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A Multiscale Algorithm for Reconstructing Videos

from Streaming Compressive Measurements

Jae Young Park and Michael B. Wakin

Abstract

We propose a multiscale, iterative algorithm for reconstructing video signals from streaming compressive mea-

surements. Our algorithm is based on the observation that, at the imaging sensor, many videos should have limited

temporal bandwidth due to the spatial lowpass filtering that is inherent in typical imaging systems. Under modest

assumptions about the motion of objects in the scene, this spatial filtering prevents the temporal complexity of the

video from being arbitrarily high. Thus, even though streaming measurement systems may measure a video thousands

of times per second, we propose an algorithm that only involves reconstructing a much lower rate stream of “anchor

frames.” Our analysis of the temporal complexity of videos reveals an interesting tradeoff between the spatial resolution

of the camera, the speed of any moving objects, and the temporal bandwidth of the video. We leverage this tradeoff

in proposing a multiscale reconstruction algorithm that alternates between video reconstruction and motion estimation

as it produces finer resolution estimates of the video.

I. INTRODUCTION

A. Motivation and Overview

The emerging theory of Compressive Sensing (CS) has inspired a number of efficient new designs for signal

acquisition in general and imaging in particular. Architectures such as the “single-pixel camera” [2, 3] provide a

promising proof-of-concept that still images can be acquired using small numbers of randomized measurements.

Despite the apparently incomplete data collected by such devices, reconstruction of the signal can be accomplished

by employing a sparse model specifying, for example, that a high-dimensional image may have only a small number

of significant coefficients when expanded in the two-dimensional (2D) wavelet domain [4].

There are numerous applications where it could be helpful to extend the CS imaging framework beyond still

images to incorporate video. Standard video capture systems require a complete set of samples to be obtained for

each frame, at which point a compression algorithm may be applied to exploit spatial and temporal redundancy. In
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some applications, such as imaging at non-visible (e.g., infrared) wavelengths, it may be difficult or expensive to

obtain these raw samples. In other applications, it could be computationally challenging to implement a state-of-the-

art video compression algorithm at the sensor. We argue that these burdens may be reduced by using compressive

imaging hardware where random measurements are collected independently from each frame in the video and no

additional compression protocol is needed.

From a hardware perspective, it is not difficult to envision extending standard compressive imaging architectures

to acquire compressive measurements of a video. For example, the single-pixel camera takes random measurements

serially in time. Each measurement corresponds to a random linear function of the image on the focal plane at

the instant that measurement is collected. When the single-pixel camera is photographing a fixed scene, each

measurement corresponds to the same image. When the single-pixel camera is photographing a scene containing

motion, each measurement will correspond to a different “frame” of the video. The single-pixel camera is capable

of taking many thousands of measurements per second. While we will continue to use the single-pixel camera

as a specific example in this paper, other compressive imaging architectures (such as a CMOS-based transform

imager [5] and a coded-aperture imager [6]) could be similarly used to acquire streaming measurements of a video.

From a data processing perspective, though, there are two major reasons why implementing a CS video system

may be significantly more difficult than implementing a CS imaging system:

• Challenge 1: The complexity of a CS reconstruction algorithm is dependent on the number of unknowns that

must be recovered from the compressive samples. The sheer volume of data in a raw video signal makes CS

reconstruction a formidable task. As we explain in Section III, this problem is only exacerbated in compressive

video systems that collect streaming measurements, where the number of measured frames can be in the thousands

per second. Naively reconstructing all of the pixels in all of these frames could literally involve solving for billions

of unknowns every second.

• Challenge 2: Reconstructing a signal from compressive measurements requires an efficient sparsifying transform

and a corresponding algorithm that can promote this sparsity in the reconstructed signal. In the long literature of

standard video compression [7] (not video CS), a variety of methods have been proposed to exploit spatial and

temporal redundancies. One common approach combines motion compensation and estimation algorithms [8]

with image compression techniques; for example, given a set of vectors describing the motion in the video,

the LIMAT framework [9] yields a motion-compensated wavelet transform (across the temporal and spatial

dimensions) intended to provide a sparse representation of the video. While some of these central ideas can be

absorbed into the CS framework, there is an important challenge that we must address. Unlike the standard video

compression problem where the frames of the video are explicitly available to perform motion estimation, in CS
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only random measurements of the underlying video are available. We are faced with a chicken-or-egg problem [1]:

Given the video frames, we could estimate the motion; but given the motion we could better estimate the frames

themselves.

In this paper, we offer suggestions for confronting both of these challenges. We begin in Section II with a short

discussion concerning the temporal bandwidth of video signals. We argue analytically that, at the imaging sensor,

many videos should have limited temporal bandwidth due to the spatial lowpass filtering that is inherent in typical

imaging systems. Under modest assumptions about the motion of objects in the scene, this spatial filtering prevents

the temporal complexity of the video from being arbitrarily high.

We then explain in Section III how this limited temporal complexity can be exploited in addressing Challenge 1

above. Following standard arguments in sampling theory, we note that under various interpolation kernels, a stream of

high-rate video frames (such as those measured by a single-pixel camera) can be represented as a linear combination

of a low-rate (e.g., Nyquist-rate) “anchor” set of sampled video frames. We then explain how the CS video problem

can be reformulated by setting up a system of linear equations that relate the compressive measurements to the

underlying degrees of freedom of the video (specifically, the anchor frames). This significantly reduces the number

of unknowns that must be solved for. As we demonstrate, our use of interpolation kernels for reducing the burden of

processing streaming measurements can also be much more effective than the traditional technique of partitioning

the measurements into short groups and assuming that all measurements within a group come from the same frame.

Such raw aggregation of measurements—which actually corresponds to using a rectangular interpolation kernel in

our formulation—can introduce significant interpolation error and degrade the reconstruction quality.

Our analysis of the temporal complexity of videos reveals an interesting tradeoff between the spatial resolution

of the camera, the speed of any moving objects, and the temporal bandwidth of the video. In Section IV, we explain

how this tradeoff can be leveraged to address Challenge 2 above. We propose a novel, multiscale algorithm for

reconstructing video signals from compressive measurements. Our algorithm begins by reconstructing a coarse-scale

approximation to the video, having low spatial and temporal resolution. From this, we obtain a crude estimate of

the motion vectors in the video, and we then use these motion vectors to define a sparsifying transform that enables

reconstruction of the next-finer scale approximation to the video. Our representation framework is built around the

LIMAT [9] method for standard video compression, in which motion compensation is used to improve sparsity in

the three-dimensional (3D) wavelet domain. We solve the chicken-or-egg problem by alternating between motion

estimation and video reconstruction, proceeding to higher and higher spatial and temporal resolutions. At each scale,

we employ the anchor frames described above to manage the complexity of the reconstruction process.

We conclude in Section V by describing the differences between our work and several other important ones in the
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literature. We also present simulations that demonstrate the performance of our algorithm. We stress that to some

degree, the algorithm we present in this paper is a proof-of-concept inspired by our temporal bandwidth analysis.

We see our work as an addition to—not a replacement for—the nascent CS video literature, and we believe that

the ideas we expound (such as using anchor frames to reduce the complexity of reconstruction) could be combined

with other existing ideas in the literature.

II. ON THE TEMPORAL BANDWIDTH OF VIDEO SIGNALS

A. Setup

1) Signal model and objectives: For the sake of simplicity, we begin by considering “videos” that have just

one spatial dimension; we extend this to videos with two spatial dimensions in Section II-D. We also begin by

considering continuous-time, continuous-space videos; our analysis will reveal the implications of sampling these

videos. We use the variable t ∈ R to index time (which we measure in seconds), and we use the variable x ∈ R to

index spatial position on the focal plane. For convenience, we measure x in an arbitrary real-valued unit we call

“pix”; this unit is intended to symbolize what might be the typical pixel size in a subsequent discretization of this

video. One could easily replace pix with micrometers or any other arbitrary unit of distance.

We consider videos belonging to a simple but representative translational model. Let g(x) denote a 1D function

of space (think of this as a continuous-space “still image”), and consider a continuous-space, continuous-time video

f(x, t) in which each “frame” of the video merely consists of a shifted version of this prototype frame. More

formally, suppose that

f(x, t) = g(x− h(t)),

where h(t) is some function that controls how much (in pix) the prototype frame is shifted in the focal plane at each

time step. Because we have an interest in video imaging systems with high temporal sampling rates, our purpose

is to characterize the temporal bandwidth of the video f(x, t).

In particular, we suggest that f(x, t) could have limited temporal bandwidth in plausible scenarios where the

prototype frame g(x) and translation signal h(t) have limited complexity. For example, in a physical imaging

system, one may envision f(x, t) as the video that exists at the focal plane prior to being sampled by the imaging

sensor. It is reasonable to expect that, due to optical blurring and due to the implicit filtering that occurs from the

spatial extent of each light integrator, the prototype frame g(x) will have limited spatial bandwidth. Similarly, if

the camera motion is constrained or due to the physics governing the movement of objects in the scene, one might

expect that the translation signal h(t) will have limited slope and/or limited temporal bandwidth. In the sections

that follow, we explain how such scenarios can allow us to bound the approximate temporal bandwidth of f(x, t).
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2) Fourier setup: Let F (ωx, ωt) denote the 2D Fourier transform of f(x, t), and let G(ωx) denote the 1D Fourier

transform of g(x); in terms of units, ωx is measured in rad/pix, and ωt is measured in rad/s. From the separability

property of the 2D Fourier transform and the shift property of the 1D Fourier transform, it follows that

F (ωx, ωt) = G(ωx) · L(ωx, ωt),

where

L(ωx, ωt) := Ft{e−jωxh(t)}(ωx, ωt) (1)

and Ft{·} denotes an operator that performs a 1D Fourier transform in the temporal direction. That is, for fixed

ωx, L(ωx, ωt) equals the 1D Fourier transform of e−jωxh(t) with respect to time, evaluated at the frequency ωt.

