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ABSTRACT correlated from signal to signal. However, this is not thiyon

We consider a multi-view imaging scenario where a numlype of joint structure that may arise in multi-signal CS. In

ber of cameras observe overlapping, translated subimdges S Paper we consider a multi-view imaging scenario where

a larger scene. To simplify the acquisition and encoding oft NUmber of cameras observe overlapping, translated subim-
these images, we propose a non-collaborative compressi@@€s of a larger scene. To simplify the acquisition and en-
sensing protocol at each camera. We discuss a prototype algePding processes as much as possible, we consider a random-
rithm for joint reconstruction of the images from the enstemb 12€d, non-collaborative measurement protocol for each-cam
of random measurements, based on the geometric manifoff® Because the images under consideration are parameter-
structure that arises from the varying camera positiongnEv Z€d by the low-dimensional camera position, it followsttha
when the camera positions are unknown, we demonstrate thi€ images live on a low-dimensional submanifold of the am-

itis possible to simultaneously resolve the images andtegi bient signal_ space. _This geometric structure requiresinove
their positions using only the random measurements. reconstruction algorithms not treated by the DCS theory.
After introducing the basic problem formulationin Sec. 2,
1. INTRODUCTION we discuss the geometric manifold perspective in Sec. 3. In
) . . Sec. 4, we discuss a prototype “manifold lifting” algorithm
To help address the growing challenges of acquiring richegy jgint reconstruction of the images from the ensemble of

higher-resolution signals and data sets, a data acquisitt  5qom measurements. As we demonstrate in Sec. 5, even
tocol known as Compressive Sensing (CS) [1, 2] has recentlynen the camera positions are unknown, it is possible to si-

been proposed, in which only a small number of random, liny, itaneously resolve the images and register their positio
ear measurements need be obtained from each signal.

. . . SUpith high accuracy. We conclude in Sec. 6.
posing the signal obeys a concise or sparse model, then from

these apparently incomplete measurements, an inverse prob 2. PROBLEM SETUP
lem can be solved to recover the full-resolution signal.

CS is particularly useful in two scenarios. The first is T best highlight the concepts in limited space, we will feam
when a high-resolution signal is difficult to measure digect Our discussion in the context of a specific satellite imaging
For example, a compressive imaging camera [3] has been préXperiment. Many details can be generalized, and we discuss
posed that can acquire a digital image using far fewer (ranextensions of the algorithm to other applications in Sec. 6.
dom) measurements than the number of pixels in the image. Let us consider the following scenario. We wish to ac-
Such a camera can be used not only for imaging at visibluire a satellite image such as th@92 x 192 image shown
wavelengths, but also for imaging at nonvisible waveleagthin Fig. 1(a). We suppose this image corresponds souare
where conventional imaging hardware can be expensive.  Unit of land area. This image will be observed by a collec-

A second scenario where CS is useful is when one or moréon of 200 satellites, with limited but overlapping fields o
high-resolution signals may be difficult to encode. Such sceview (.44 square units of land area each; see Fig. 1(b)), and
narios arise, for example, in sensor networks and multisvie With limited resolution ¢4 x 64 pixel images). For each
imaging, where joint, collaborative compression among the € {1,2,...,200}, we lets; € R%*%* denote the image
sensors would require costly communication. As an alterna@cquired by camerg, and letp; = [p, pj']” € R? denote
tive, a method known as Distributed CS (DCS) [4] has beetthe vertical and horizontal translatibof camera; relative
proposed, where each sensor encodes only a random settefthe center of the desired image Letting ?,,; denote the
linear projections of its own observed signal. While the DCSlinear restriction operator that restrictdo a limited field of
encoding is non-collaborative, the DCS decoding reconttru View (at the camera positigry) and reduces the resolution to
all signals jointly to exploit their commaon structure. 64 x 64, we haves; = R, x for eachj € {1,2,...,200}.

