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ABSTRACT

We consider a multi-view imaging scenario where a num-
ber of cameras observe overlapping, translated subimages of
a larger scene. To simplify the acquisition and encoding of
these images, we propose a non-collaborative compressive
sensing protocol at each camera. We discuss a prototype algo-
rithm for joint reconstruction of the images from the ensemble
of random measurements, based on the geometric manifold
structure that arises from the varying camera positions. Even
when the camera positions are unknown, we demonstrate that
it is possible to simultaneously resolve the images and register
their positions using only the random measurements.

1. INTRODUCTION

To help address the growing challenges of acquiring richer,
higher-resolution signals and data sets, a data acquisition pro-
tocol known as Compressive Sensing (CS) [1, 2] has recently
been proposed, in which only a small number of random, lin-
ear measurements need be obtained from each signal. Sup-
posing the signal obeys a concise or sparse model, then from
these apparently incomplete measurements, an inverse prob-
lem can be solved to recover the full-resolution signal.

CS is particularly useful in two scenarios. The first is
when a high-resolution signal is difficult to measure directly.
For example, a compressive imaging camera [3] has been pro-
posed that can acquire a digital image using far fewer (ran-
dom) measurements than the number of pixels in the image.
Such a camera can be used not only for imaging at visible
wavelengths, but also for imaging at nonvisible wavelengths
where conventional imaging hardware can be expensive.

A second scenario where CS is useful is when one or more
high-resolution signals may be difficult to encode. Such sce-
narios arise, for example, in sensor networks and multi-view
imaging, where joint, collaborative compression among the
sensors would require costly communication. As an alterna-
tive, a method known as Distributed CS (DCS) [4] has been
proposed, where each sensor encodes only a random set of
linear projections of its own observed signal. While the DCS
encoding is non-collaborative, the DCS decoding reconstructs
all signals jointly to exploit their common structure.

Existing DCS reconstruction algorithms rest on a collec-
tion of joint sparsity models, where each signal is assumed
sparse in some basis and the sparse coefficient patterns are
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correlated from signal to signal. However, this is not the only
type of joint structure that may arise in multi-signal CS. In
this paper we consider a multi-view imaging scenario where
a number of cameras observe overlapping, translated subim-
ages of a larger scene. To simplify the acquisition and en-
coding processes as much as possible, we consider a random-
ized, non-collaborative measurement protocol for each cam-
era. Because the images under consideration are parameter-
ized by the low-dimensional camera position, it follows that
the images live on a low-dimensional submanifold of the am-
bient signal space. This geometric structure requires novel
reconstruction algorithms not treated by the DCS theory.

After introducing the basic problem formulation in Sec. 2,
we discuss the geometric manifold perspective in Sec. 3. In
Sec. 4, we discuss a prototype “manifold lifting” algorithm
for joint reconstruction of the images from the ensemble of
random measurements. As we demonstrate in Sec. 5, even
when the camera positions are unknown, it is possible to si-
multaneously resolve the images and register their positions
with high accuracy. We conclude in Sec. 6.

2. PROBLEM SETUP

To best highlight the concepts in limited space, we will frame
our discussion in the context of a specific satellite imaging
experiment. Many details can be generalized, and we discuss
extensions of the algorithm to other applications in Sec. 6.

Let us consider the following scenario. We wish to ac-
quire a satellite imagex such as the192 × 192 image shown
in Fig. 1(a). We suppose this image corresponds to1 square
unit of land area. This image will be observed by a collec-
tion of 200 satellites, with limited but overlapping fields of
view (.44 square units of land area each; see Fig. 1(b)), and
with limited resolution (64 × 64 pixel images). For each
j ∈ {1, 2, . . . , 200}, we letsj ∈ R

64×64 denote the image
acquired by cameraj, and letpj = [pV

j , pH
j ]T ∈ R

2 denote
the vertical and horizontal translation1 of cameraj relative
to the center of the desired imagex. LettingRpj

denote the
linear restriction operator that restrictsx to a limited field of
view (at the camera positionpj) and reduces the resolution to
64 × 64, we havesj = Rpj

x for eachj ∈ {1, 2, . . . , 200}.
For a central collection point, given the ensemble of low-

resolution satellite imagess1, s2, . . . , s200, and supposing the
relative positionsp1, p2, . . . , p200 of the 200 satellites were

