©;, dividing the picture into four
quadrants, and extracting the wedgelet parameters from the
appropriate quadrant. With knowledge of ©;, we need only
encode the prediction errors to know ;.

Fig. 2. A dyadic wedgelet decomposition can be interpreted
as a quadtree, where each node includes a set of wedgelet
parameters, and leaf nodes specify the pictured wedgelets.

For the purposes of this paper, we explain how to en-
code the prediction error only for the wedgelet index k. To
encode the difference between the wedgelet index k; and
its prediction kA] we define a probability distribution on
the Hausdorff distance §(k;, kAj) according to p(8) ~ e="?,
where « is a constant that controls the preference given to
accurate predictions. Using arithmetic coding according to
this distribution, accurate predictions require few bits to en-
code, while large prediction errors are more costly.

A Viterbi-like algorithm determines the optimal wedge-
let decomposition, using a Lagrangian parameter A to bal-
ance the rate required to subdivide each parent wedgelet
against the decrease in distortion. The Viterbi algorithm
also reveals the optimal wedgelet parameters to encode at
each node.

3. Challengesfor natural image compression

The previous section suggests a compression method for
Horizon class images (those consisting entirely of sharp
edges along smooth contours). Our goal, however, is to
code natural images, which contain smooth regions, tex-
tures, and gradients, in addition to the geometric features.
Unfortunately, due to errors introduced when approximat-
ing real edges with wedgelet step edges, the application of
wedgelets to natural image compression is not straightfor-
ward.

In [7], we describe a scheme where we encode a wedge-
let decomposition of an image f, creating a cartoon-like
primitive sketch c¢. We then subtract this sketch from the
original image, and compress the residual ¢ = f — ¢ using
a standard wavelet-based coder. This leads to an interest-
ing problem, however: residual artifacts created by wedge-
let approximations pose many of the same difficulties for
wavelets that edges present. These artifacts typically re-
semble tall, thin ridges which have a geometric structure
similar to the edges themselves. Coherency must be pre-
served among their quantized wavelet coefficients in order



to prevent ringing. It is possible to make a refinement to
the residual image [8], masking out any possible artifacts
located near edges in the cartoon sketch. This makes the re-
sulting residual image much easier to compress using wave-
lets, and we see a noticeable improvement in visual quality
over standard coding techniques. The destruction of infor-
mation (during masking), however, prevents the full coder
from being competitive in terms of PSNR.

As demonstrated by this exercise, any compression
technique that uses an explicit geometric tool must deal with
certain fundamental challenges. First, the coder must have
an effective interface between its geometric and its non-
geometric techniques. Second, the coder should optimize
its bit allocation between these techniques. The geomet-
ric tool should be used only when it actually improves the
R/D performance of the full coder. Third, the coder must
deal carefully and effectively with errors made by geomet-
ric approximations. Knowledge of nearby geometry must
be considered when compressing residual textures.

4. Rate-distortion compression using wedgelets

In this section, we present a complete image coder that
uses wedgelets as a geometric tool. Based on the Space-
Frequency Quantization (SFQ) algorithm [5], our Wedgelet-
SFQ approach (first presented in [9]) capitalizes on the SFQ
optimization structure to address the challenges described
above.

4.1. Space-Frequency Quantization

Space-Frequency Quantization (SFQ) is an efficient algo-
rithm for wavelet-domain compression. The SFQ coder
uses a zerotree [10] quantization framework, with scalar
quantization used to compress the significant (non-zerotree)
wavelet coefficients.

The quadtree of wavelet coefficients is transmitted from
the top down, and each node n; of the quadtree includes a
binary map symbol. A 0 symbol indicates a zerotree: all
of the descendants of node n; are quantized to zero. A 1
symbol indicates that the node’s four children are signifi-
cant: their quantization bins are coded along with an addi-
tional map symbol for each. Thus, the quantization scheme
for a given wavelet coefficient is actually specified by the
map symbol of its parent (or a higher ancestor, in the case
of a zerotree); the map symbol transmitted at a given node
refers only to the quantization of wavelet coefficients de-
scending from that node. All significant wavelet coefficients
are quantized uniformly by a common scalar quantizer; the
quantization stepsize ¢ is optimized for the target bitrate.