B. Temporal Bandwidth Analysis

The appearance of the h(t) term within an exponent in (1) can complicate the task of characterizing the bandwidth

of f(x, t). However, by imposing certain assumptions on h(t), this analysis can become tractable.

1) Constant velocity model for h(t): As a starting example, we briefly discuss a “constant velocity” model

for h(t) that is commonly seen in textbook discussions of video bandwidth (see, e.g., [10]). We assume that

h(t) = Γt for some constant Γ (having units of pix/s). In this case we have L(ωx, ωt) = δ(ωt + ωxΓ), and so

F (ωx, ωt) = G(ωx) · δ(ωt + ωxΓ), which corresponds to a diagonal line in the 2D Fourier plane with slope (∆ωt

over ∆ωx) that depends linearly on Γ.

To see the implications of this in terms of bandwidth, suppose that G(ωx) is bandlimited (or essentially ban-

dlimited) to some range of frequencies ωx ∈ [−Ωx,Ωx] rad/pix. (Again, even if the moving object has sharp edges,

G(ωx) may be bandlimited due to blurring in the imaging system.) In this case, it follows that F (ωx, ωt) must be

bandlimited (or essentially bandlimited) to the range of frequencies (ωx, ωt) ∈ [−Ωx,Ωx]× [−ΓΩx,ΓΩx]. In other

words, the temporal bandwidth of the video is no greater than ΓΩx rad/s.

2) Bounded velocity model for h(t): We now consider a more robust “bounded velocity” model for h(t); we note

that similar mathematics have appeared in the analysis of plenoptic [11] and plenacoustic [12, 13] functions, which

arise from measuring light and sound, respectively, at various positions in a room. We assume that the position

function h(t) has bounded slope, i.e., that for some Γ > 0, |dh(t)/dt| ≤ Γ pix/s for all t. This corresponds to a

bound on the speed at which the object can move in the video, without requiring that this speed be constant. We

also assume that the translation signal h(t) is bandlimited, with bandwidth given by Ωh rad/s.

For any fixed ωx, we can recognize e−jωxh(t) as a frequency-modulated (FM) sinusoid [14] having carrier
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Fig. 1: (a) Butterfly structure in the two-dimensional Fourier transform of a simple translational 1D video. The slope of the lines
is proportional to the maximum speed of the translation. (b) Bandlimiting the video in space (e.g., by spatial lowpass filtering)
will also bandlimit the video in time. The resulting temporal bandwidth will be proportional to the spatial bandwidth times the
maximum translational speed.

frequency 0 and instantaneous frequency (in rad/s) ωi(t) = −ωx · dh(t)/dt. Let us also define the deviation term

D :=
|ωx|
Ωh

max

∣∣∣∣dh(t)

dt

∣∣∣∣ .
From Carson’s bandwidth rule for frequency modulation [14], we have that for fixed ωx, at least 98% of the total

power of e−jωxh(t) must be concentrated in the frequency range ωt ∈ [−2(D + 1)Ωh, 2(D + 1)Ωh] rad/s. Since

D ≤ |ωx|Γ
Ωh

, we conclude that at least 98% of the total power of e−jωxh(t) must be concentrated in the frequency

range ωt ∈ [−(2|ωx|Γ + 2Ωh), 2|ωx|Γ + 2Ωh] rad/s. We note that the dependence of this bandwidth on ωx is

essentially linear.

We conclude that L(ωx, ωt) will have a characteristic “butterfly shape” with most of its total power concentrated

between two diagonal lines that intercept the ωt-axis at ±2Ωh and have slope approximately ±2Γ. This shape is

illustrated in Figure 1(a). Though not shown, the corresponding figure for the constant velocity model discussed in

Section II-B1 would involve a single diagonal line intersecting the origin and having slope −Γ (which is half as

large as the slope that appears in our more general bounded velocity analysis).

To see the implications of this in terms of bandwidth, let us again suppose that G(ωx) is bandlimited (or essentially

bandlimited) to the range of frequencies ωx ∈ [−Ωx,Ωx]. We must then have that F (ωx, ωt) = G(ωx) · L(ωx, ωt)

is also (essentially) bandlimited in the spatial direction to the range of frequencies ωx ∈ [−Ωx,Ωx]. Because of

the butterfly structure in L(ωx, ωt), however, this will also cause F (ωx, ωt) to be (essentially) bandlimited in the

temporal direction to the range of frequencies

ωt ∈ [−(2ΩxΓ + 2Ωh), 2ΩxΓ + 2Ωh] rad/s. (2)
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This fact, which is illustrated in Figure 1(b), exemplifies a central theme of our work: filtering a video in the spatial

direction can cause it to be bandlimited both in space and in time. Once again, we note that similar conclusions

were reached in the analysis of plenoptic [11] and plenacoustic [12, 13] functions.

3) Sampling implications: From a classical (not compressive) sampling perspective, the Nyquist theorem and

the temporal bandwidth predicted in (2) suggest that in order to avoid aliasing, the video should be sampled at a

minimum rate of 2ΩxΓ+2Ωh

π samples/s. Let us plug in some plausible numbers to illustrate the implications of these

bounds. First, consider the spatial bandwidth Ωx of the prototype frame. In a reasonable imaging system, we might

expect the pixel size to be balanced with the spatial bandwidth of the frame so that spatial aliasing is avoided. (This

should occur naturally if we assume each pixel integrates spatially over a window of size approximately 1 pix.)

Thus, one might anticipate that Ωx will be on the order of π rad/pix. (This corresponds to a spatial bandwidth of

π
2π = 1

2 cycles/pix, which suggests a spatial Nyquist sample rate of one sample per pix.)

Under the assumption that Ωx = π, (2) suggests the video will have temporal bandwidth limited to approximately

2πΓ + 2Ωh rad/s. We note that Ωh, the temporal bandwidth of h(t), does not depend on the amplitude or slope

of h(t), but only on its shape and smoothness. The term Γ, in contrast, increases with the amplitude or slope of

h(t), which in turn could increase for objects closer to the camera. We conjecture that in practice (aside from

exceptionally non-smooth motions h(t)), the 2πΓ term will typically dominate the 2Ωh term, and therefore in

general a temporal Nyquist sampling rate of roughly 2Γ samples/s should suffice to avoid temporal aliasing. Stated

differently, to avoid temporal aliasing we should not allow a moving object to traverse more than ≈ 1
2 pix between

adjacent sampling times. While this of course makes strong intuitive sense, we have arrived at this conclusion

through a principled analysis—one that illustrates the direct relationship between the speed of object motion in the

video and the video’s overall temporal bandwidth.

Again, to be clear, the paragraphs above concern the implications of our analysis in classical (not compressive)

sampling of a video. As we discuss in Section III, the streaming compressive measurements produced by a single-

pixel camera may actually need to be acquired much faster than the video’s temporal Nyquist rate (because only

one measurement is collected from each frame). The specific reason that the temporal bandwidth of the video will

be relevant is because it will impact the spacing of the “anchor frames” that we use to reduce the complexity of

the reconstruction problem.

C. Supporting Experiments

1) Within our model assumptions: As an illustration, we can analytically define a continuous-space, continuous-

time video that allows us to test our predictions about spectral support. We let the prototype function g(x) =
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sinc
(

Ωxx
π

)
, where sinc(x) = sin(πx)

πx and Ωx = π rad/pix. This definition ensures that g(x) is bandlimited and that

its bandwidth equals precisely Ωx rad/pix. We let the motion signal

h(t) =

5∑
i=1

aisinc

(
Ωh(t− di)

π

)
, (3)

where Ωh controls the total bandwidth (we set Ωh = 15 rad/s), the delays di are chosen randomly, and the amplitudes

ai are chosen somewhat arbitrarily but ensure that the maximum value attained by |h(t)| equals some parameter Γ,

which we set to 25 pix/s. (By changing Ωh and Γ, we can independently articulate the bandwidth and the maximum

slope of this signal.) Figure 2(a) shows the video f(x, t).

We oversample this video compared to its predicted spatial and temporal bandwidths, and in Figure 2(b) we show

the approximate spectrum using the FFT.1 The blue lines in Figure 2(b) indicate the predicted “butterfly shape”

which should bound the nonzero support of F (ωx, ωt). We see that the empirical spectrum does largely concentrate

within this region. For this video, the temporal bandwidth is predicted not to exceed 2ΩxΓ + 2Ωh ≈ 187 rad/s.

