
A MULTISCALE FRAMEWORK FOR COMPRESSIVE SENSING OF VIDEO

Jae Young Park

Department of EECS, University of Michigan
Ann Arbor, MI 48109

Michael B. Wakin∗

Division of Engineering, Colorado School of Mines
Golden, CO 80401

ABSTRACT

Compressive Sensing (CS) allows the highly efficient acqui-
sition of many signals that could be difficult to capture or
encode using conventional methods. From a relatively small
number of random measurements, a high-dimensional signal
can be recovered if it has a sparse or near-sparse represen-
tation in a basis known to the decoder. In this paper, we
consider the application of CS to video signals in order to
lessen the sensing and compression burdens in single- and
multi-camera imaging systems. In standard video compres-
sion, motion compensation and estimation techniques have
led to improved sparse representations that are more easily
compressible; we adapt these techniques for the problem of
CS recovery. Using a coarse-to-fine reconstruction algorithm,
we alternate between the tasks of motion estimation and
motion-compensated wavelet-domain signal recovery. We
demonstrate that our algorithm allows the recovery of video
sequences from fewer measurements than either frame-by-
frame or inter-frame difference recovery methods.

1. INTRODUCTION

Many naturally occurring signals are sparse or compressible
in the sense that when expressed in the proper basis, relatively
few of the expansion coefficients are large. Such a concise
representation naturally leads to efficient compression algo-
rithms. The emerging theory of Compressive Sensing (CS)
indicates that such models can also be used to simplify the
acquisition of high-dimensional images or signals that might
otherwise be difficult to collect or encode [1, 2]. Rather than
collecting an entire ensemble of signal samples, CS requires
only a small number of random linear measurements, with the
number of measurements proportional to the sparsity level of
the signal. Thus, in both standard compression and CS appli-
cations, finding a basis that most sparsely represents the sig-
nals is a problem of common interest. In this paper, we con-
sider the application of CS to video signals in order to lessen
the sensing and compression burdens these high-dimensional
signals impose on imaging systems.

There are numerous applications where CS video systems
could be helpful. Standard video capture systems require a
complete set of samples to be obtained for each frame, at
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which point a compression algorithm may be applied to ex-
ploit spatial and temporal redundancy. In some applications,
such as imaging at non-visible (e.g., infrared) wavelengths, it
may be difficult or expensive to obtain these raw samples. In
other applications, such as multi-image capture in camera net-
works, implementing a compression algorithm may itself be a
challenge. We argue that these burdens may be reduced by us-
ing compressive imaging hardware (such as the “single-pixel
camera” [3]) where random measurements are collected in-
dependently from each frame and no additional compression
protocol is needed. In exchange, the challenge of implement-
ing such a system comes in developing efficient sparsifying
representations and the corresponding algorithms for video
recovery from random measurements.

As discussed above, an efficient representation of video
signals must effectively remove spatial and temporal redun-
dancies. In the long literature of standard video compres-
sion [4], a variety of methods have been proposed to exploit
these redundancies. One common approach combines mo-
tion compensation and estimation [5] algorithms with image
compression techniques. While some of these central ideas
can be absorbed into the CS framework, there is an important
challenge that we must address. Unlike the standard video
compression problem where the frames of the video are ex-
plicitly available to perform motion estimation, in CS only
random measurements of the underlying video are available.
We are faced with a chicken-or-egg problem: Given the video
frames, we could estimate the motion; or given the motion we
could better estimate the frames themselves.

In this paper, we propose a multiscale framework for re-
construction that involves iterating between motion estima-
tion and sparsity-based reconstruction of the frames them-
selves. Our representation framework is built around the LI-
MAT [6] method for standard video compression, in which
motion compensation is used to improve sparsity in the three-
dimensional (3D) wavelet domain. Section 2 discusses the
necessary background topics. Section 3 describes our algo-
rithm, and Sec. 4 presents results and compares our algorithm
to existing approaches. We conclude in Sec. 5.