Existing DCS reconstruction algorithms rest on a collec-  For a central collection point, given the ensemble of low-
tion of joint sparsity models, where each signal is assumetesolution satellite images, sz, . . ., 5200, @nd supposing the
sparse in some basis and the sparse coefficient patterns &gative positiong, o, ..., paoo Of the 200 satellites were
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Fig. 2. Size64 x 64 noiselet basis functions used for collecting
random measurements at a sequence of 5 scales. Each mearsturem
At is the inner product of one such function with the image dériest.
(2) === desired image: now becomes more complicated. We have
dramatically undersampled eagl for conventional CS re-
construction on an image-by-image basis, we have far too few
measurements to be useful. Figure 1(c) shows an estithate
obtained using standa¥rd-based CS recovery of each image
s;, followed by averaging at the correct camera positions.
What is needed isjaint recovery algorithm for this multi-
R signal CS problem, i.e., a method for consolidating all of
(c) W e : . the measurement vectoys and then recovering all of the
Fig. 1. (a) Original desired image; courtesy USGS. (b) Satel- jointly. To further complicate matters, we will assume that
lite images with limited field of view. (c) Result of image-image  the relative satellite positions; are actuallyunknown. As
reconstruction from random measurements, followed byfusiith ~ we will see, the correlated information contained in the sig
exact knowledge of camera positions, PSNR 15.4dB. (d) Rsut  nalss; can make joint reconstruction possible with far greater
transform coding of each image, PSNR 22.3dB. Both appraaatfee  accuracy than image-by-image reconstruction, even wheen th
inferior to joint recovery using random measurements, $g¢e#b).  camera positiong; are unknown.

known, it Wouk_j be straightforward tq combine this data into 3. GEOMETRIC PERSPECTIVE
a superresolution estimateof the desired image. In terms
of the burden on the satellite sensing and communication sy#\s discussed in Sec. 1, prior work in formulating joint re-
tems, this strategy would require each satellite to measwte covery algorithms for multi-signal CS [4] utilized joint ap
transmit64 - 64 = 4096 numbers describing its image. sity models to capture the inter-signal correlations. Hmve
However, it may also be the case that the communicatiosuch models are not equipped to capture the joint structure
bandwidth from each satellite is limited, and so we may wislthat arises due to the geometry of the present problem.
to minimize the data that it must transmit. (Also, if imagatg Instead, we may note that, supposini fixed, there are
a nonvisible wavelength, we may wish to minimize the num-only two degrees of freedom describing any image- these
ber of measurements each sensor must take.) As such, wige captured in the camera position vegtgiwhich describes
propose that each satellite could measure and report &timit the 2D offset relative to the center of the image. That is, for
number (say)6) of random measurements that summarize itsanyp € R?, there corresponds an imaggz € R*%%6, and as
own incident image. In CS notation, we say that each sensgr changes the resulting imade,» changes as a continuous
j transmitsy; = ®;s;, where®; is a measurement matrix of function of p. Considering the set of all possible images that
size96 x 4096; for simplicity we take allb; = ® for some  can result from alp € R?, we defineM = {R,z : p € R?}
fixed®. For the random measurements, we use the multiscalghich corresponds to a nonlinear 2D surface witit?“¢,
noiselet transform [5]; example measurement functionsfro also known as aubmanifold of R*%¢ [6]. It follows that the
each of 5 scales are shown in Fig. 2. We take 16 measureo( imagess; are simply points drawn from.
ments at the coarsest scale and 20 at each finer scale; this en- Consequently, the200 measurement vectorg; live
ables the coarse-to-fine recovery method described in Sec. 4long the projection of this manifold withiiR%, namely
Although the measurement and encoding processes afieM = {®R,z : p € R?} C R%. (As we have recently
completely non-collaborative across the multiple saeli shown [7], the geometric structure of signal manifolds can
we will see that this protocol makes very efficient use ofactually be well preserved when projected onto random-
the available bandwidth. In fact, the ultimate quality of re ized, low-dimensional subspaces.) Thus, the problem of
construction we achieve using 96 random measurements pagcovering the images; from the measurements corre-
sensor is surprisingletter than what would be achieved by sponds to a “manifold lifting” problem: We wish 1ift each
image-by-image transform coding (that is, measuring @640 image from its measurement vectorR® back to its orig-
pixels of each image, computing the 2D wavelet transforminal position inR*%%6, but meanwhile we wish to preserve
and transmitting only the 96 largest wavelet coefficients).  the 2D manifold structure that relates all of these images
Unfortunately, recovering the signalg from the random  together. This is in contrast to many traditional manifold
measurements and ultimately recovering an estimatethe  learning algorithms, where the objective is to construct a



