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Abstract

The Geometry of Low-Dimensional Signal Models
by

Michael B. Wakin

Models in signal processing often deal with some notion of structure or conciseness
suggesting that a signal really has “few degrees of freedom” relative to its actual size.
Examples include: bandlimited signals, images containing low-dimensional geomet-
ric features, or collections of signals observed from multiple viewpoints in a camera
or sensor network. In many cases, such signals can be expressed as sparse linear
combinations of elements from some dictionary — the sparsity of the representation
directly reflects the conciseness of the model and permits efficient algorithms for sig-
nal processing. Sparsity also forms the core of the emerging theory of Compressed
Sensing (CS), which states that a sparse signal can be recovered from a small number
of random linear measurements.

In other cases, however, sparse representations may not suffice to truly capture
the underlying structure of a signal. Instead, the conciseness of the signal model
may in fact dictate that the signal class forms a low-dimensional manifold as a subset
of the high-dimensional ambient signal space. To date, the importance and utility
of manifolds for signal processing has been acknowledged largely through a research
effort into “learning” manifold structure from a collection of data points. While these
methods have proved effective for certain tasks (such as classification and recognition),
they also tend to be quite generic and fail to consider the geometric nuances of specific
signal classes.

The purpose of this thesis is to develop new methods and understanding for signal
processing based on low-dimensional signal models, with a particular focus on the
role of geometry. Our key contributions include (i) new models for low-dimensional
signal structure, including local parametric models for piecewise smooth signals and
joint sparsity models for signal collections; (ii) multiscale representations for piecewise
smooth signals designed to accommodate efficient processing; (iii) insight and analysis
into the geometry of low-dimensional signal models, including the non-differentiability
of certain articulated image manifolds and the behavior of signal manifolds under
random low-dimensional projections, and (iv) dimensionality reduction algorithms
for image approximation and compression, distributed (multi-signal) CS, parameter
estimation, manifold learning, and manifold-based CS.
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Chapter 1
Introduction

1.1 Structure and Models in Signal Processing

Signal processing represents one of the primary interfaces of mathematics and
science. The abilities to efficiently and accurately measure, process, understand,
quantify, compress, and communicate data and information rely both on accurate
models for the situation at hand and on novel techniques inspired by the underlying
mathematics. The tools and algorithms that have emerged from such insights have
had far-reaching impacts, helping to revolutionize fields from communications [1] and
entertainment [2] to biology [3] and medicine [4].

In characterizing a given problem, one is often able to specify a model for the
signals to be processed. This model may distinguish (either statistically or determin-
istically) classes of interesting signals from uninteresting ones, typical signals from
anomalies, information from noise, etc. The model can also have a fundamental im-
pact on the design and performance of signal processing tools and algorithms. As a
simple example, one common assumption is that the signals to be processed are ban-
dlimited, in which case each signal can be written as a different linear combination
of low-frequency sinusoids. Based on this assumption, then, the Shannon/Nyquist
sampling theorem [5] specifies a minimal sampling rate for preserving the signal in-
formation; this powerful result forms the core of modern Digital Signal Processing
(DSP).

Like the assumption of bandlimitedness, models in signal processing often deal
with some notion of structure, constraint, or conciseness. Roughly speaking, one often
believes that a signal has “few degrees of freedom” relative to the size of the signal.
This can be caused, for example, by a physical system having few parameters, a limit
to the information encoded in a signal, or an oversampling relative to the information
content of a signal. This notion of conciseness is a very powerful assumption, and it
suggests the potential for dramatic gains via algorithms that capture and exploit the
true underlying structure of the signal.

To give a more concrete example, one popular generalization1 of the bandlimited
model in signal processing is sparsity, in which each signal is well-approximated as
a small linear combination of elements from some basis or dictionary, but the choice
of elements may vary from signal to signal [6, 7]. In the frequency domain, a sparse
model would suggest that each signal consists of just a few sinusoids, whose ampli-

1Or refinement, depending on one’s perspective.
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(a) (b)

Figure 1.1: (a) Peppers test image. (b) Wavelet coefficient magnitudes in coarse-to-fine
scales of analysis (vertical subbands shown). At each scale, the relatively few significant
wavelet coefficients tend to cluster around the edges of the objects in the image. This
makes possible a variety of effective models for capturing intra- and inter-scale dependencies
among the wavelet coefficients but also implies that the locations of significant coefficients
will change from image to image.

tudes, phases, and frequencies are variable. (A recording of a musical performance,
for example, might be sparse in a dictionary containing sinusoids of limited dura-
tion.) Sparsity has also been exploited in fields such as image processing, where the
multiscale wavelet transform [5] permits concise, efficiently computable descriptions
of images (see Figure 1.1). In a nutshell, wavelets provide a sparse representation
for natural images because large smooth image regions require very few wavelets to
describe; only the abrupt edges separating smooth regions require large (significant)
wavelet coefficients, and those regions occupy a relatively small total area of the im-
age. The key phenomenon to note, however, is that the locations of these significant
coefficients may change from image to image.