In other experiments, we have observed that as we vary the bandwidth and velocity parameters, the approximate

support of the estimated spectrum stays within the “butterfly shape” predicted by our theory in Section II-B2. For

the sake of space, these experiments are omitted from the current manuscript; however, they are available in a

companion technical report [15]. For several videos, we have computed the empirical temporal bandwidth based on

our estimated spectrum. To do this, we determine the value of Ωt for which 99.99% of the energy in the FFT (or

windowed FFT) falls within the range |ωt| ≤ Ωt. In each case, the empirical bandwidth Ωt equals roughly half of

the bandwidth 2ΩxΓ + 2Ωh predicted by our theory. (There are occasional exceptions where the unwindowed FFT

gives a higher estimate, but this is likely due to sampling artifacts.) This suggests that in some cases, the bandwidth

prediction based on Carson’s bandwidth rule may be pessimistic.

2) Beyond our model assumptions: Our formal analysis and the experiments described in Section II-C1 pertain

specifically to translational videos in which g(x) is bandlimited, h(t) has bounded velocity and bandwidth, and the

entire contents of the frame translate en masse. However, real world videos may contain objects whose appearance

(neglecting translation) changes over time, objects that move in front of a stationary background, multiple moving

objects, and so on. We suspect that as a general rule of thumb, the temporal bandwidth of real world videos will

be dictated by the same tradeoffs of spatial resolution and object motion that our theory suggests. In particular, the

prediction of 2ΩxΓ + 2Ωh given by our theory may be approximately correct, if we let Ωx be the essential spatial

bandwidth of the imaging system, Γ be the maximum speed of any object moving in the video, and Ωh be the

essential bandwidth of any object motion. This last parameter is perhaps the most difficult to predict for a given

1All spectral plots in Figure 2 show the magnitude of the FFT on a log10 scale. In panels (d) and (f) we apply a smooth Blackman-Harris
window to the samples before computing the FFT; this helps remove artifacts from the borders of the sampling region.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2: Top row: (a) Video f(x, t) = g(x − h(t)) with bandlimited profile g(x) and bandlimited translation signal h(t).
(b) Estimated spectrum. Middle row: (c) 4096 sampled 1D rows from Candle video. (d) Estimated spectrum with windowing
to alleviate border artifacts. Bottom row: (e) 4096 sampled 1D rows from Pendulum + Cars video. (f) Estimated spectrum with
windowing to alleviate border artifacts.
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video, but we suspect that in many cases its value will be small and thus its role minor in determining the overall

temporal bandwidth.

To support these conjectures, we have identified the characteristic “butterfly shape” in experiments where g(x)

is not bandlimited (e.g., a Gaussian bump convolved with the unit-step function), where h(t) is not bandlimited

(e.g., a triangle wave), where there are multiple moving edges, and where there are occluding objects. Again, these

experiments are available in a companion technical report [15]. In general, the estimated spectra continue to follow

the predicted butterfly shape. However, it remains an open problem to support this with theoretical analysis. We do

note that we believe our results are largely consistent with the classical study by Dong and Atick concerning the

statistics of real-world videos [16]. Although the videos in that study had relatively low temporal resolution, Dong

and Atick did note a certain radial symmetry to the spectrum (with one term depending on ωt/ωx) and observe that

at low spatial frequencies the power spectrum will have a strong decay as a function of the temporal frequency.

We conclude this examination with our own series of experiments on real-world videos. These videos (courtesy

of MERL) were collected in a laboratory setting using a high-speed video camera, but the scenes being imaged

contained natural (not particularly high-speed) motions. For each video, we select a 2D “slice” of the 3D video

cube, extracting one spatial dimension and one temporal dimension.

We begin with the Candle video which features two candle flames in front of a dark background; the video

was acquired at a rate of 1000 frames per second. We select 4096 consecutive time samples from the video, and

we extract 512 pixels from a certain row in each frame. Figure 2(c) shows the video, and Figure 2(d) shows the

estimated spectrum. Again, we recognize the approximate butterfly shape and an approximate limitation to the video

bandwidth, both spatially and temporally. More specifically, we see a collection of lines having various slopes, with

the lines passing roughly through the origin. However, there is also a bit of “thickness” near the origin due to a

possible Ωh term. The slopes of these lines match what might be expected based on an empirical examination of

the video itself. For example, the fastest motion in the video appears to occur at roughly t = 2.6 s, where the candle

flame translates to the right with a speed of roughly 1500 pix/s. Consequently, we see a portion of the estimated

spectrum oriented along a line with slope of approximately 4000 pix/s. Overall, for this video the empirical temporal

bandwidth (in this case, the value of Ωt for which 99% of the energy in the windowed FFT falls within the range

|ωt| ≤ Ωt) equals 348 rad/s. This suggests that the video’s temporal sampling rate (1000 frames/s) may have been

higher than necessary.

Next, we consider the Pendulum + Cars video, featuring two translating cars and an occlusion as one car passes

in front of the other; the video was acquired at a rate of 250 frames per second. We select 4096 consecutive time

samples from the video, and we extract 640 pixels from a certain row in each frame. Figure 2(e) shows the video,
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and Figure 2(f) shows the estimated spectrum. Once again, we recognize the approximate butterfly shape and an

approximate limitation to the video bandwidth, both spatially and temporally, and once again, we see a collection

of lines with various slopes, but with a bit of “thickness” near the origin due to a possible Ωh term. The slopes of

these lines match what might be expected based on an empirical examination of the video itself. For example, the

maximum slope appears to be on the order of 140 pix/s, while the maximum translational speed of the cars appears

to be on the order of 70 pix/s. The overall empirical temporal bandwidth is less than 35 rad/s, and consequently,

this video’s temporal sampling rate (250 frames/s) may also have been higher than necessary.

D. Videos with Two Spatial Dimensions

1) Signal model: Our analysis is easily generalized to the more conventional case of videos having two spatial

dimensions. We again use the variable t ∈ R to index time in seconds, and we use the variables x, y ∈ R to

index spatial position on the focal plane in pix. We again consider videos belonging to a simple but representative

translational model. Let g(x, y) denote a 2D function of space (one can think of this as a continuous-space “still

image”), and consider a continuous-space, continuous-time video f(x, y, t) in which each “frame” of the video

consists of a shifted version of this prototype frame. More formally, suppose that f(x, y, t) = g(x−hx(t), y−hy(t)),

where h(t) = (hx(t), hy(t)) is a function that controls how much (in pix) the prototype frame is shifted in the x-

and y-directions at each time step.

2) Fourier setup: Let F (ωx, ωy, ωt) denote the 3D Fourier transform of f(x, y, t), and let G(ωx, ωy) denote the

2D Fourier transform of g(x, y). Using similar analysis to the above, we will have F (ωx, ωy, ωt) = G(ωx, ωy) ·

L(ωx, ωy, ωt), where L(ωx, ωy, ωt) := Ft{e−jωxhx(t)−jωyhy(t)}(ωx, ωy, ωt). For fixed ωx, ωy , L(ωx, ωy, ωt) equals

the 1D Fourier transform of e−jωxhx(t)−jωyhy(t) with respect to time, evaluated at the frequency ωt.

3) Temporal bandwidth analysis: We assume that the position functions hx(t) and hy(t) have bounded slope,

i.e., that for some Γx,Γy > 0, |dhx(t)/dt| ≤ Γx pix/s and |dhy(t)/dt| ≤ Γy pix/s for all t. This corresponds to a

bound on the “speed” at which the object can move in each direction. We also assume that both translation signals

hx(t) and hy(t) have bandwidths bounded by Ωh rad/s.

Using arguments that parallel our 1D analysis (see [15]), we conclude that L(ωx, ωy, ωt) will have a characteristic

“polytope hourglass shape.” Considering the first octant of the 3D frequency space (in which ωx, ωy, ωt ≥ 0), most

of the total power of L(ωx, ωy, ωt) will fall below (in the temporal direction) a plane passing through the points

(0, 0, 2Ωh), (1, 0, 2Γx + 2Ωh), and (0, 1, 2Γy + 2Ωh). The other seven octants follow symmetrically.

To see the implications of this in terms of bandwidth, suppose that G(ωx, ωy) is bandlimited (or essentially

bandlimited) to the range of frequencies (ωx, ωy) ∈ [−Ωx,Ωx]×[−Ωy,Ωy]. We must then have that F (ωx, ωy, ωt) =
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G(ωx, ωy)·L(ωx, ωy, ωt) is also essentially bandlimited in the spatial direction to the range of frequencies (ωx, ωy) ∈

[−Ωx,Ωx]×[−Ωy,Ωy]. Because of the hourglass structure in L(ωx, ωy, ωt), however, this will also cause F (ωx, ωy, ωt)

to be essentially bandlimited in the temporal direction to the range of frequencies

ωt ∈ [−(2ΩxΓx + 2ΩyΓy + 2Ωh), 2ΩxΓx + 2ΩyΓy + 2Ωh]. (4)

Therefore, we see that filtering such a video in the spatial directions can cause it to be essentially bandlimited both

in space and in time.

From a classical (not compressive) sampling perspective, if we expect that both Ωx and Ωy will be on the

order of π rad/pix, and if we assume that the 2ΩxΓx + 2ΩyΓy term will typically dominate the 2Ωh term, then

in typical scenarios, to avoid temporal aliasing we should not allow a moving object to traverse more than ≈ 1
2

pix in any direction between adjacent sampling times. Aside from exceptionally non-smooth motions h(t), we do

strongly suspect that the influence of the temporal bandwidth Ωh will be minor in comparison to the influence of the

2ΩxΓx+2ΩyΓy term, and so in general a temporal Nyquist sampling rate of 2(Γx+Γy) samples/s will likely serve

as a reasonable rule of thumb. Again, this rule of thumb illustrates the direct relationship between the speed of

object motion in the video and the video’s overall temporal bandwidth. As we will see in Section III, this bandwidth

will impact the spacing of the anchor frames that we use to reduce the complexity of the CS reconstruction problem.

