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ABSTRACT which point a compression algorithm may be applied to ex-

. . . . _ploit spatial and temporal redundancy. In some application
Compressive Sensing (CS) allows the highly efficient acquig;,ch as imaging at non-visible (e.g., infrared) wavelesgth
sition of many signals that could be difficult to capture O may be difficult or expensive to obtain these raw samples. In
encode using conventional methods. From a relatively smalyn e appiications, such as multi-image capture in camesra n
number of random measurements, a high-dimensional signgl, .5 implementing a compression algorithm may itself be a
can be. recovered if it has a sparse or near-sparse represeiy|ienge. We argue that these burdens may be reduced by us-
tatlon in a basis !(nO\_/vn to the decgder. .In thls_paper, W?ng compressive imaging hardware (such as the “singlelpixe
consider the appllcatlon of CS to y|deo S|gnaI§ n prder Camera” [3]) where random measurements are collected in-
'eSS?” the sensing and compression burdens_ in single- aagpendently from each frame and no additional compression
multi-camera imaging systems. In standard video compress o600 js needed. In exchange, the challenge of implement
sion, motion compensation and estimation techniques ha\f g such a system comes in developing efficient sparsifying
led to improved sparse representations that are more eas{iy, o sentations and the corresponding algorithms forovide
compressible; we adapt these techniques for the problem 0 covery from random measurements.

CS recovery. Using a coarse-to-fine recon_strucuo_n 3'9“"7” As discussed above, an efficient representation of video
we alternate between the tasks of motion estimation andya15 muyst effectively remove spatial and temporal redun
motion-compensated wavelet-domain signal recovery. WQanjes. In the long literature of standard video compres-
demonstrate that our algorithm allows the recovery of videQ;,, [4], a variety of methods have been proposed to exploit
sequences from fewer measurements than either frame-by: <o redundancies. One common approach combines mo-

frame or inter-frame difference recovery methods. tion compensation and estimation [5] algorithms with image
compression techniques. While some of these central ideas
1. INTRODUCTION can be absorbed into the CS framework, there is an important

. . . challenge that we must address. Unlike the standard video
Many naturally occurring signals are sparse or compressibl . .
: . . . compression problem where the frames of the video are ex-
in the sense that when expressed in the proper basis, elyativ .. : : o .

licitly available to perform motion estimation, in CS only

few of the expansion coefficients are large. Such a concise : . .
: . . random measurements of the underlying video are available.
representation naturally leads to efficient compressign-al

rithms. The emerging theory of Compressive Sensing (CS e are faced with a c;hmken-or-egg problel_”n: Given thg video
rames, we could estimate the motion; or given the motion we

indicates that such models can also be used to simplify the :
-~ . : ) . . .~ could better estimate the frames themselves.
acquisition of high-dimensional images or signals thathhig

otherwise be difficult to collect or encode [1, 2]. Rathentha In thls. paper, we propose a _mult|scale frameyvork fo_r re-
construction that involves iterating between motion eatim

collecting an entire ensemble of signal samples, CS resjuire; . .
9 'si9 P <5 Fﬁon and sparsity-based reconstruction of the frames them-
only a small number of random linear measurements, with the : ) .
: . Selves. Our representation framework is built around the LI
number of measurements proportional to the sparsity Idvel

the signal. Thus, in both standard compression and CS app |-AT [6] method fqr st_andard vu_jeo compression, in which
motion compensation is used to improve sparsity in the three

cations, finding a basis that most sparsely representsdhe si,. . . . .
: 9 : P y rep g dimensional (3D) wavelet domain. Section 2 discusses the
nals is a problem of common interest. In this paper, we con-

. S . . . necessary background topics. Section 3 describes our algo-
sider the application of CS to video signals in order to Iasse . .
rithm, and Sec. 4 presents results and compares our algorith

the sensing and compression burdens these high-dimehsiona " " .
. . . . to existing approaches. We conclude in Sec. 5.
signals impose on imaging systems.