Sparse representations have proven themselves as a powerful tool for capturing
concise signal structure and have led to fast, effective algorithms for solving key
problems in signal processing. Wavelets form the core of many state-of-the art meth-
ods for data compression and noise removal [8–12] — the multiscale structure of the
wavelet transform suggests a top-down tree structure that is particularly effective
for computation and modeling. Curvelets have also recently emerged as a multi-
scale dictionary better suited to edge-like phenomena in two-dimensional (2-D) and
three-dimensional (3-D) signals [13–15] and have proven effective, for example, in
solving inverse problems for seismic data processing. Inspired by successes such as
these, research continues in developing novel sparse dictionaries that are adapted to
broader families of signal classes and, again, that are amenable to fast algorithms
(often through a multiscale structure).

As we have stated, the notion that many signals have sparse structure is widespread
in signal processing and eminently useful. However, sparsity itself can sometimes be
a rather restrictive assumption; there are many other interesting and important no-
tions of concise signal structure that may not give rise to representations that are
sparse in the conventional sense. Such notions often arise in cases where (i) a small
collection of parameters can be identified that carry the relevant information about
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Figure 1.2: Four 256×256 = 65536-pixel images of an identical cube, differing only in the
position of the cube (10 degrees of rotation between each frame). As the cube rotates, the
images change (edges move, shadings differ, etc.), and the resulting images trace out a path
on a low-dimensional manifold within the high-dimensional ambient signal space R65536. As
we discuss in Chapter 4, this manifold is in fact non-differentiable.

a signal and (ii) the signal changes as a function of these parameters. Some simple
explicit examples include: the time delay of a 1-D signal (parametrized by 1 vari-
able for translation), the configuration of a straight edge in a local image segment
(2 parameters: slope and offset), the position of a camera photographing a scene
(∼6 parameters), the relative placement of objects in a scene, the duration and chirp
rate of a radar pulse, or other parameters governing the output of some articulated
physical system [16–19].

In some cases, these parameters may suffice to completely describe the signal; in
other cases they may merely serve to distinguish it from other, related signals in the
class. (See, for example, the images in Figure 1.2.) The key is that, for a particular
problem, the relevant information about a signal can often be summarized in a small
number of variables (the “degrees of freedom”). While the signal may also happen to
have a sparse representation in some dictionary (such as the wavelet transform of an
image of a straight edge), this sparsity will rarely reflect the true “information level”
of the signal. This motivates a search for novel signal processing representations and
algorithms that better exploit the conciseness of such signal models, including cases
where the parametric model is only an approximation or where the parametric model
is actually unknown.

1.2 Geometry and Low-Dimensional Signal Models

As we have discussed, models play a critical role in signal processing. In a very
broad sense, a model can be thought of as an answer to the question: “What are the
signals of interest?” Based on our understanding of this model, our goal is to develop
efficient tools, representations, algorithms, and so on.

As an inspiration for developing these solutions, we believe that significant math-
ematical insight can often be gained by asking a related geometric question: “Where
are the signals of interest?” That is, where do signals in the model class reside as a
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subset of the ambient signal space (e.g., RN for real-valued discrete length-N signals)?
Indeed, as we will see, many of the concise signal models discussed in Section 1.1 actu-
ally translate to low-dimensional structures within the high-dimensional signal space;
again, the low dimension of these structures suggests the potential for fast, powerful
algorithms. By studying and understanding the geometry of these low-dimensional
structures, we hope to identify new challenges in signal processing and to discover
new solutions.

Returning to some specific examples, bandlimited signals live on a low-dimensional
linear subspace of the ambient signal space (see Section 2.4.1); indeed, the very word
“linear” immediately evokes a geometric understanding. It follows immediately, then,
that tasks such as optimally removing noise from a signal (in a least-squares sense)
would simply involve orthogonal projection onto this subspace.