III. ANCHOR FRAMES FOR REDUCING RECONSTRUCTION COMPLEXITY

The insight we have developed in Section II suggests that many videos of interest may indeed be exactly or

approximately bandlimited in the temporal direction. For problems involving CS of such videos, this implies that

there may be a limit to the “complexity” of the information collected by streaming compressive measurement

devices. One way of exploiting this limited complexity draws from classical interpolation identities for bandlimited

signals. We briefly review these identities in Section III-A before exploring their applications for CS reconstruction

in Section III-B.

A. Sampling and Interpolation Principles

Before considering 2D or 3D video signals, let us first review the basic principles involved in non-compressive

sampling and interpolation of a bandlimited 1D signal. Suppose that f(t) is a signal with temporal bandwidth

bounded by Ωt rad/s. The Nyquist theorem states that this signal can be reconstructed from a discrete set of

samples {f(nTs)}n∈Z, where the sampling interval Ts ≤ π
Ωt

seconds. In particular, it holds that

f(t) =
∑
n∈Z

f(nTs)sinc

(
t− nTs
Ts

)
. (5)
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Instead of actually reconstructing the continuous-time signal f(t), a more important consequence of (5) for us

will be the fact that, for any t0 ∈ R, f(t0) can be represented as a linear combination of the discrete samples

{f(nTs)}n∈Z.

With varying degrees of approximation, it is possible to replace the sinc interpolation kernel in (5) with other,

more localized kernels. We will write

f(t) ≈
∑
n∈Z

f(nTs)γ

(
t− nTs
Ts

)
, (6)

where γ(t) is a prototype interpolation kernel. In addition to the sinc kernel, for which γ(t) = sinc (t), other

possible choices include the zero-order hold (rectangular) kernel, for which γ(t) = 1 when |t| ≤ 1
2 and γ(t) = 0

otherwise, the first-order hold (triangular, or “linear interpolation”) kernel, for which γ(t) = 1 − |t| when |t| ≤ 1

and γ(t) = 0 otherwise, and a variety of cubic interpolation kernels [17].

In general, a smoother choice for γ(t) will better approximate the ideal sinc kernel. However, smoother kernels

tend to have wider temporal supports, and it can be desirable in some applications (such as the CS recovery problem

discussed below) to limit the temporal support of the kernel. One way to improve the performance of the lower-

order, more narrow interpolation kernels is to decrease the sampling interval Ts. However, for our CS recovery

problem discussed below, this too will increase the complexity of the recovery algorithm by increasing the number

of anchor frames.

For a 2D or 3D video with limited temporal bandwidth, the separability of the Fourier transform implies that

the interpolation formulas presented above should hold for each spatial location (i.e., for each pixel). Using the

videos discussed in Section II-C, we have confirmed this in experiments evaluating the quality of interpolation as

a function of the video properties, interpolation kernel, etc. Again, these experiments are available in a companion

technical report [15].

B. CS in Streaming Scenarios

1) Measurement process: To set up the CS problem, consider a continuous-space, continuous-time video f(x, y, t).

Let fd : {1, 2, . . . , N}×R→ R denote a sampled discrete-space, continuous-time version of this video, where for

p = 1, 2, . . . , N ,

fd(p, t) = f(xp, yp, t). (7)

In the expression above, N specifies the number of pixels in each sampled frame, and (xp, yp) represents the spatial

location of pixel number p. Typically, {(xp, yp)}Np=1 will form a 2D grid of points in the focal plane. For notational

convenience, we rasterize these pixel values and index spatial position in fd using only the pixel number p.
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We consider an imaging system that collects streaming measurements of the video f(x, y, t) according to the

following model. We let T denote a measurement interval (in seconds), and we suppose that one linear measurement

is collected from fd every T seconds. (As we will discuss below, typically T will be much smaller than the Nyquist

sampling interval suggested by the video’s bandwidth.) Letting y(m) denote the measurement collected at time

mT , we can write

y(m) =

N∑
p=1

φm(p)fd(p,mT ) = 〈φm, fd(:,mT )〉, (8)

where φm ∈ RN is a vector of random numbers (see Section IV-B for details on the measurement vectors

we prescribe), and we use “Matlab notation” to refer to a vector fd(:, t) ∈ RN . In total, we suppose that M

measurements are collected. Stacking all of the measurements, we have

y =



y(1)

y(2)

...

y(M)


=



〈φ1, fd(:, T )〉

〈φ2, fd(:, 2T )〉
...

〈φM , fd(:,MT )〉


=



φT1

φT2
. . .

φTM


︸ ︷︷ ︸

Φ: M×MN



fd(:, T )

fd(:, 2T )

...

fd(:,MT )


.

︸ ︷︷ ︸
xd: MN×1

(9)

Stacking the raw frames into a vector xd = [fd(:, T )T fd(:, 2T )T · · · fd(:,MT )T ]T ∈ RMN , and letting Φ

denote the M ×MN block diagonal measurement matrix appearing in (9), we can write y = Φxd. This appears to

be a standard CS problem, with measurements on the left, unknowns on the right, and a measurement matrix that

relates the two. Unfortunately, this is a very difficult CS problem to solve directly: first, the recovery problem is very

highly underdetermined, with the number of measurements representing only 1
N times the number of unknowns;

and second, the size of the recovery problem, with MN unknowns, can be immense. We stress that the frames

fd(:, T ), fd(:, 2T ), . . . , fd(:,MT ) are assumed to be very close together in time (perhaps less than a thousandth of

a second apart), and so xd gets very large very quickly.

2) Simplifying the linear equations: Fortunately, if we assume that the video f(x, y, t) has limited temporal

bandwidth, we can simplify this recovery process to some degree. Let us assume that f(x, y, t) has temporal

bandwidth bounded by Ωt rad/s. We note that the temporal bandwidth of fd will also be bounded by Ωt rad/s.

Let Ta denote a time interval no greater than the Nyquist limit ( πΩt
seconds) suggested by the video’s bandwidth,
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and assume that Ta = V T for some integer V ≥ 1. Then for any integer j, we can apply (6) and write

fd(:, jT ) ≈
∑
n∈Z

fd(:, nTa)γ

(
jT − nTa

Ta

)
=
∑
n∈Z

fd(:, nTa)γ

(
j

V
− n

)

=

[
· · · γ

(
j

V
− 1

)
IN γ

(
j

V
− 2

)
IN γ

(
j

V
− 3

)
IN · · ·

]


...

fd(:, Ta)

fd(:, 2Ta)

fd(:, 3Ta)

...


,

where IN denotes the N ×N identity matrix. Therefore,



fd(:, T )

fd(:, 2T )

...

fd(:,MT )


︸ ︷︷ ︸

xd

≈



· · · γ
(

1
V − 1

)
IN γ

(
1
V − 2

)
IN γ

(
1
V − 3

)
IN · · ·

· · · γ
(

2
V − 1

)
IN γ

(
2
V − 2

)
IN γ

(
2
V − 3

)
IN · · ·

...
...

...

· · · γ
(
M
V − 1

)
IN γ

(
M
V − 2

)
IN γ

(
M
V − 3

)
IN · · ·


︸ ︷︷ ︸

Γ



...

fd(:, Ta)

fd(:, 2Ta)

fd(:, 3Ta)

...


︸ ︷︷ ︸

xa

. (10)

Assuming γ(t) has temporal support within some reasonable bound, the matrix Γ above will have size MN ×

(MN
V +O(1)) and so this allows a dimensionality reduction by a factor of V . In other words, using the interpolation

matrix Γ, we can relate the raw video frames (acquired T seconds apart) to a reduced set of what we call anchor

frames, which are spaced Ta seconds apart. In the equation above, the stack of anchor frames is denoted by xa,

and the length of xa is approximately V times smaller than the length of xd.

Putting all of this together, we have

y = Φxd ≈ ΦΓxa, (11)

where

ΦΓ =



· · · γ
(

1
V − 1

)
φT1 γ

(
1
V − 2

)
φT1 γ

(
1
V − 3

)
φT1 · · ·

· · · γ
(

2
V − 1

)
φT2 γ

(
2
V − 2

)
φT2 γ

(
2
V − 3

)
φT2 · · ·

...
...

...

· · · γ
(
M
V − 1

)
φTM γ

(
M
V − 2

)
φTM γ

(
M
V − 3

)
φTM · · ·


.

︸ ︷︷ ︸
M×( MN

V +O(1))

We have arrived at a CS problem in which the total number of unknowns has been reduced from MN to MN
V +O(1).

Indeed, the largest dimension of any matrix or vector in this formulation is now limited to MN
V +O(1) instead of
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MN . Moreover, due to decay in γ, the matrix ΦΓ will be banded, with zeros in all positions sufficiently far from

the diagonal. This facilitates storage of the matrix and reconstruction of very long video sequences by breaking the

recovery problem into blocks. (However, we consider only reconstructing a single sequence of the video in this

paper.)

From the formulation above, we see that it is possible to focus the reconstruction process on recovery of a

relatively low-rate stream of anchor frames xa, rather than the high-rate stream of frames xd measured by the

imaging system. Of course, in simplifying the CS problem, we have changed the very unknowns that must be

solved for. In many cases, we believe that it will suffice merely to reconstruct and display the anchor frames

themselves; however, we note that the raw video frames xd can be estimated from the reconstructed anchor frames

by using the interpolation equation (10).