2. BACKGROUND

2.1. Compressive Sensing (CS)

Consider a finite dimensional signalx ∈ R
N . A typical

CS acquisition scenario correlatesx againstM different test



functions,φm ∈ R
N wherem = 1, 2, ..., M , to obtain the

measurements,y ∈ R
M with M ≪ N . This is written as

y = Φx, whereΦ ∈ R
M×N is the measurement matrix with

φT
m as its rows. WithM ≪ N , the reconstruction problem

of x from y is ill-posed. However, most naturally occurring
signals aresparse or compressible. This means whenx is rep-
resented in an appropriateN ×N basisΨ such thatx = Ψα,
α has only a few significant coefficients. LetxK = ΨαK de-
note the K-largest term approximation, whereαK is obtained
by keeping only the K-largest entries in absolute value ofα
and setting the rest to zero. Then, the norm ofx−xK is small
or even zero for the classes of signals described above. One
standard reconstruction procedure is to solve

min
α
‖α‖1 s.t. y = ΦΨα. (1)

Under certain conditions onΦ [2], solving (1) gives a recon-
struction that obeys‖x∗ − x‖1≤ C‖x − xK‖1, whereC is
a well-behaved constant,x∗ = Ψα∗, andα∗ is the result of
solving (1). From this we can infer that given a fixed num-
ber of random measurements, the accuracy of reconstruction
depends highly on the compressibility of the underlying sig-
nal. Hence, for the most accurate reconstruction, one needs
to chooseΨ wherex is most compressible.

2.2. Previous CS video reconstruction methods

Several methods for CS video reconstruction have been pro-
posed, each relying on a different sparsifying transformΨ.
One natural approach is to recover each frame independently
using the 2D discrete wavelet transform (2D-DWT) forΨ on
each frame [3]. An alternative approach is to use the 3D-DWT
for Ψ and reconstruct the entire video all at once [3]. Yet an-
other approach, termed “Cn” and proposed for compressive
coded aperture video reconstruction [7], relies on small inter-
frame differences together with a spatial 2D-DWT to produce
a sparse representation of the underlying video.

A common difficulty faced by the methods above is how
to effectively remove temporal redundancies in the presence
of high frequency or global motion in the video. Frame-by-
frame reconstruction does not consider any temporal correla-
tion and relies solely on the sparsity of each frame. Using a
fixed temporal filter or taking inter-frame differences is not
sufficient to fully remove the vast amount of temporal redun-
dancies, e.g., when large objects move several pixels between
adjacent frames or when the entire scene undergoes transla-
tional motion. Motivated by this, we seek to exploit a frame-
work proposed in the standard video compression literature
that uses motion compensation and estimation along the tem-
poral dimension to reduce the temporal redundancies.

2.3. LIMAT

The LIMAT [6] algorithm for video compression useslifting
[8] as its basic framework to build a fully invertible transform.

The lifting scheme is a simple construction of second gener-
ation wavelets, which can adapt to the various characteristics
present in the signal. By applying motion-compensated lift-
ing steps to implement the temporal wavelet transform, LI-
MAT can adaptively account for motion within the video to
effectively exploit the temporal correlation. Spatial correla-
tions are subsequently exploited using the 2D-DWT.

Let us denote thekth frame of then frame video se-
quence byxk, wherek ∈ {1, 2, . . . , n}. The lifting trans-
form partitions the video into even frames{x2k} and odd
frames{x2k+1} and attempts to predict the odd frames from
the even ones using a forward motion compensation opera-
tor. This operator, denotedF , takes as input one even frame
and a collection of motion vectors denotedvf that describe
the anticipated motion of objects between that frame and its
neighbor. For example, suppose thatx2k andx2k+1 differ by
a 3-pixel shift that is captured precisely invf ; then as a re-
sultx2k+1 = F(x2k, vf ) exactly. Applying this prediction to
each pair of frames and keeping only the prediction errors, we
obtain a sequence of highpass residual detail frames (see (2)
below). The prediction step is followed by an update step that
uses an analogous backward motion compensation operator
denotedB and motion vectorsvb. The combined lifting steps

hk = x2k+1 −F(x2k, vf ) (2)

lk = x2k +
1

2
B(hk, vb) (3)

produce an invertible transform between the original video
and the lowpass{lk} and highpass{hk} coefficients. For
maximum compression, the lifting steps can be iterated on
pairs of the lowpass frames until there remains only one. Ide-
ally, with perfect motion compensation, then − 1 highpass
frames will consist only of zeros, leaving only one frame of
nonzero lowpass coefficients, and making the sequence sig-
nificantly more compressible. As a final step, it is customary
to apply the 2D-DWT to each lowpass and highpass frame to
exploit any remaining spatial correlations.

In our proposed algorithm, we use block matching (BM)
to estimate motion between a pair of frames. The BM al-
gorithm divides the reference frame into non-overlapping
blocks. For each block in the reference frame the most sim-
ilar block of equal size in the destination frame is found and
the relative location is stored as a motion vector. There are
several possible similarity measures such as thel2 norm.