There are numerous applications where CS video systems 2 BACK GROUND
could be helpful. Standard video capture systems require a
complete set of samples to be obtained for each frame, &1. Compressive Sensing (CS)
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functions,¢,, € RY wherem = 1,2,..., M, to obtain the The lifting scheme is a simple construction of second gener-
measurementg; € R™ with M < N. This is written as  ation wavelets, which can adapt to the various charadtesist

y = ®x, where® ¢ RM*V js the measurement matrix with present in the signal. By applying motion-compensated lift
#T as its rows. WithM/ < N, the reconstruction problem ing steps to implement the temporal wavelet transform, LI-
of x from y is ill-posed. However, most naturally occurring MAT can adaptively account for motion within the video to
signals aresparse or compressible. This means whemis rep-  effectively exploit the temporal correlation. Spatial ieda-
resented in an appropriadé x N basis¥ such thatt = U,  tions are subsequently exploited using the 2D-DWT.

« has only a few significant coefficients. Let = Yoy de- Let us denote thé&!" frame of then frame video se-
note the K-largest term approximation, wherg is obtained quence byx, wherek € {1,2,...,n}. The lifting trans-

by keeping only the K-largest entries in absolute value.of form partitions the video into even framdso,} and odd
and setting the rest to zero. Then, the norm efzx issmall ~ frames{za;1} and attempts to predict the odd frames from
or even zero for the classes of signals described above. Ottee even ones using a forward motion compensation opera-

standard reconstruction procedure is to solve tor. This operator, denotef, takes as input one even frame
. and a collection of motion vectors denoteg that describe
min lall, st y=2@¥a. 1D the anticipated motion of objects between that frame and its

neighbor. For example, suppose that andzoy.1 differ by
Under certain conditions o [2], solving (1) gives arecon- g 3-pixel shift that is captured precisely in; then as a re-
struction that obey§a™ — z[1< Cllz — k|1, whereC'is  sultzyy,,, = F(xor, vs) exactly. Applying this prediction to
a well-behaved constant; = Va*, anda” is the result of  each pair of frames and keeping only the prediction erroes, w
solving (1). From this we can infer that given a fixed num-optain a sequence of highpass residual detail frames (Jee (2
ber of random measurements, the accuracy of reconstructigzlow). The prediction step is followed by an update step tha
depends highly on the compressibility of the underlying sig uses an analogous backward motion compensation operator

nal. Hence, for the most accurate reconstruction, one neegdgnoteds and motion vectors;. The combined lifting steps
to choosel wherex is most compressible.
hi = xop41 — F(xok, vy) (2

2.2. Previous CSvideo reconstruction methods Iy = xop + %B(hk, vp) 3)

Several methods for CS video reconstruction have been P'3toduce an invertible transform between the original video

posed, each relying on a different sparsifying 'Fransfdrm nd the lowpasg!l;} and highpasgh,} coefficients. For
One natural approach is to recover each frame mdependenﬁ{aximum compression, the lifting steps can be iterated on

using the 2D discrete Wavglet transform_ (2D-DWT) foon airs of the lowpass frames until there remains only one. Ide
each frame [3]. An alternatlve_app_roach is to use the 3D-DW lly, with perfect motion compensation, the— 1 highpass

for W and reconstruct the entire video all at once [3]. YEt. aN%rames will consist only of zeros, leaving only one frame of
otkéerdapproach, 'Fsrmedj‘n and p_ropo7$ed prr comprﬁﬁwe nonzero lowpass coefficients, and making the sequence sig-
code a_perture video recons_tructlon [_ ], relies on smédkin nificantly more compressible. As a final step, it is customary
frame differences tog_etherwnh a Spa“‘?" ZD_'DWT to producqo apply the 2D-DWT to each lowpass and highpass frame to
asparse represe_n_tanon of the underlying video. . exploit any remaining spatial correlations.