If the anchor frames are defined at the video’s temporal Nyquist rate, and if there are no additional assumptions

made about the video, then one should not expect any temporal correlations to remain among the anchor frames.

In many real world settings, however, there will be objects moving within the scene, and the smoothness of the

object motion can lead to temporal correlations, e.g., that can be captured via motion-compensated transforms.

Thus, in order to impose the strongest possible model on the vector of anchor frames, it may be helpful to look for

sparsity in a motion-compensated wavelet transform.2 In Section IV, we propose one method for doing this while

confronting the chicken-or-egg problem.

3) Optimizing the spacing between anchor frames: The quality of the interpolation approximation described

in (10) relies on the assumption that Ta ≤ π
Ωt

. However, in practical settings one may not know Ωt exactly, and

this raises the question of how to properly set Ta, the spacing between anchor frames. We note that when Ta

is chosen to be too small a multiple of T (that is, when V = Ta

T is small), the dimensionality of the reduced

problem (11) may not be small enough to permit reconstruction. Thus, in practice one should generally aim to

choose Ta small enough that the interpolation approximation (10) holds to a reasonable degree of accuracy but

large enough that the number of unknowns is sufficiently reduced. Our simulations in Section V-B explore these

trade-offs and demonstrate that it can indeed be possible to find a setting for Ta that meets both of these criteria.

IV. MULTISCALE RECONSTRUCTION ALGORITHM

Our analysis in the previous sections has (i) revealed that videos that are sampled by imaging devices (including CS

imaging devices) may have limited temporal bandwidth, (ii) characterized the tradeoffs between the spatial resolution

of the camera, the speed of any moving objects, and the temporal bandwidth of the video, and (iii) explained

2For promising experiments that involve a simplified version of our algorithm (one that uses anchor frames but not with a motion-compensated
wavelet transform), we refer the reader to a companion technical report [15].
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how a relatively low-rate stream of “anchor frames” can be used to reduce the complexity of the reconstruction

problem. In this section, we build on these insights and propose a complete algorithm for reconstructing a video

from streaming compressive measurements. In order to construct an effective sparsifying basis for the video, this

algorithm involves a motion-compensated wavelet transform, and in order to confront the chicken-or-egg problem,

this algorithm is multiscale, employing anchor frames at a sequence of progressively finer scales and alternating

between reconstructing an approximation of the video and estimating the motion vectors.

A. Problem Formulation

Following the setup in Section III-B, we suppose that one linear measurement is collected from fd every T

seconds. Using (9), we can write the vector of M measurements as y = Φxd. Using (10), we can write xd ≈ Γxa,

where xa is formed by stacking the anchor frames. For the sake of simplicity in formulating our algorithm, we

specifically take xa = [fd(:, Ta)T fd(:, 2Ta)T · · · fd(:, MV Ta)T ]T , i.e., we truncate the stream of anchor frames

at the beginning and end so that we consider exactly Na := M
V anchor frames, and we adapt Γ at the borders to

account for this truncation. To model any interpolation errors, we introduce an error term e ∈ RM and model the

collected measurements as y = ΦΓxa + e.

As a sparsifying basis to be used for reconstructing xa, we employ the lifting-based invertible motion adaptive

transform (LIMAT) [9]. Further details regarding LIMAT are given in Section IV-C (and in [9]), but the key idea

is this: Given a set of vectors describing the motion in a video, LIMAT yields a motion-compensated wavelet

transform (across the temporal and spatial dimensions) intended to provide a sparse representation of that video.

For a given set of motion vectors v, we let ΨL(v) denote the resulting LIMAT transform. We will apply LIMAT

transforms to videos of various sizes; in all cases, ΨL(v) is a square matrix, but its dimension will depend on the

context.

If one had access to the anchor frames xa, it would be possible to examine the video and estimate the vectors

v describing motions between frames. Alternatively, if one had access to the motion vectors v, one could write

xa = ΨL(v)αa for some sparse coefficient vector αa and solve a CS reconstruction problem such as

α̂a = argmin
αa

‖αa‖1 s.t. ‖y − ΦΓΨL(v)αa‖2 ≤ ε (12)

to recover αa and subsequently xa from the compressive measurements [18]. In order to get around this chicken-

or-egg problem, we propose a multiscale reconstruction approach.

17



B. The Multiscale Approach

Rather than reconstructing the full set of high-resolution anchor frames xa directly, our algorithm aims to

reconstruct a sequence of approximations to the anchor frames. These approximations begin at a low temporal

and spatial resolution and progress to successively finer resolutions.

To set our notation, we use the variable s to denote scale, with s = 1 denoting the coarsest (low-resolution) scale

and s = S denoting the finest (high-resolution) scale for some positive integer S. For each s = 1, 2, . . . , S, let

Ds represent a 22(s−S)N ×N linear operator that, when applied to a video frame containing N pixels, performs

a spatial low-pass filtering and downsampling operation to produce a low-resolution frame containing 22(s−S)N

pixels. (When s = S, Ds is the identity; when s = S−1, Ds averages over 2×2 blocks of pixels; when s = S−2,

Ds averages over 4× 4 blocks of pixels; etc.) Recalling that

xa = [fd(:, Ta)T fd(:, 2Ta)T · · · fd(:, NaTa)T ]T ∈ RNaN ,

we define for each s = 1, 2, . . . , S, Ns := 23(s−S)NaN and

xa,s := [Dsfd(:, Ta · 2S−s)T Dsfd(:, 2Ta · 2S−s)T · · · Dsfd(:, NaTa)T ]T ∈ RNs .

The video xa,s contains 2s−SNa frames, each with 22(s−S)N pixels. It represents a lowpass filtered and downsam-

pled version of the original set of anchor frames xa. We note in particular that xa,S = xa.

Our reconstruction begins at the coarsest scale with an attempt to estimate xa,1. Motivated by our temporal

bandwidth analysis, we begin reconstruction at a low spatial resolution for the following reasons:

• Our theory predicts that at low spatial resolutions, the temporal bandwidth of the video will be small. This limits

the amount by which the video can change between successive frames and justifies the temporal downsampling

in the definition of xa,1. This downsampling also leaves us with a relatively small number of frames that must

be sparsely represented, and so this sequence can be reconstructed from a small number of measurements.

• The spatial downsampling leaves us with larger pixels in each frame, and so an object that traverses, say, P

pixels per second in the high-resolution anchor frames will traverse only 21−SP pixels per second at scale s = 1.

With relatively slow object motion, we can thus obtain a reasonable estimate of xa,1 without employing motion

compensation, or equivalently, with LIMAT motion vectors v set to 0.

After we have reconstructed an estimate of xa,1, it is then possible to compute a preliminary estimate of the motion

in the video. Although the resulting motion vectors will have limited spatial and temporal accuracy (since xa,1

does), they can be used to perform a motion-compensated reconstruction of xa,2.3 From this point, we iterate (as

3Typically we choose S small enough so that the frames in xa,1 contain enough pixels to obtain a reasonable estimate of the motion vectors.
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detailed below), alternating between video reconstruction and motion estimation, and proceeding to finer and finer

scales. Between each pair of adjacent scales, we double the spatial resolution and (as suggested by our analysis)

double the temporal resolution as well.

The following pseudo-code is an outline of our algorithm.

• Step 0: initialize scale s← 1 and motion vectors v1 = 0

• Step 1: solve

α̂a,s = argmin
α′∈RNs

‖α′‖1 s.t. ‖ys − ΦsΓsΨL(vs)α
′‖2 ≤ εs, (13)

where, as explained below, ys contains all measurements in y that are associated with scales 1, 2, . . . , s, Φs and

Γs relate these measurements to xa,s, and εs accounts for interpolation error

• Step 2: form x̂a,s = ΨL(vs)α̂a,s

• Step 3: if s = S, terminate algorithm; otherwise go to Step 4

• Step 4: given x̂a,s use motion estimation to compute the set of motion vectors vs+1

• Step 5: set s← s+ 1 and go to Step 1

Our reconstruction algorithm places certain constraints on the measurement functions φm that can be used. In

particular, note that for each s ∈ {1, 2, . . . , S} solving the optimization problem (13) requires a set of measurements

ys that are assumed to obey ys = ΦsΓsxa,s + es. To facilitate this, we assume that each measurement y(m) is

associated with some scale s ∈ {1, 2, . . . , S}. A measurement y(m) is said to be associated with scale s if y(m)

can be written as y(m) = 〈φ̃m,Dsfd(:,mT )〉 for some φ̃m ∈ R22(s−S)N . Stated differently, this requires that the

frame fd(:,mT ) be measured using a function that is piecewise constant over blocks of size 2S−s×2S−s pixels, i.e.,

that frame fd(:,mT ) be measured with limited spatial resolution. This is easily accomplished using programmable

measurement devices such as the single-pixel camera. In particular, we suggest using noiselets [19] for measurement

functions, as they incorporate both randomness and multiple spatial resolutions.

The measurements ys that we propose to use for solving (13) are merely a subset of the measurements in y. In

particular, for each for s = 1, 2, . . . , S, ys contains all measurements in y that are associated with scales 1, 2, . . . , s.