We note that in order to use LIMAT in solving (1), mo-
tion information must be supplied prior to solving thel1 min-
imization problem. Once we have the estimates of the motion
vectors, the lifting steps (2) and (3) can be defined, which in
turn gives us a transformΨ. Unfortunately, extracting motion
information prior to reconstruction is highly non-trivial.

3. MULTISCALE RECONSTRUCTION

We consider a video sequence containingn frames{xk}
n
k=1,

each of heighth and widthw; that is,xk ∈ R
hw for each



k = 1, 2, . . . , n. We suppose that compressive measurements
of each frame are collected according to a protocol that we
describe in Sec. 3.1; such measurements could be acquired
using CS imaging hardware such as the “single-pixel camera”
[3]. In Sec. 3.2, we propose an algorithm for recovering the
original video sequence from the complete ensemble of com-
pressive measurements. Our algorithm employs the LIMAT
framework to exploit motion information and remove tempo-
ral redundancies. To overcome the chicken-or-egg problem,
we propose an iterativemultiscale framework, reconstructing
successively finer resolution approximations to each frame
and alternately using these approximations to estimate the
motion. This approach also exploits the limited complexity
of motion information at coarse spatial resolutions.

At each scale of the algorithm, we seek to reconstruct a
spatially lowpass-filtered and decimated version of each video
frame. Lettingj ∈ {1, 2, . . . , log2(n)} denote the scale, each
decimated frame has sized(j) = h/(n/2j)×w/(n/2j). For
each framek = 1, 2, . . . , n, we define

Lj,k := RjW
s(j)
2D xk ∈ R

d(j), (4)

whereW
s(j)
2D represents thes(j) = log2(n) − j level 2D

discrete Haar wavelet transform (2D-DHWT), andRj repre-
sents thed(j) × hw linear restriction operator, which out-
puts thed(j) scaling coefficients and omits the remaining
hw − d(j) wavelet coefficients. We denoteLj ∈ R

nd(j) as
the stacked vector of allLj,k. We note that, at the finest scale
j = log2(n), we simply haveLj,k = xk, and we also note the
multiscale relationship:

Lj−i,k = Rj−iW
i
2D

Lj,k, i = 1, 2, . . . , j − 1. (5)

3.1. Measurement protocol

The encoder we propose requires only frame-by-frame ran-
dom measurements of eachLj,k. Letting M(j) denote the
desired number of measurements from each frame at scale
j, we letΦj,k denote anM(j) × d(j) random measurement
matrix for eachk = 1, 2, . . . , n and define the random mea-
surementsyj,k ∈ R

M(j) as follows:

yj,k = Φj,kLj,k = Φj,kRjW
s(j)
2D xk. (6)

We note that each measurement collected is a linear function
of a single video frame.

Finally, let us denoteyj ∈ R
nM(j) as the stacked vector

of all yj,k, andΦj as thenM(j)×nd(j) random matrix with
all Φj,k as its block diagonals; we then haveyj = ΦjLj .

3.2. Reconstruction algorithm

Our proposed decoder begins at the coarsest scale (j = 1)
and proceeds to finer scales. At each scalej, the decoder
can be divided into two stages. In the first stage, we recon-
struct Lj using motion vectors estimated at coarser scales,

and in the second stage we use the reconstructedLj to esti-
mate motion vectors (denotedvj). To reconstructLj at each
scale, we solve anℓ1 problem (1) by seeking sparsity in the
motion-compensated wavelet basis provided by LIMAT (de-
notedΨj(vj−1)). Due to (5), the measurements available for
reconstructingLj consist not only ofyj but also ofyj′ for all
j′ < j. Letting

Yj :=











yj

...
y2

y1











and Ωj :=











Φj

...
Φ2R2W

j−2
2D

Φ1R1W
j−1
2D











,

we haveYj = ΩjLj = ΩjΨj(vj−1)αj , whereαj represents
the vector of expansion coefficients forLj in the motion-
compensated LIMAT basis obtained from the most recently
estimated motion vectorsvj−1. The algorithm can be sum-
marized as follows:

Algorithm 1: Reconstruction procedure

Input: {Yj}
log

2
(n)

j=1 and{Ωj}
log

2
(n)

j=1

Output: Llog
2
(n)

Initialization : v0 = zero-motion vectors ;1

for j ← 1 to log2(n) do2

Solveminαj
‖αj‖1 s.t.Yj = ΩjΨj(vj−1)αj ;3

Lj = Ψj(vj−1)αj ;4

Estimatevj usingLj via BM algorithm5

end6

Because we cannot estimate motion before recovering an
estimate of the frames, our assumption in Step 1 reduces the
motion compensation operatorsF andB to the identity.