sistent with the estimated camera positipnsin other words,
for somez, we wish to ensure thal, ~ R;, 7.

Our proposed approach is to directly estimaté&Ve con-
catenate all of the measurement vectors and operatoisglett
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Fig. 3. (a) Initial estimates of camera positions obtained from

ISOMAP. (b) Initial estimatet obtained from joint recovery in- Atthis point, we may approach the reconstruction as a single

formed by initial estimates of camera positions. signal CS problem, for example by searching for the image
7 that is the most sparse in the wavelet domain while main-

lower-dimensional embedding of a dataset sampled from mining Consistency with the observed measuremgntg_'

manifold in high-dimensional space; however, as describeg ~ %gﬁﬁ We formulate the reconstruction problem as

below, we use one manifold learning known as ISOMAP [8]

as an intermediate step in our manifold lifting algorithm. a = argmin, [|al[1 subject to [ly — @big}A%\I/aHQ <e (1)
4. MANIFOLD LIETING ALGORITHM whereV is a wavelet basis andis chosen to reflect the un-

certainty in the camera positions.® Givena, we then let

4.1. Initial estimates of satellite positions T = Va, and then let the estimat8s = R, 7. Figure 3(b)

N ) shows the initial reconstruction
We begin with the problem of using the measurement vec-

torsy; to obtain an initial estimate for the positipn of each  4.3. Iterations
satellite. For this we invoke the manifold perspective: th
200 vectorgy; live along a 2D manifold iR as described
above, but in addition the camera positigns= [p, p}']"
give a rough coordinate system for the relative positions o

the measurement vectors along this 2D manifold. . . .
. . measurement vectong; with respect to this manifold, we
Algorithms such as ISOMAP [8] are well-equipped for S e by .
obtain improved estimates. We Igt = argmin, |ly; —

this type O.f problem. Using ISOMAP, we may pass as Inpl'nf1>Rng| 2, Where the minimization is performed over a local
the collection of our measurement vectgysys, . . ., y200 € neiahborhood of the brevious estim
R, and request as output an embeddifigys, - . ., ¥5oo € gn : previ - naie .

’ 2500 9200 With the improved estimates;, it is then possible to re-

R? of the points in 2D Euclidean space that best preserv . Py oo .
codesic drzstances between those points P Se the estimates; as described above in Sec. 4.2. We may
9 P : then iterate between the two refinement steps until conver-

The resulting map of these point5in 2D is a rough es- ence or until reaching a designated stopping criterion
timatep; of the relative camera positions. Figure 3(a) showg 9 g pping '

the result we obtain by passing our data to the ISOMAP al4 4. Multiscale refinements

gorithm? followed by postprocessing to correctly rotate the ] . ] . ) o
embedded coordinates. The colored points represent the estN€re is one detail we have omitted to this point, which i$ tha
mated camera positions, while the blue vectors represent tfthis iterative refinement procedure is best performed inla mu

error with respect to the true (but unknown) camera positiontiScalé, coarse-to-fine fashion. For example, in the ISOMAP
estimates described in Fig. 3(a), we do not pass all 96 mea-