1For this experiment, we ensured that the 200 cameras coveredevery pixel
in x, which required that one camera was perfectly situated in each corner of
the image.
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Fig. 1. (a) Original desired imagex; courtesy USGS. (b) Satel-
lite images with limited field of view. (c) Result of image-by-image
reconstruction from random measurements, followed by fusion with
exact knowledge of camera positions, PSNR 15.4dB. (d) Result from
transform coding of each image, PSNR 22.3dB. Both approaches are
inferior to joint recovery using random measurements, see Fig. 4(b).

known, it would be straightforward to combine this data into
a superresolution estimatêx of the desired imagex. In terms
of the burden on the satellite sensing and communication sys-
tems, this strategy would require each satellite to measureand
transmit64 · 64 = 4096 numbers describing its image.

However, it may also be the case that the communication
bandwidth from each satellite is limited, and so we may wish
to minimize the data that it must transmit. (Also, if imagingat
a nonvisible wavelength, we may wish to minimize the num-
ber of measurements each sensor must take.) As such, we
propose that each satellite could measure and report a limited
number (say,96) of random measurements that summarize its
own incident image. In CS notation, we say that each sensor
j transmitsyj = Φjsj , whereΦj is a measurement matrix of
size96 × 4096; for simplicity we take allΦj = Φ for some
fixedΦ. For the random measurements, we use the multiscale
noiselet transform [5]; example measurement functions from
each of 5 scales are shown in Fig. 2. We take 16 measure-
ments at the coarsest scale and 20 at each finer scale; this en-
ables the coarse-to-fine recovery method described in Sec. 4.

Although the measurement and encoding processes are
completely non-collaborative across the multiple satellites,
we will see that this protocol makes very efficient use of
the available bandwidth. In fact, the ultimate quality of re-
construction we achieve using 96 random measurements per
sensor is surprisinglybetter than what would be achieved by
image-by-image transform coding (that is, measuring all 4096
pixels of each image, computing the 2D wavelet transform,
and transmitting only the 96 largest wavelet coefficients).

Unfortunately, recovering the signalssj from the random
measurements and ultimately recovering an estimatex̂ of the

Fig. 2. Size64 × 64 noiselet basis functions used for collecting
random measurements at a sequence of 5 scales. Each measurement
is the inner product of one such function with the image of interest.

desired imagex now becomes more complicated. We have
dramatically undersampled eachsj; for conventional CS re-
construction on an image-by-image basis, we have far too few
measurements to be useful. Figure 1(c) shows an estimatex̂

obtained using standardℓ1-based CS recovery of each image
sj , followed by averaging at the correct camera positions.

What is needed is ajoint recovery algorithm for this multi-
signal CS problem, i.e., a method for consolidating all of
the measurement vectorsyj and then recovering all of thesj

jointly. To further complicate matters, we will assume that
the relative satellite positionspj are actuallyunknown. As
we will see, the correlated information contained in the sig-
nalssj can make joint reconstruction possible with far greater
accuracy than image-by-image reconstruction, even when the
camera positionspj are unknown.

3. GEOMETRIC PERSPECTIVE

As discussed in Sec. 1, prior work in formulating joint re-
covery algorithms for multi-signal CS [4] utilized joint spar-
sity models to capture the inter-signal correlations. However,
such models are not equipped to capture the joint structure
that arises due to the geometry of the present problem.

Instead, we may note that, supposingx is fixed, there are
only two degrees of freedom describing any imagesj — these
are captured in the camera position vectorpj , which describes
the 2D offset relative to the center of the image. That is, for
anyp ∈ R

2, there corresponds an imageRpx ∈ R
4096, and as

p changes the resulting imageRpx changes as a continuous
function ofp. Considering the set of all possible images that
can result from allp ∈ R

2, we defineM = {Rpx : p ∈ R
2}

which corresponds to a nonlinear 2D surface withinR
4096,

also known as asubmanifold of R
4096 [6]. It follows that the

200 imagessj are simply points drawn fromM.
Consequently, the200 measurement vectorsyj live

along the projection of this manifold withinR96, namely
ΦM = {ΦRpx : p ∈ R

2} ⊂ R
96. (As we have recently

shown [7], the geometric structure of signal manifolds can
actually be well preserved when projected onto random-
ized, low-dimensional subspaces.) Thus, the problem of
recovering the imagessj from the measurementsyj corre-
sponds to a “manifold lifting” problem: We wish tolift each
image from its measurement vector inR

96 back to its orig-
inal position inR

4096, but meanwhile we wish to preserve
the 2D manifold structure that relates all of these images
together. This is in contrast to many traditional manifold
learning algorithms, where the objective is to construct a
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Fig. 3. (a) Initial estimates of camera positions obtained from
ISOMAP. (b) Initial estimatêx obtained from joint recovery in-
formed by initial estimates of camera positions.

lower-dimensional embedding of a dataset sampled from a
manifold in high-dimensional space; however, as described
below, we use one manifold learning known as ISOMAP [8]
as an intermediate step in our manifold lifting algorithm.