Thus, measurements from coarser scales are re-used for reconstruction at finer scales, and at the finest scale all

measurements are used for reconstruction. Other terms appearing in (13) are Γs, an interpolation matrix that relates

xa,s to a spatially lowpass-filtered stream of the original high-rate frames [Dsfd(:, T )T Dsfd(:, 2T )T · · · Dsfd(:

,MT )T ]T , and Φs, a measurement matrix populated with the vectors φ̃m. The term εs appearing in (13) is to

account for interpolation error. In our current simulations we assume that we know the amount of interpolation

error as an oracle, and we set εs accordingly.
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The specific number of measurements (call this Ms) that we associate with each scale s is a design parameter.

We find it useful to allocate a generous portion of the measurement budget to M1 for two reasons: (i) it is relatively

cheap to reconstruct an accurate video at low resolution, and (ii) an accurate initial reconstruction is important to

obtain an accurate initial estimate of the motion vectors. As we progress in the algorithm to finer scales, the number

of unknowns that we are solving for increases by a factor of eight with each increment in scale. Therefore, it is

also natural to increase the number of measurements Ms that we associate with each scale. Although the size of the

video increases by a factor of eight between one scale and the next, however, the sparsity level may not necessarily

increase by the same factor. To get a rough estimate of the increase in sparsity level, consider that within a 3D

video, the boundary of a moving object will generally trace out a 2D surface. Using simple box-counting arguments,

one would generally expect the sparsity level in an isotropic 3D dictionary (such as a 3D wavelet transform) to

increase by a factor of four between adjacent scales. Based on this observation, we believe that an increase of Ms

by (very roughly) a factor of four for every increment in scale would be a reasonable choice. Our simulations in

Section V-B use measurement rates inspired by this 4× rule of thumb and refined with a small amount of trial and

error.

Finally, we comment on the allocation strategy of the multiscale measurements across the M frames, i.e., which

of the M frames we associate with which scale. One straightforward allocation strategy would be a random one,

e.g., randomly choose M1 out of the M original frames and associate these with scale 1, randomly choose M2 out

of the M −M1 remaining frames and associate these with scale 2, etc. However, we have found that in doing so,

it is usually helpful to ensure that all anchor frames at a given scale s are automatically associated with scale s (or

a coarser scale). The remaining (non-anchor) frames are associated randomly.

C. Lifting-based Invertible Motion Adaptive Transform (LIMAT)

At each scale s = 1, 2, . . . , S, we use LIMAT [9] as a sparsifying transform for the anchor frames xa,s. Recall

that xa,s contains 2s−SNa frames, each with 22(s−S)N pixels. To simplify notation in this section, set n = 2s−SNa

and for k = 1, 2, . . . , n, let xk denote frame k from the sequence xa,s.

The lifting transform partitions the video into even frames {x2k} and odd frames {x2k+1} and attempts to predict

the odd frames from the even ones using a forward motion compensation operator. This operator, which we denote

by F , takes as input one even frame and a collection of motion vectors denoted vf that describe the anticipated

motion of objects between that frame and its neighbor. For example, suppose that x2k and x2k+1 differ by a 3-

pixel shift that is captured precisely in vf ; then as a result x2k+1 = F(x2k, vf ) exactly. Applying this prediction

to each pair of frames and keeping only the prediction errors, we obtain a sequence of highpass residual detail
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frames (see (14) below). The prediction step is followed by an update step that uses an analogous backward motion

compensation operator denoted B and motion vectors vb. The combined lifting steps

hk = x2k+1 −F(x2k, vf ) (14)

lk = x2k +
1

2
B(hk, vb) (15)

produce an invertible transform between the original video and the lowpass {lk} and highpass {hk} coefficients.

For maximum compression, the lifting steps can be iterated on pairs of the lowpass frames until there remains only

one. Ideally, with perfect motion compensation, the n− 1 highpass frames will consist only of zeros, leaving only

one frame of nonzero lowpass coefficients, and making the sequence significantly more compressible. As a final

step, it is customary to apply the 2D discrete wavelet transform (DWT) to each lowpass and highpass frame to

exploit any remaining spatial correlations.

In our proposed algorithm, we use block matching (BM) [20] to estimate motion between a pair of frames. The

BM algorithm divides the reference frame into non-overlapping blocks. For each block in the reference frame the

most similar block of equal size in the destination frame is found and the relative location is stored as a motion

vector. There are several possible similarity measures; we use the `1 norm.

V. DISCUSSION AND SIMULATIONS

In this section, we conclude by describing the differences between our work and several other important ones in

the literature. We also present simulations that demonstrate the performance of our algorithm.

A. Related Work

Our algorithm is intended for reconstructing a video from streaming compressive measurements; specifically,

we assume that one compressive measurement is collected at each time instant. (The single-pixel camera is a

prototypical example of an imaging device that produces such measurements.) We note that a preliminary version

of our algorithm [1] was intended for a different measurement model—one in which multiple measurements are

collected from each frame but at a much lower frame rate. For example, 1000 measurements might be collected from

each of 30 frames per second. While acquiring such measurements may be possible using other compressive imaging

architectures [5, 6], our particular interest in this paper is on how to correctly deal with streaming measurements.

In addition to our preliminary algorithm [1], several others have also been proposed in the CS video literature

that incorporate motion estimation and compensation. These are discussed below. We note that none of these

algorithms were explicitly designed to handle streaming measurements. However, any of these algorithms could
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be modified to (approximately) operate using streaming measurements by partitioning the measurements into short

groups and assuming that all measurements within a group come from the same frame. Such raw aggregation of

measurements actually corresponds to using a rectangular interpolation kernel in our formulation (11). As one would

expect, and as we will demonstrate in Section V-B, one can achieve significantly better performance by employing

smoother interpolation kernels. To the best of our knowledge we are the first to propose and justify the use of other

interpolation kernels for aggregating measurements. We do note that one algorithm from the literature [21] does

present a careful method for grouping the measurements in order to minimize the interpolation error when using a

rectangular kernel.

One related algorithm [22] is based on the observation that nearby frames should have a sparse or compressible

residual when one frame is subtracted from the other. The authors employ motion estimation and compensation to

produce a sparse or compressible residual frame even in the presence of fast or global motion. More specifically,

let x1 and x2 denote two frames in a video sequence. Initial estimates of x1 and x2 are obtained via independent

reconstruction from the measurements y1 = Φx1 and y2 = Φx2, respectively. Motion vectors are then computed

between these frame estimates, and subsequently a motion-compensated frame, xmc, is computed from x1 and

the estimated motion vectors. When motion estimation is accurate, the residual xr = x2 − xmc is likely to be

highly sparse or compressible. The authors propose to reconstruct the residual frame, xr, from the measurements

yr = y2 − ymc = Φx2 − Φxmc. The estimate of the residual frame, x̂r, can be used to improve upon the previous

estimate of x2 via x̂2 = xmc + x̂r. This procedure is then carried out for the next pair of frames x2 and x3.

This method requires that the same matrix Φ be used for measuring each frame. In some cases, the use of such

measurement matrices may decrease diversity in the measurements. As an extreme example, if a video contains no

motion, the measurements from every frame will be identical.

Another related algorithm [23] has been proposed in the field of dynamic medical resonance imaging (MRI).

This algorithm relies on the assumption that the locations of the significant coefficients of each video frame can be

estimated via a motion-compensated frame. Similarly to the above, a motion-compensated frame, xmc, is obtained

from motion vectors computed between a pair of estimates of the frames x1 and x2. The initial estimates of the

video frames are computed in a frame-by-frame fashion from their respective random measurements. When motion

compensation is accurate, the indices of large coefficients of xmc will provide an accurate prediction of the locations

of the significant coefficients of x2, and this knowledge can be used to reconstruct an accurate estimate of x2. Once

a new estimate of x2 is formed, this procedure is repeated for the next frame x3, and so on.

Another related algorithm [24] involves dividing a video sequence into several groups of pictures (GOPs), each

of which is made up of a key frame followed by several non-key frames. The authors propose to reconstruct each
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key frame in a frame-by-frame fashion. Given the estimates of the key frames, estimates of the non-key frames are

computed via a technique called motion-compensated interpolation. Refined estimates of the non-key frames are

obtained in a frame-by-frame fashion, using the initial motion-compensated frame as the starting point of a gradient

projection for sparse reconstruction (GPSR) solver. The authors propose a novel stopping criterion for the GPSR

solver that helps find a solution that is not too different from the initial estimate. This procedure is then carried out

for the next non-key frame, and so on.

Finally, one other related algorithm involves a dual-scale reconstruction of a video [21]. First, a sufficient number

of low-resolution measurements are collected to permit a low-resolution preview of the video to be obtained using

simple least-squares. Motion information is then extracted from this preview video, and this motion information is

used to help reconstruct the high-resolution video sequence. An optimization problem minimizes the sum of the

`1-norm of the expansion coefficients of each individual frame in an appropriate sparsifying transform subject to a

data fidelity constraint. Additionally, the minimization problem is subject to a constraint such as

‖x̂i(x, y)− x̂i+1(x+ vx, y + vy)‖2 ≤ ε, ∀i,

which ensures that the reconstructed video agrees with the motion vectors estimated from the preview video. While

this method can be relatively successful in recovering videos from small numbers of measurements, according to

the authors, the algorithm can have difficulty in reconstructing high spatial frequency components.