4.2. Initial estimates of satellite images surements for each image but rather only the 36 noiselet mea-
surements from the 2 coarsest scales. The reason is that thes
Once we have obtained a rough estimateof each camera manifolds have a multiscale structure [6], and at coarsesca
position, we may proceed to find an initial estimagdor each  they are most flat and most amenable to manifold learning al-
satellite image iR**°S. While ensuring consistency with the gorithms. Additionally, we use only the 36 noiselet measure
observed measurements, i.e., thate ®5;, we wish to en-  ments from the 2 coarsest scales for our first estimateiof
sure that these estimates live along a 2D manifold desgribinSec. 4.2. As our estimates of camera positions become more
a common high-resolution imagee R'92*192 and that the accurate, however, we may tolerate more twisting in the man-
relative positions along this manifold should be roughlyp-co ifold, and so we can bring in finer scales of measurements,

eOnce the estimate has been obtained, it is possible to return
to the question of the camera positions and improve the es-
}imatesﬁj. The estimaté corresponds to a 2D manifold of
possible observation vectors R, and by registering the

2As described below in Sec. 4.4, we initially do not pass alh@sure- %In our experiments, we chose the parametas somewhat of an oracle,
ments as input to ISOMAP, but use only the 36 noiselet measemts from  in particular asl.25||y — @i, R ||2 to determine the error that would result
the 2 coarsest scales. This is equivalent to measuring &ss-pegularized  if we measured the true imagebut with the wrong positions as denoted by
images, for which the articulation manifold will be more sstio R. This process should be made more robust in future work.



tive research. These include an analysis of the requisite nu
ber of measurements (or bits, if quantized) for reconsonct
an understanding of the accuracy required in camera positio
estimates in order to ensure convergence, and the develop-
ment of a robust method for choosiagn (1). With the cur-
rent simulation parameters, we have found the convergence
of the algorithm to be sensitive to the starting camera posi-
tions. Also of interest would be to reduce the computational
complexity, as solving (1) requires a considerable amofint o
q:omputation for large:.

We note that the algorithm can be simplified in the special
which in turn produce better estimateszofind the camera CaS€ where the camera positions are known in advance. One

positions, and so on. We incorporate our multiscale measur@ay; for example, proceed directly to the global recoveoy pr

ments into the iterative method described above in Sec. 4.3.9ram (1). Our initial ISOMAP step is the reason why a large
number of camera views are required and also why we choose

5. RESULTS ®; = @ for all j. Without the need for this step, one may be
able to substantially reduce the number of camera views and
Figures 4(a),(b) show the estimated camera positigrend  also introduce more diversity into the random measurements
imageZ after 10 total iterations where all 5 noiselet scales  Ultimately, we believe this type of algorithm will be ex-
have gradually been introduced into the reconstruction praensible beyond satellite imaging to other multi-view prob
cess. We see that the camera positions have in fact been pgims such as molecular imaging, light field imaging, etc. The
fectly estimated, and the reconstructed image quality ris famostimmediate extensions will be in problems where a linear
superior to that afforded by image-by-image reconstrudtio  operator relates the information of interest (in our cageo
Fig. 1(c). We attribute this to the strong correlations B&w  the measurementg)as is the case in our global planar trans-
the imagess;, which our algorithm seeks to exploit. lation model where we can writg; = ®; R, x; this allows
It is worth emphasizing the apparent benefit of randomhe immediate formulation of an optimization problem such
measurements that we are observing in our experimentss (1). Algorithms suitable for nonlinear mappings, for ex-
Suppose for each satellite that we were to permit a form omple where a multi-camera array captures a 3D scene from
“transform coding”, where instead of transmitting 96 ramdo  a closer distance or from several different angles, remain u
measurements, we request each satellite to transmit its Yer development; see [9] for promising preliminary work.
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Fig. 4. (a) Final estimated camera positions. (b) Final estimate
imagez from our manifold lifting algorithm, PSNR 23.8dB.