4. MANIFOLD LIFTING ALGORITHM

4.1. Initial estimates of satellite positions

We begin with the problem of using the measurement vec-
torsyj to obtain an initial estimate for the positionpj of each
satellite. For this we invoke the manifold perspective: the
200 vectorsyj live along a 2D manifold inR96 as described
above, but in addition the camera positionspj = [pV

j , pH
j ]T

give a rough coordinate system for the relative positions of
the measurement vectors along this 2D manifold.

Algorithms such as ISOMAP [8] are well-equipped for
this type of problem. Using ISOMAP, we may pass as input
the collection of our measurement vectorsy1, y2, . . . , y200 ∈
R

96, and request as output an embeddingye
1, y

e
2, . . . , y

e
200 ∈

R
2 of the points in 2D Euclidean space that best preserves

geodesic distances between those points.
The resulting map of these pointsye

j in 2D is a rough es-
timatep̂j of the relative camera positions. Figure 3(a) shows
the result we obtain by passing our data to the ISOMAP al-
gorithm,2 followed by postprocessing to correctly rotate the
embedded coordinates. The colored points represent the esti-
mated camera positions, while the blue vectors represent the
error with respect to the true (but unknown) camera position.

4.2. Initial estimates of satellite images

Once we have obtained a rough estimatep̂j of each camera
position, we may proceed to find an initial estimateŝj for each
satellite image inR4096. While ensuring consistency with the
observed measurements, i.e., thatyj ≈ Φŝj , we wish to en-
sure that these estimates live along a 2D manifold describing
a common high-resolution imagêx ∈ R

192×192, and that the
relative positions along this manifold should be roughly con-

2As described below in Sec. 4.4, we initially do not pass all 96measure-
ments as input to ISOMAP, but use only the 36 noiselet measurements from
the 2 coarsest scales. This is equivalent to measuring low-pass regularized
images, for which the articulation manifold will be more smooth.

sistent with the estimated camera positionsp̂j . In other words,
for somex̂, we wish to ensure that̂sj ≈ Rp̂j

x̂.
Our proposed approach is to directly estimatex̂. We con-

catenate all of the measurement vectors and operators, letting

y =





y1

y2

...
y200



 , R̂ =





Rp̂1

Rp̂2

...
Rp̂200



 , Φbig =





Φ 0 · · · 0

0 Φ 0

...
. . .

0 0 · · · Φ



 .

At this point, we may approach the reconstruction as a single-
signal CS problem, for example by searching for the image
x̂ that is the most sparse in the wavelet domain while main-
taining consistency with the observed measurementsy, i.e.,
y ≈ ΦbigR̂x̂. We formulate the reconstruction problem as

α̂ = argminα‖α‖1 subject to ‖y − ΦbigR̂Ψα‖2 ≤ ǫ, (1)

whereΨ is a wavelet basis andǫ is chosen to reflect the un-
certainty in the camera positionspj.3 Given α̂, we then let
x̂ = Ψα̂, and then let the estimateŝsj = Rp̂j

x̂. Figure 3(b)
shows the initial reconstruction̂x.

4.3. Iterations

Once the estimatêx has been obtained, it is possible to return
to the question of the camera positions and improve the es-
timatesp̂j . The estimatêx corresponds to a 2D manifold of
possible observation vectors inR96, and by registering the
measurement vectorsyj with respect to this manifold, we
obtain improved estimates. We let̂pj = arg minp ‖yj −
ΦRpx̂‖2, where the minimization is performed over a local
neighborhood of the previous estimatep̂j .

With the improved estimateŝpj, it is then possible to re-
fine the estimateŝsj as described above in Sec. 4.2. We may
then iterate between the two refinement steps until conver-
gence or until reaching a designated stopping criterion.