We would like to point out that all of the above methods require, for each frame, a number of measurements

proportional to the sparsity level of that frame (after appropriate motion compensation and a spatial sparsifying

transform such as a 2D wavelet transform). This is true simply because three of the above methods [22–24] involve

reconstructing the video one or two frames at a time. The fourth of the above methods [21] does involve jointly

reconstructing the ensemble of video frames. However, this algorithm still requires a total number of measurements

proportional to the sum of the sparsity levels of the individual frames because that quantity is what is minimized

in the `1 optimization procedure.

We argue that a temporal sparsifying transformation can help to decrease the sparsity level of a video signal

and thus reduce the number of measurements that must be collected of that video. In particular, for videos with

slowly moving objects or videos with stationary backgrounds, temporal redundancies may persist for longer than

the duration of one or two frames. The above methods, however, are essentially employing a temporal transform

with a temporal support of one or two frames. If one can successfully remove temporal redundancies over a longer

temporal support, the overall sparsity level of the video will decrease, and this in turn will reduce the number of

measurements that must be collected from each frame.
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Some methods for CS video reconstruction have been proposed that do employ a 1D temporal sparsifying

transform along with a 2D spatial sparsifying transform. In essence, each of these algorithms corresponds to applying

a different 3D sparsifying transform Ψ. One algorithm uses the 3D-DWT for Ψ and reconstructs the entire video all

at once [2]. Another approach, termed “Cn” and proposed for compressive coded aperture video reconstruction [25],

relies on small inter-frame differences together with a spatial 2D-DWT to produce a sparse representation of the

underlying video. Unfortunately, neither of these algorithms involves any motion compensation, and so these 3D

transforms will not be successful in sparsifying videos containing any significant levels of motion.

We see that the two classes of methods described above have two distinct strengths. Algorithms in the first

class employ motion information in the reconstruction to better reconstruct the video sequence, while algorithms

in the second class employ a temporal transformation to remove the temporal redundancies over a longer temporal

support. In this paper (and in [1]), we use LIMAT which essentially combines these two strengths: LIMAT performs

a full motion-compensated temporal decomposition that, when seeded with accurate motion vectors, can effectively

remove temporal redundancies even in the presence of complex motion.

We would like to point out, however, that LIMAT is just one of many possible 3D sparsifying bases and that our

algorithm can be modified to use other choices of basis as well. We also note that the frame-by-frame reconstruction

methods [22–24] have the advantage of being more computationally efficient as they involve reconstruction problems

of a smaller size. This may be an important factor in applications where computational resources are scarce and

full temporal decompositions are not practical. We also reiterate that to some degree, the multiscale algorithm we

present in this paper is a proof-of-concept inspired by our temporal bandwidth analysis. We see our work as an

addition to—not a replacement for—the nascent CS video literature, and we believe that the ideas we expound

(such as using anchor frames to reduce the complexity of reconstruction) could be combined with some of the other

existing ideas mentioned above.

Finally, to place our work in the proper context, we reiterate the differences between a standard (“non-compressive”)

video capture system and the CS-based (“compressive”) video acquisition strategy discussed in this paper. As we

discussed in Section I, the primary advantages of a compressive video system are twofold: first, it reduces the

physical burden of measuring the incoming video, as it does not require a complete set of samples to be obtained

for every frame, and second, it reduces the computational complexity of the encoding process, as it does not require

any spatiotemporal transform to be implemented at the encoder. These advantages do not make a compressive video

system appropriate for all situations, however. For example, it is well known in CS that for a given sparse signal,

the requisite number of measurements is slightly higher (by a small multiplicative factor) than one would require if

the relevant sparse components could be directly extracted from the signal. Standard video capture systems have the
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advantage of getting to “look at” the fully sampled video before identifying the critical features to be encoded. One

would naturally expect, then, that for a given quality level, a traditional video encoder would require fewer bits than

a compressive video encoder (one in which the CS measurements were quantized and converted to bits). Standard

video capture systems also have a second main advantage: the decoding algorithm can be much simpler than in a

compressive video system. Our comments on these points are not unique to our particular CS framework; indeed

they are fully consistent with observations made in another recent paper dealing with CS for video [26].4 For our

algorithm, however, a detailed comparison against a traditional encoder in terms of bit rate, power consumption,

memory requirements, resiliency to errors, etc., is beyond the scope of this paper.

B. Simulations

In this section we present simulation results for our proposed algorithm. We compare our algorithm (using a

linear interpolation kernel) to the 3D-DWT [2] and Cn [25] temporal sparsifying transforms using a rectangular

interpolation kernel. We also compare to a modified version of our algorithm that uses LIMAT but with zero-

motion vectors. The results demonstrate the benefits of combining motion compensation with a temporal sparsifying

transform and the benefits of using a non-rectangular interpolation kernel.

We present results for two different test videos (courtesy of MERL), the Candle video and the Pendulum +

Cars video. These are the same videos that we described in Section II-C2, but we have selected different time

samples and cropped the frames to different image regions. Four of the original anchor frames of each video are

presented in Figures 3(a) and 4(a). Each video consists of 512 frames; the frames in the Candle video are of size

N = 128× 128, while the frames in the Pendulum + Cars video are of size N = 256× 256. The first test video

contains two candle flames moving in front of a black (zero-valued) background. This video was acquired with a

high-speed camera at 1000 frames per second. The flames warp into different shapes and sway from left to right as

the video progresses. The typical speed of the moving edge of a flame is approximately 0.3 pixels per frame. The

second video contains a white car that is moving in front of a “Newton’s cradle” (a pendulum with several silver

metal balls) and a stationary background. As the video progresses, the white car moves from right to left, and the

two metal balls at each end of the Newton’s cradle swing throughout the video sequence. This video was acquired

with a high-speed camera at 250 frames per second. The motion of the car is mostly translational (it moves from

right to left at a speed of roughly 0.025 pixels per frame), while the two metal balls swing at a much faster speed

of roughly 1–1.5 pixels per frame.

4The encoder proposed in [26] also has some philosophical similarities and differences with our work and others we have described. Like
our work, the system in [26] can operate with frame-by-frame CS measurements and is intended to exploit spatial and temporal correlations
in the video. Unlike our work, however, the system in [26] utilizes a special post-measurement encoding of the CS measurements to exploit
temporal correlations. It also relies on raw aggregation (rectangular interpolation) of the measurements.
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(a) Original frames (b) 3D-DWT (c) Cn with n = 32 (d) LIMAT with v = 0 (e) LIMAT

Fig. 3: Reconstructed anchor frames of Candle video. Out of 512 original frames, 32 anchor frames were reconstructed. From
the top each row shows the 5th, 11th, 21st, and 28th anchor frame and its reconstruction via various reconstruction methods.
From the left each column represents: (a) original frames, (b) 3D-DWT with rectangular interpolation kernel, PSNR = 33.67 dB,
(c) Cn, n = 32, with rectangular interpolation kernel, PSNR = 33.68 dB, (d) LIMAT with rectangular interpolation kernel and
zero-motion vectors, PSNR = 33.80 dB, (e) LIMAT with linear interpolation kernel, PSNR = 36.76 dB.

In our simulations, we construct synthetic CS measurements from the original high-rate video sequences. In

order to reasonably apply CS to either of these video sequences, one would need more than 1000 measurements

per second, and thus with the available videos (acquired at 1000 and 250 frames per second) we would not have a

sufficient number of measurements if we synthesized only one measurement from each frame. Thus, for the purposes

of testing our algorithm, we collect more than one random measurement from each frame of the test video. (Still,

the number of measurements we collect from each frame is moderate—120 per frame for the first video and 800

per frame for the second video.) Our setting remains very different from related ones [22–24], however, because

we do not intend to reconstruct all of the high-rate frames directly (indeed, this would be difficult to do with so

few measurements per frame); rather we will reconstruct a reduced set of anchor frames.

We begin by reconstructing both videos using Na = 32 anchor frames. The total number of unknowns that we

are solving for in case of the Candle video is NNa = 128×128×32; in the case of the Pendulum + Cars video it
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(a) Original frames (b) 3D-DWT (c) Cn with n = 32 (d) LIMAT with v = 0 (e) LIMAT

Fig. 4: Reconstructed anchor frames of Pendulum + Cars video. Out of 512 original frames, 32 anchor frames were reconstructed.
From the top each row shows the 4th, 13th, 22nd, and 30th anchor frame and its reconstruction via various reconstruction methods.
From the left each column represents: (a) original frames, (b) 3D-DWT with rectangular interpolation kernel, PSNR = 28.22 dB,
(c) Cn, n = 32, with rectangular interpolation kernel, PSNR = 29.58 dB, (d) LIMAT with rectangular interpolation kernel and
zero-motion vectors, PSNR = 29.81 dB, (e) LIMAT with linear interpolation kernel, PSNR = 31.38 dB.

is NNa = 256×256×32. Note that the use of anchor frames reduces the reconstruction complexity by a factor of

V = 512/32 = 16. For the Candle video, we divide the reconstruction into S = 3 scales. At scale 1 we reconstruct

a low-resolution video of size N1 := 32 × 32 × 8, at scale 2 a low-resolution video of size N2 := 64 × 64 × 16,

and at scale 3 the full-resolution video of size N3 := 128 × 128 × 32. Similarly, we divide the reconstruction

into S = 4 scales for the Pendulum + Cars video. Thus, at scale 1 we reconstruct a low-resolution video of size

N1 := 32× 32× 4, at scale 2 a low-resolution video of size N2 := 64× 64× 8, at scale 3 a low-resolution video

of size N3 := 128 × 128 × 16, and at scale 4 the full-resolution video of size N4 := 256 × 256 × 32. For the

Candle video we take 120 measurements from each of the 512 frames, and for the Pendulum + Cars video we

take 800 measurements from each of the 512 frames. Out of the 512 frames in the video, for the Candle video, we

allocate 54 frames to scale 1, 250 frames to scale 2, and 208 frames to scale 3. Thus, we have M1 = 54 × 120,

M2 = 250× 120, and M3 = 208× 120 when reconstructing the video. Similarly, for the Pendulum + Cars video
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we allocate 5 frames to scale 1, 30 frames to scale 2, 130 frames to scale 3, and 347 frames to scale 4, so that

M1 = 5× 800, M2 = 30× 800, M3 = 130× 800, and M4 = 347× 800 when reconstructing the video.