Fundamental to the SFQ algorithm is its rate-distortion
optimization of the zerotree placements; a tree-pruning op-
eration weighs the rate and distortion consequences of each
symbol. The pruning starts at the bottom of the tree and
proceeds upwards. Initially, it is assumed that all coef-

ficients are significant, and decisions must be made re-
garding whether to group them into zerotrees. The coder
uses several bottom-up iterations until the tree-pruning con-
verges. At the beginning of each iteration, the coder esti-
mates the probability density p(w) of the collection of sig-
nificant coefficients; this yields an estimate of the entropy
(and hence coding cost) of each quantized coefficient. Ulti-
mately, adaptive arithmetic coding is used to transmit these
quantization bin indices. The SFQ tree-pruning produces a
near-optimal configuration of zerotrees without requiring an
exhaustive search over all configurations.

Before describing the tree-pruning, we introduce some
notation. Let w; be the wavelet coefficient at node n;, and
let w; denote the coefficient quantized by stepsize ¢q. The
set of the four children of node n; is denoted Cj;, and the
subtree of descendants of node n; is denoted U; (note that
this does not include node n;).

Optimization in the SFQ framework begins with Phase
I, where the tree is iteratively pruned based on the rate and
distortion costs of quantization. Phase | ignores the bits
required to transmit map symbols, while Phase Il adjusts
the tree-pruning to account for these costs. In this paper,
we focus on Phase | and its adaptation to include wedge-
lets; the adaptation for Phase Il is similar. In each iteration
of the Phase | optimization, those nodes currently labeled
significant are examined (those already in zerotrees will re-
main in zerotrees). The coder has two options at each such
node: create a zerotree (symbol 0) or maintain the signif-
icance (symbol 1). Each option requires a certain number
of bits and results in a certain distortion relative to the true
wavelet coefficients. The first option, zerotree quantization
of the subtree beginning with node n;, requires Rﬁo) =0
bits, because no information is transmitted besides the map
symbol. This option results in distortion

D(O) = Z '11)]'2.

j:njel;

The second option is to send a significance symbol for n;, as
well as the quantization bins corresponding to wj, for j such
thatn; € C;. Note that for this option, we must consider the
(previously determined) rate and distortion costs of nodes in
C; as well. Thus

R§1)= Z —log, [p

j:n;€C;

+ > R;

j:n;€C;

This option results in distortion

Dgl): Z (w; _wJ

j: n; €C;

+ > D

J: "JEC

The decision between the two options is made to mini-
mize the Lagrangian cost J; = D; + AR;, where )\ is the op-
timization parameter controlling the tradeoff between rate



and distortion. Note that, for each subtree of wavelet coeffi-
cients, SFQ chooses the R/D optimal compression scheme.

Despite its success, the SFQ coder fails to model the
joint behavior of wavelet coefficients along an edge. A stan-
dard SFQ optimization generally results in the use of ze-
rotree symbols to represent smooth regions of the image,
with scalar quantization used to code other features such as
edges. We propose adding a third option (symbol 2) to the
SFQ tree-pruning, where a wedgelet decomposition is trans-
mitted at node n; that can be used to infer the descending
wavelet coefficients.

4.2. Wedgelet-SFQ algorithm

W-SFQ uses wedgelet decompositions to provide parsimo-
nious descriptions of wavelet coefficient subtrees. Each
node n; in the wavelet quadtree corresponds to a dyadic
block of pixels. For each such node, we compute the wedge-
let decomposition within the corresponding image block,
and we consider the possibility of explicitly encoding that
wedgelet decomposition. We use the techniques of Sec-
tion 2 to optimize and encode this wedgelet decomposition,
using the same optimization parameter A as for the SFQ
tree-pruning.