4.4. Multiscale refinements

There is one detail we have omitted to this point, which is that
this iterative refinement procedure is best performed in a mul-
tiscale, coarse-to-fine fashion. For example, in the ISOMAP
estimates described in Fig. 3(a), we do not pass all 96 mea-
surements for each image but rather only the 36 noiselet mea-
surements from the 2 coarsest scales. The reason is that these
manifolds have a multiscale structure [6], and at coarse scales
they are most flat and most amenable to manifold learning al-
gorithms. Additionally, we use only the 36 noiselet measure-
ments from the 2 coarsest scales for our first estimate ofx̂ in
Sec. 4.2. As our estimates of camera positions become more
accurate, however, we may tolerate more twisting in the man-
ifold, and so we can bring in finer scales of measurements,

3In our experiments, we chose the parameterǫ as somewhat of an oracle,
in particular as1.25‖y −ΦbigR̂x‖2 to determine the error that would result
if we measured the true imagex but with the wrong positions as denoted by
R̂. This process should be made more robust in future work.
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Fig. 4. (a) Final estimated camera positions. (b) Final estimated
imagex̂ from our manifold lifting algorithm, PSNR 23.8dB.

which in turn produce better estimates ofx and the camera
positions, and so on. We incorporate our multiscale measure-
ments into the iterative method described above in Sec. 4.3.

5. RESULTS

Figures 4(a),(b) show the estimated camera positionsp̂j and
imagex̂ after 10 total iterations where all 5 noiselet scales
have gradually been introduced into the reconstruction pro-
cess. We see that the camera positions have in fact been per-
fectly estimated, and the reconstructed image quality is far
superior to that afforded by image-by-image reconstruction in
Fig. 1(c). We attribute this to the strong correlations between
the imagessj , which our algorithm seeks to exploit.

It is worth emphasizing the apparent benefit of random
measurements that we are observing in our experiments.
Suppose for each satellite that we were to permit a form of
“transform coding”, where instead of transmitting 96 random
measurements, we request each satellite to transmit its 96
largest wavelet coefficients. On an image-by-image basis,
this typically is abetter way to compress images to mini-
mize PSNR. However, we see in Fig. 1(d) that even if we
have perfect knowledge of the camera positions and fuse the
available wavelet-based measurements at the collection point
using a globalℓ1 minimization akin to (1), the ultimate re-
construction isinferior to our result in Fig. 4(b). We believe
the reason is that the imagessj are highly correlated, and the
repeated encoding of large wavelet coefficients (which tendto
concentrate at coarse scales) results in the repeated encoding
of redundant information across the multiple satellites. For
example, transform coding keeps, on average, only 6 coeffi-
cients per imagesj at the finest wavelet scale; in contrast, we
collect 20 noiselet measurements at each of the finest scales
and fewer at the coarsest scale. Thus, random measurements
enable more diverse and high frequency information to reach
the collection point.

6. CONCLUSIONS

We have presented a promising validation of geometric ap-
proaches for use in multi-signal CS recovery while highlight-
ing the impressive ability of random measurements to capture
single- and multi-signal structure without actively looking for
it. However, several important questions remain topics of ac-

tive research. These include an analysis of the requisite num-
ber of measurements (or bits, if quantized) for reconstruction,
an understanding of the accuracy required in camera position
estimates in order to ensure convergence, and the develop-
ment of a robust method for choosingǫ in (1). With the cur-
rent simulation parameters, we have found the convergence
of the algorithm to be sensitive to the starting camera posi-
tions. Also of interest would be to reduce the computational
complexity, as solving (1) requires a considerable amount of
computation for largex.

We note that the algorithm can be simplified in the special
case where the camera positions are known in advance. One
may, for example, proceed directly to the global recovery pro-
gram (1). Our initial ISOMAP step is the reason why a large
number of camera views are required and also why we choose
Φj = Φ for all j. Without the need for this step, one may be
able to substantially reduce the number of camera views and
also introduce more diversity into the random measurements.

Ultimately, we believe this type of algorithm will be ex-
tensible beyond satellite imaging to other multi-view prob-
lems such as molecular imaging, light field imaging, etc. The
most immediate extensions will be in problems where a linear
operator relates the information of interest (in our case,x) to
the measurements (y) as is the case in our global planar trans-
lation model where we can writeyj = ΦjRpj

x; this allows
the immediate formulation of an optimization problem such
as (1). Algorithms suitable for nonlinear mappings, for ex-
ample where a multi-camera array captures a 3D scene from
a closer distance or from several different angles, remain un-
der development; see [9] for promising preliminary work.
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