A common difficulty faced by the meth_ods_ above is how In our proposed algorithm, we use block matching (BM)
to effectlvely remove temporal r.edulndancm.zs in the presenG,, oqtimate motion between a pair of frames. The BM al-
of high frequency_or global motion N the video. Frame'by'gorithm divides the reference frame into non-overlapping
frame reconstruction does not con§|der any temporal @rrel blocks. For each block in the reference frame the most sim-
tion and relies solely on the sparsity of each frame. Using flar block of equal size in the destination frame is found and

flxegl _temporal filter or taking inter-frame differences i no the relative location is stored as a motion vector. There are
sufficient to fully remove the vast amount of temporal redun-,

: . X several possible similarity measures such ag4merm.
dancies, e.g., when large objects move several pixels eatwe

. X We note that in order to use LIMAT in solving (1), mo-
adjacent frames or when the entire scene undergoes trans{fao—n information must be supplied prior to solving themin-
tional motion. Motivated by this, we seek to exploit a frame-

imization problem. Once we have the estimates of the motion

work proposed in the standard video compression "teratur\?ectors, the lifting steps (2) and (3) can be defined, which in

that uses motion compensation and estimation along the teMim gives us a transforri. Unfortunately, extracting motion
poral dimension to reduce the temporal redundancies.

information prior to reconstruction is highly non-trivial

2.3. LIMAT 3. MULTISCALE RECONSTRUCTION

The LIMAT [6] algorithm for video compression uséifting  We consider a video sequence containinjames{xy }7_,,
[8] as its basic framework to build a fully invertible transfn.  each of height. and widthw; that is, z;, € R"" for each



k=1,2,...,n. We suppose that compressive measurementnd in the second stage we use the reconstrucied esti-

of each frame are collected according to a protocol that wenate motion vectors (denoteg)). To reconstruct; at each
describe in Sec. 3.1; such measurements could be acquiredale, we solve aty problem (1) by seeking sparsity in the
using CS imaging hardware such as the “single-pixel camerahotion-compensated wavelet basis provided by LIMAT (de-
[3]. In Sec. 3.2, we propose an algorithm for recovering thenoted? ;(v;_1)). Due to (5), the measurements available for
original video sequence from the complete ensemble of conreconstructing.; consist not only ofy; but also ofy;. for all
pressive measurements. Our algorithm employs the LIMAT}’ < j. Letting

framework to exploit motion information and remove tempo-

ral redundancies. To overcome the chicken-or-egg problem, Yy ®;

we propose an iterativaultiscale framework, reconstructing
successively finer resolution approximations to each frame
and alternately using these approximations to estimate the
motion. This approach also exploits the limited complexity
of motion information at coarse spatial resolutions.

At each scale of the algorithm, we seek to reconstruct
spatially lowpass-filtered and decimated version of eagdbwi
frame. Lettingj € {1,2,...,log,(n)} denote the scale, each
decimated frame has siz¢j) = h/(n/27) x w/(n/27). For

Y= ° and Q; := PN
Y2 Py Ry Wi,
v o1 Ry Wi, !

we haveY; = Q;L; = Q,;¥;(v;_1)a;, wherea; represents
the vector of expansion coefficients fér; in the motion-
compensated LIMAT basis obtained from the most recently
estimated motion vectors;_;. The algorithm can be sum-
marized as follows:

each frames =1,2,...,n, we define Algorithm 1: Reconstruction procedure
Ljy = RWiV z, e RID, (4) Input: {Y;}1% and{;}\7%:™
o) ' . Output: Ly, (n)
where W represents the(j) = logy(n) — j level 2D 1 Initialization : vy = zero-motion vectors ;
discrete Haar wavelet transform (2D-DHWT), aRd repre- 2 for j < 1tolog,(n) do

sents thed(j) x hw linear restriction operator, which out- 3 | Solvemin,, |1 stY; = Q;¥,(v; 1)a; ;
puts thed(j) scaling coefficients and omits the remaining| , | . — W (v _]71)%_ :

hw — d(j) wavelet coefficients. We denofg; € R") as 5 Sfimater.

the stacked vector of all; ,. We note that, at the finest scale 6
j = logy(n), we simply havel; , = z, and we also note the

multiscale relationship: Because we cannot estimate motion before recovering an
; . . estimate of the frames, our assumption in Step 1 reduces the
L ;p=R;_;W! L =1,2,...,5— 1. 5 . . ' . .
gk =il ap Sy 8 5 &0 ©) motion compensation operataFsandB to the identity.