Once encoded for a node n;, a wedgelet decomposition
can be used to predict the wavelet coefficients for all de-
scendants U;. This is due to the approximate support of
each wavelet basis function within its corresponding dyadic
block. One way to obtain a prediction for these coeffi-
cients is to create an temporary image containing the coded
wedgelet decomposition at the appropriate location, take its
wavelet transform, and extract the appropriate coefficients.
For each j suchthatn; € U;, we denote the predicted wave-
let coefficient as w} ;. The collection {w} ; : n; € U;} is
called a curve tree: a subtree of wavelet coefficients derived
from the wedgelet decomposition encoded at its root n;.

A curve tree provides an alternative method for repre-
senting a subtree of wavelet coefficients. W-SFQ adds curve
trees as a third option (symbol 2) to the SFQ tree-pruning;
the modification to SFQ is straightforward. In the case of
a curve tree, R§2) is simply the rate required to encode the
wedgelet decomposition, although in practice we may add
an extra penalty because the likelihood of symbol 2 is gen-
erally much lower than symbols 0 and 1. The distortion for
the curve tree option is given by

Dz@): Z (wj—w;‘,j)z.

j: n; €U;

As with SFQ, the option with the lowest Lagrangian cost is
chosen.

Curve trees offer some of the same benefits as zerotrees
— large collections of wavelet coefficients can be described
using very few bits — but curve trees can do so in the high-
energy regions near edges. Scalar quantization can be re-

served for more complicated texture regions. Moreover, be-
cause curve trees are obtained by taking the wavelet trans-
form of an image with sharp edges, they implicitly model
the joint coherency of the wavelet coefficients. This should
minimize visual artifacts at low bitrates.

4.3. Residual compression in W-SFQ

When a curve tree is transmitted at a node, we are assured
that it improves the R/D performance of the coder (other-
wise one of the two standard SFQ symbols would have been
chosen). Facing the challenges described in Section 3, we
are left with the question of whether to attempt compression
of the residual wavelet errors on that subtree. Rather than
ignore these residual errors, we implement standard SFQ
compression on each residual subtree resulting from a curve
tree. SFQ allows a spatially adaptive approach, so that tex-
tures away from the edges may still be encoded. In addition,
the zerotree symbol allows the coder the option of ignor-
ing any geometric artifacts which it cannot efficiently com-
press. This residual SFQ may destroy some of the wavelet
coherency among geometric features, but it is also guaran-
teed only to improve the coder’s R/D performance.

4.4, Compression performance

For efficiency when implementing W-SFQ, we restrict each
wedgelet decomposition to a pair of common grayscale val-
ues my and mo. (Indeed it is only necessary to transmit
me — my in order to compute the wavelet coefficients).
Thus, the parameter set © for each node contains only the
wedgelet index k, with the quantity ms — m; transmitted
only once.

For our implementation, we also expand our wedgelet
dictionary to accommodate smooth edges. For each curve
tree, we transmit as a single parameter the width T (in pix-
els) of the transition from m; to mo. With this added pa-
rameter, we are able to better approximate blurred edges.

For an example of the effectiveness of curve tree repre-
sentations, we compress the 512 x 512 Peppers image us-
ing both SFQ and W-SFQ at a bitrate of 0.07bpp. For a
point of reference, JFEG-2000 compression yields a PSNR
of 28.57dB at this bitrate.

Fig. 3 shows a portion of the SFQ-compressed image.
SFQ compression gives a PSNR of 29.08dB, and the SFQ
tree-pruning leaves a total of 5512 wavelet coefficients de-
scribed by scalar quantization.

At the same bitrate, Fig. 4 shows the Peppers image
compressed using W-SFQ. A PSNR of 29.25dB is attained,
an improvement of 0.17dB over the standard SFQ tech-
nique. In regions described by curve trees, ringing arti-
facts are noticeably reduced compared to the SFQ result.
In this case, 44 separate curve trees are encoded, leaving
4436 wavelet coefficients described by scalar quantization.
The compression for curve tree prediction errors encodes
160 residual coefficients using scalar quantization.



l

i
‘

Fig. 3. Portion of Peppers image coded using SFQ opti-
mization. Rate = 0.07 bpp, PSNR = 29.08dB.