4. RESULTS

In this section we compare the proposed algorithm to exist-
ing algorithms such as frame-by-frame reconstruction, 3D-
DHWT, and theCn reconstruction method proposed in [7].

We present results for two different test videos. The first
video is synthetic and consists of a stationary background
with a textured circle moving horizontally at a constant speed
of 4 pixels/frame. There are 8 frames, each of size64 × 64;
Fig. 1(a) shows the fifth frame of this video. The second video
is an edited version of the standard “Coastguard” test video:
we select every other frame starting with the first frame (16
in total) and crop each frame to size128 × 128. Figure 2(a)
shows the tenth frame of this video zoomed in on a100×100
region. Motion in this video is more complex, with the water
having changes in reflection and surface patterns, the back-
ground land moving on average 2 pixels/frame to the right, the
smaller boat moving slightly between frames, and the larger
boat moving on average 5 pixels/frame to the right.

For the synthetic video the total number of pixelsN =
32678. Due to the increasing complexity of the inverse prob-
lem at each scale, we use measurement ratesM(1) = 240,



(a) Original fifth frame (b) frame-by-frame (c) 3D-DHWT (d) Cn with n = 8 (e) Proposed algorithm
Fig. 1. Reconstructed synthetic video: (a) original, (b)MSE = 724.08, (c) MSE = 206.37, (d) MSE = 137.83, (e)MSE = 56.93.

(a) Original tenth frame (b) frame-by-frame (c) 3D-DHWT (d) Cn with n = 16 (e) Proposed algorithm
Fig. 2. Reconstructed “Coastguard” video: (a) original, (b)MSE = 239.7, (c) MSE = 194.5, (d) MSE = 233.8, (e)MSE = 147.9.

M(2) = 400, andM(3) = 620; in total M = 10080 ≈
0.3N . For the “Coastguard” videoN = 262144 and we use
measurement ratesM(1) = 256, M(2) = 528, M(3) = 892,
and M(4) = 1598; in total M = 52384 ≈ 0.2N . Fig-
ures 1(b)-(e) show the fifth frame of the reconstructed syn-
thetic video, and Figs. 2(b)-(e) show the tenth frame of the
reconstructed “Coastguard” video, zoomed in on a100× 100
region. In each case, the MSE shown is for the entire recon-
structed video; for both videos, our algorithm gives the best
result in terms of MSE. To be clear, the methods we test differ
not in the measurements they use (and therefore not in the bit-
rate if those measurements were quantized) but instead differ
only in the model and algorithm used for reconstruction.

The test on the synthetic video shows the importance of
motion compensation. The quality of frame-by-frame re-
construction depends solely on the sparsity of the individual
frames. However, because each frame is not sufficiently
sparse in the 2D-DHWT domain, this method is inferior to
those that account for temporal correlation. Although the
MSE values do not differ as dramatically in the second video
as in the first, the more complex video is best reconstructed
by our motion-compensated method. In both theCn and
3D-DHWT methods, a lack of sufficient sparsity causes more
significant artifacts in the reconstructed video; in the case of
theCn algorithm the artifacts tend to propagate and worsen
toward the end of the sequence.

5. CONCLUSIONS

We have proposed a new algorithm for CS video reconstruc-
tion. Unlike previous approaches, our algorithm directly com-
pensates for motion between frames to achieve a sparse rep-
resentation. Our algorithm requires only frame-by-frame ran-
dom measurements, which can be taken with proposed CS
imaging hardware. Test results show our proposed algorithm
outperforms others in terms of MSE, but at present it is also
the most computationally demanding of the methods tested in
Sec. 4. (At the other extreme, frame-by-frame reconstruction

requires the least computation but yields the highest MSE.)
In ongoing work, we are examining computationally efficient
alternatives to the largeℓ1 problem at fine scales.

For single-view imaging, our CS-based algorithm will not
necessarily provide bit-rate savings when compared with tra-
ditional MPEG compression. However, the ability to capture
a video using few measurements may be useful in applica-
tions where is it difficult or expensive to obtain raw samples.
Another interesting application of the proposed algorithmis
in multi-view imaging. In such a system, multi-camera arrays
are used to capture a scene from several different angles. Sev-
eral limitations—in transmission bandwidth, power, storage,
and so on—could be overcome with the application of CS [9].
The proposed algorithm could be applied by treating each sig-
nal captured by each camera as a frame of a video sequence.
This remains a subject of ongoing work and experimentation.
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