Estimatev; usingL; via BM algorithm
end

3.1. Measurement protocol 4. RESULTS

The encoder we propose requires only frame-by-frame ran, s section we compare the proposed algorithm to exist-
dom measurements of eadh .. Letting M(j) denote the 4 ag0rithms such as frame-by-frame reconstruction, 3D-
desired number of measurements from each frame at scal§ \wT and the”.. reconstruction method proposed in [7].
J, we let®; ; denote anV/(j) x d(j) random measurement  \yg present results for two different test videos. The first
matrix for eact¥ :M%Jz)Q’ a1 anq define the random mea- \igeo is synthetic and consists of a stationary background
surementy; x € R as follows: with a textured circle moving horizontally at a constantegpe
) of 4 pixels/frame. There are 8 frames, each of $izex 64;
Yik = Pjkljk = Pj Bt Was k. 6) Fig. 1(a) shows the fifth frame of this video. The second video
We note that each measurement collected is a linear functidd @n edited version of the standard “Coastguard” test video
of a single video frame. we select every other frame startl_ng with the f|_rst frame (16
Finally, let us denotg; € R"M() as the stacked vector N total) and crop each frame to sizes x 128. Figure 2(a)
of all y; ., and®; as thenM (j) x nd(j) random matrix with shows the tenth frame of this video zoomed in didé@ x 100

all ®, ;. as its block diagonals; we then hayg= ®;L;. regipn. Motion in.this videp is more complex, with the water
having changes in reflection and surface patterns, the back-

ground land moving on average 2 pixels/frame to the riglt, th
smaller boat moving slightly between frames, and the larger
Our proposed decoder begins at the coarsest sgate {)  boat moving on average 5 pixels/frame to the right.

and proceeds to finer scales. At each sgaléhe decoder For the synthetic video the total number of pixéls =

can be divided into two stages. In the first stage, we recor82678. Due to the increasing complexity of the inverse prob-
struct L,; using motion vectors estimated at coarser scaledem at each scale, we use measurement tafés) = 240,

3.2. Reconstruction algorithm



(a) Original fifth frame (b) frame-by-frame (c) 3D-DHWT (e) Proposed algorithm
Fig. 1. Reconstructed synthetic video: (a) original, i)SE = 724.08, (c) MSE = 206.37, (d) MSE = 137.83, () M SE = 56.93.

e | e inh T < re=r ----.:-i".-E : . P =g |
(a) Original tenth frame  (b) frame-by-frame (c) 3D-DHWT (d) C,, withn = 16 (e) Proposed algorithm
Fig. 2. Reconstructed “Coastguard” video: (a) original, )5 E = 239.7, (c) MSE = 194.5, (d) MSE = 233.8, () MSE = 147.9.
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M(2) = 400, and M (3) = 620; in total M = 10080 ~  requires the least computation but yields the highest MSE.)
0.3N. For the “Coastguard” vided&/ = 262144 and we use In ongoing work, we are examining computationally efficient
measurementratéd (1) = 256, M (2) = 528, M (3) = 892,  alternatives to the largg problem at fine scales.
and M (4) = 1598; in total M = 52384 ~ 0.2N. Fig- For single-view imaging, our CS-based algorithm will not
ures 1(b)-(e) show the fifth frame of the reconstructed synnecessarily provide bit-rate savings when compared wéth tr
thetic video, and Figs. 2(b)-(e) show the tenth frame of thalitional MPEG compression. However, the ability to capture
reconstructed “Coastguard” video, zoomed in dff@ x 100  a video using few measurements may be useful in applica-
region. In each case, the MSE shown is for the entire recortions where is it difficult or expensive to obtain raw samples
structed video; for both videos, our algorithm gives thet besAnother interesting application of the proposed algoritsm
result in terms of MSE. To be clear, the methods we test diffein multi-view imaging. In such a system, multi-camera asray
not in the measurements they use (and therefore notin the bire used to capture a scene from several different angles. Se
rate if those measurements were quantized) but insteaat differal limitations—in transmission bandwidth, power, stira
only in the model and algorithm used for reconstruction.  and so on—could be overcome with the application of CS [9].
The test on the synthetic video shows the importance ofhe proposed algorithm could be applied by treating each sig
motion compensation. The quality of frame-by-frame re-nal captured by each camera as a frame of a video sequence.
construction depends solely on the sparsity of the indaiidu This remains a subject of ongoing work and experimentation.
frames. However, because each frame is not sufficiently
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