Tests on other natural images perform similarly at a vari-
ety of bitrates; for images such as Cameraman with isolated,
sharp edges, gains may be up to 0.30dB. For synthetic im-
ages with sharp edges and very light texture, we can achieve
gains several dB above SFQ. For images such as Lenna that
contain smoother edges with surrounding textures, our gains
are currently around 0.05dB.

5. Conclusion

In this paper, we have introduced wedgelets as a tool for par-
simonious description of geometry. We have explored some
of the practical problems associated with using a geometric
tool for natural image compression, and we have discussed
W-SFQ as one technique to address these challenges. De-
spite our relatively modest geometric tool, we notice non-
trivial compression gains when geometry is introduced to a
powerful wavelet-based coder. This motivates the search for
more fully-developed techniques for geometric image com-
pression.

Many questions remain as to the optimal approach for
geometric image compression. Even for simple probability
models, the information-theoretic optimal coding scheme is
often unknown. Several current topics of research may lead
to breakthroughs in compression performance for natural
images; the best solution may lie in some combination of
better geometric tools, alternative compression frameworks,
and new harmonic bases motivated by geometry.

Even for an approach based on an explicit geometric
tool, several important questions remain. Our technique, for
example, involves sending geometry, subtracting it off, and
compressing the residual. More generally, perhaps there is
another approach where geometric information is used more
intelligently. Bandelets meet this description, but have yet
to yield a practical compression scheme. Another question
relates to how a coder should attempt to correct for geo-
metric artifacts remaining from the geometric tool; it seems

2
J
AR
v

Fig. 4. Portion of Peppers image coded using W-SFQ op-
timization. Rate = 0.07 bpp, PSNR = 29.25 dB. The three
boxes highlight some of the blocks described by curvetrees.

logical that geometric features should be represented either
by the geometric tool, or not at all. Such questions are cur-
rently topics of investigation. *

6. References

[1] S. LoPresto, K. Ramchandran, and M. T. Orchard, “Image cod-
ing based on mixture modeling of wavelet coefficients and a fast
estimation-quantization framework,” in Proceedings, IEEE Data
Compression Conference — DCC ’97, Snowbird, Utah, March 1997,
pp. 221-230.

[2] M. N. Do and M. Vetterli, “Contourlets: A directional multiresolu-
tion image representation,” in IEEE Int. Conf. on Image Proc. - ICIP
’02, Rochester, New York, Oct. 2002.

[3] E. L. Pennec and S. Mallat, “Image compression with geometrical
wavelets,” in IEEE Int. Conf. on Image Proc. — ICIP *01, Thessa-
loniki, Greece, Oct. 2001.

[4] D. L. Donoho, “Wedgelets: Nearly-minimax estimation of edges,”
Annals of Stat., vol. 27, pp. 859-897, 1999.

[5] Z. Xiong, K. Ramchandran, and M. T. Orchard, “Space-frequency
quantization for wavelet image coding,” IEEE Trans. Image Proc.,
vol. 6, no. 5, pp. 677-693, 1997.

[6] J. K. Romberg, M. B. Wakin, and R. G. Baraniuk, “Multiscale
wedgelet image analysis: fast decompositions and modeling,” in
IEEE Int. Conf. on Image Proc. - ICIP 02, 2002.

[7]1 M. B. Wakin, J. K. Romberg, H. Choi, and R. G. Baraniuk, “Image
compression using an efficient edge cartoon + texture model,” in
Proc., IEEE Data Compression Conference — DCC ’02, Snowbird,
Utah, April 2002, pp. 43-52.

[8] J. Froment, “Image compression through level lines and wavelet
packets,” in Wavelets in Signal and Image Analysis, A. A. Petrosian
and F. G. Meyer, Eds. Kluwer Academic, 2001.

[9] M. B. Wakin, J. K. Romberg, H. Choi, and R. G. Baraniuk, “Rate-
distortion optimized image compression using wedgelets,” in IEEE
Int. Conf. on Image Proc. — ICIP "02, 2002.

[10] J. Shapiro, “Embedded image coding using zerotrees of wavelet co-
efficients,” IEEE Trans. Signal Proc., vol. 41, no. 12, pp. 3445-3462,
Dec. 1993.

1Thanks to Mike Orchard for many stimulating discussions.