This means that when reconstructing the Candle video, at scale 1 we solve for N1 unknowns using M1 measure-

ments, and we have M1/N1 ≈ 0.79. At scale 2, we solve for N2 unknowns using M1 +M2 measurements, and we

have (M1+M2)/N2 ≈ 0.56 (recall that we re-use coarser scale measurements at the current scale). Finally, at scale 3,

we solve for N3 unknowns using M1+M2+M3 measurements, and we have (M1+M2+M3)/N3 ≈ 0.12. Similarly,

for the Pendulum + Cars video, at scale 1 we have M1/N1 ≈ 0.98,5 at scale 2 we have (M1 +M2)/N2 ≈ 0.85,

at scale 3 we have (M1 +M2 +M3)/N3 ≈ 0.50, and at scale 4 we have (M1 +M2 +M3 +M4)/N4 ≈ 0.20.

Figures 3 and 4 show the original anchor frames and their reconstructions via the various reconstruction methods.

The PSNR values shown in both figures have been computed across the 32 anchor frames. For each reconstruction

method that we test, we use the same multiscale measurements described above; the only differences are in what

kernel is used for interpolating the measurements and in what algorithm (i.e., sparsifying transform) is used for

reconstruction. Columns (b) and (c) show the performance of the 3D-DWT [2] and Cn [25] temporal sparsifying

transforms, respectively. For both we use a rectangular interpolation kernel. As discussed in Section V-A, using

a rectangular interpolation kernel is equivalent to aggregating the CS measurements and assigning them to the

nearest anchor frame. Column (d) shows the performance of a modified version of our algorithm that uses LIMAT

with zero-motion vectors and a rectangular interpolation kernel. Column (e) shows the performance of our full

algorithm, using a linear interpolation kernel and using LIMAT with motion vectors estimated during the multiscale

reconstruction procedure.

Using the same total number of measurements, we repeat the experiments above but using Na = 16 anchor

frames instead of 32 (we also use a different allocation of measurements across the scales). The results are

presented in Figures 5 and 6. For all reconstruction methods—including ours—we see a decrease in the PSNR

of the reconstruction. We believe that this is mainly due to the inevitable increase in interpolation error that occurs

when the anchor frames are spaced further apart. In exchange for the decrease in PSNR, however, the complexity

of the reconstruction problem has been reduced by a factor of 2.

In all experiments, we see that our algorithm gives the highest PSNR value. Our reconstruction algorithm also

successfully recovers some features in the video frames that other methods cannot. For example, we can see that

the flames in column (e) of the Candle video reconstructions have sharper and more detailed edges than those of

other reconstructions shown in columns (b)–(d). We can also see that the edges of the car and the details of features

5Here we could consider taking a few more measurements so that M1/N1 ≥ 1 and simply inverting the measurement matrix to obtain a
low-resolution estimate of the video. However, as the measurements contain error due to interpolation, we believe it would be preferable to
solve an `1-regularized problem instead.
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(a) Original frames (b) 3D-DWT (c) Cn with n = 16 (d) LIMAT with v = 0 (e) LIMAT

Fig. 5: Reconstructed anchor frames of Candle video. Out of 512 original frames, 16 anchor frames were reconstructed. From the
top each row shows the 3rd, 6th, 12th, and 15th anchor frame and its reconstruction via various reconstruction methods. From the
left each column represents: (a) original frames, (b) 3D-DWT with rectangular interpolation kernel, PSNR = 32.79 dB, (c) Cn,
n = 32, with rectangular interpolation kernel, PSNR = 32.70 dB, (d) LIMAT with rectangular interpolation kernel and zero-motion
vectors, PSNR = 32.64 dB, (e) LIMAT with linear interpolation kernel, PSNR = 35.49 dB.

of the wheels are more pronounced than those of the others. We note that objects with slow motion (e.g., cars) are

most accurately reconstructed, while objects that are moving fast (e.g., metal balls) are less accurately reconstructed.

A different spacing of anchor frames could help to reconstruct more rapidly moving objects, and one could even

consider adaptively changing the spacing of the anchor frames throughout the video. While such extensions are

beyond the scope of this paper, our companion technical report [15] does contain additional discussion on this front.

Overall, both visually and in terms of PSNR, we have seen the benefits of combining motion compensation with a

temporal sparsifying transform and the benefits of using a non-rectangular interpolation kernel. Though not shown,

we have also tested our algorithm using zero-motion LIMAT with a linear interpolation kernel. For Na = 32,

the PSNR for the reconstructed Candle video is 36.60 dB, and the PSNR for the reconstructed Pendulum + Cars

video is 30.79 dB; for Na = 16, the PSNR for the reconstructed Candle video is 34.84 dB, and the PSNR for the

reconstructed Pendulum + Cars video is 29.35 dB. Thus, while both the motion compensation and the interpolation
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(a) Original frames (b) 3D-DWT (c) Cn with n = 16 (d) LIMAT with v = 0 (e) LIMAT

Fig. 6: Reconstructed anchor frames of Pendulum + Cars video. Out of 512 original frames, 16 anchor frames were reconstructed.
From the top each row shows the 2nd, 6th, 11th, and 15th anchor frame and its reconstruction via various reconstruction methods.
From the left each column represents: (a) original frames, (b) 3D-DWT with rectangular interpolation kernel, PSNR = 27.81 dB,
(c) Cn, n = 32, with rectangular interpolation kernel, PSNR = 28.30 dB, (d) LIMAT with rectangular interpolation kernel and
zero-motion vectors, PSNR = 28.48 dB, (e) LIMAT with linear interpolation kernel, PSNR = 29.64 dB.

kernel are contributing to the gains that we see, the change in interpolation kernel seems to be a bit more valuable.

The reconstruction time of our algorithm depends mainly on size of the unknown signal. Thus, the reconstruction

will be faster at coarser scales in the algorithm and slower at finer scales. The reconstruction complexity also depends

on the motion vectors, since the time to compute a matrix vector product increases with the number of non-zero

motion vectors used in LIMAT. Thus, the reconstruction time when using LIMAT with zero-motion vectors will be

comparable to the time required for, e.g., the 3D-DWT (which is based on orthonormal linear filters) but shorter

than the time required for LIMAT with non-zero motion vectors. Using an off-the-shelf Windows-based PC with

quad-core CPU, the total times for our algorithm to reconstruct 16 and 32 anchor frames of the Candle video were

roughly 30 minutes and 230 minutes, respectively. To be more specific, for the reconstruction involving 32 anchor

frames, the algorithm required 9 seconds at scale 1, 552 seconds at scale 2, and 13679 seconds at scale 3. For the

sake of comparison, the 3D-DWT, Cn, and LIMAT with zero-motion vector algorithms took approximately 2204
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Fig. 7: Frame-by-frame PSNR values of high-rate Pendulum + Cars video estimate. This video was obtained by interpolating the
32 anchor frames that were reconstructed with our algorithm. Four of the reconstructed anchor frames are illustrated in Fig. 4(e).
The blue line shows the PSNR values of each frame, and the red squares mark the PSNR values of each anchor frame. The PSNR of
the full reconstructed video sequence is 31.31 dB, which is only slightly lower than the PSNR of the reconstructed anchor frames.

seconds, 16106 seconds, and 2796 seconds, respectively. Reducing the computational complexity of our algorithm

is an important problem for future research. We do note, though, that while our algorithm may not currently be

feasible for real-time reconstruction purposes, as with CS-MUVI [21] it would be possible to view a low-resolution

preview of the video in almost real-time.

Finally, although we have reported results above in terms of the reconstruction quality of the anchor frames

themselves, it is worth reiterating that from the estimated anchor frames x̂a one can, if desired, also obtain an

estimate of the original high-rate video sequence via x̂d = Γx̂a. As an example, we construct an estimate of the

full 512-frame Pendulum + Cars video sequence by interpolating the 32 anchor frames that were reconstructed

in Figure 4. In Figure 7, we plot in blue the PSNR for each of the 512 reconstructed frames. Among these 512

frames, of course, are the 32 anchor frames that were reconstructed in the first place; the PSNR for each of these

anchor frames is marked with a red square. We note that the PSNR of the full reconstructed video sequence is

31.31 dB, which is only slightly lower than the PSNR of the reconstructed anchor frames. This confirms that the

anchor frames capture much of the critical information in the video, and of course reconstructing the anchor frames

was an essential step in recovering the full video, because the full video (with 256× 256× 512 unknowns) would

be very difficult to reconstruct directly from just 800× 512 measurements.
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