Sparse signals, on the other hand, live near a nonlinear set that is a union of such
low-dimensional subspaces. Again, this geometry plays a critical role in the signal
processing; Chapter 2 discusses in depth the implications for tasks such as approxi-
mation and compression. One of the most surprising implications of the nonlinear,
low-dimensional geometry of sparse signal sets comes from the recent theory of Com-
pressed Sensing (CS) [20, 21]. The CS theory states that a length-N signal that is
K-sparse (it can be written as a sum of K basis elements) can be reconstructed from
only cK nonadaptive linear projections onto a second basis that is incoherent with
the first, where typically c ≈ 3 or 4. (A random basis provides such incoherence with
very high probability.) This has many promising applications in signal acquisition,
compression, medical imaging, and sensor networks [22–33]. A key point is that the
CS theory relies heavily on geometric notions such as the n-widths of `p balls and the
properties of randomly projected polytopes [20,21,23,34–40] (see Section 2.8.5).

In more general cases where one has a concise model for signal structure, the
resulting signal class often manifests itself as a low-dimensional, nonlinear manifold
embedded in the high-dimensional signal space.2 This is the case, in particular, for
parametric signal models; as discussed in Section 2.4.3, the dimension of the manifold
will match the dimension of the underlying parameter (the number of degrees of
freedom). More generally, however, manifolds have also been discovered as useful
approximations for signal classes not obeying an explicit parametric model. Examples
include the output of dynamical systems having low-dimensional attractors [41,42] or
collections of images such as faces or handwritten digits [43].

Naturally, the geometry of signal manifolds will also have a critical impact on
the performance of signal processing methods. To date, the importance and utility
of manifolds for signal processing has been acknowledged largely through a research
effort into “learning” manifold structure from a collection of data points, typically
by constructing “dimensionality reducing” mappings to lower-dimensional space that

2A manifold can be thought of as a low-dimensional, nonlinear “surface” within the high-
dimensional signal space; Section 2.2 gives a more precise definition. Note that the linear subspace
and “union of subspaces” models are essentially special cases of such manifold structure.
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reveal the locally Euclidean nature of the manifold or by building functions on the
data that reveal its metric structure [41–54] (see also Section 2.7.1). While these
methods have proven effective for certain tasks (such as classification and recogni-
tion), they also tend to be quite generic. Due to the wide variety of situations in
which signal manifolds may arise, however, different signal classes may have different
geometric nuances that deserve special attention. Relatively few studies have consid-
ered the geometry of specific classes of signals; important exceptions include the work
of Lu [55], who empirically studied properties such as the dimension and curvature
of image manifolds, Donoho and Grimes [16], who examined the metric structure of
articulated image manifolds, and Mumford et al. [56], who used manifolds to model
sets of shapes. In general, we feel that the incorporation of the manifold viewpoint
into signal processing is only beginning, and more careful studies will both advance
our understanding and inspire new solutions.

1.3 Overview and Contributions

The purpose of this thesis is to develop new methods and understanding for signal
processing based on low-dimensional signal models, with a particular focus on the role
of geometry. To guide our study, we consider two primary application areas:

1. Image processing, a research area of broad importance in which concise signal
models abound (thanks to the articulations of objects in a scene, the regularity
of smooth regions, and the 1-D geometry of edges), and

2. Compressed Sensing, a nascent but markedly geometric theory with great promise
for applications in signal acquisition, compression, medical imaging, and sensor
networks.

Our key contributions include new:

• concise signal models that generalize the conventional notion of sparsity;

• multiscale representations for sparse approximation and compression;

• insight and analysis into the geometry of low-dimensional signal models based
on concepts in differential geometry and differential topology; and

• algorithms for parameter estimation and dimensionality reduction inspired by
the underlying manifold structure.

We outline these contributions chapter-by-chapter.
We begin in Chapter 2 with a background discussion of low-dimensional signal

models. After a short list of mathematical preliminaries and notation, including a
brief introduction to manifolds, we discuss the role of signal dictionaries and rep-
resentations, the geometry of linear, sparse, and manifold-based signal models, and
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the implications in problems such as approximation and compression. We also dis-
cuss more advanced techniques in dimensionality reduction, manifold learning, and
Compressed Sensing.

In Chapter 3 we consider the task of approximating and compressing two model
classes of functions for which traditional harmonic dictionaries fail to provide sparse
representations. However, the model itself dictates a low-dimensional structure to
the signals, which we capture using a novel parametric multiscale dictionary. The
functions we consider are both highly relevant in signal processing and highly struc-
tured. In particular, we consider piecewise constant signals in P dimensions where a
smooth (P − 1)-dimensional discontinuity separates the two constant regions, and we
also consider the extension of this class to piecewise smooth signals, where a smooth
(P − 1)-dimensional discontinuity separates two smooth regions. These signal classes
provide basic models, for example, for images containing edges, video sequences of
moving objects, or seismic data containing geological horizons. Despite the under-
lying (indeed, low-dimensional) structure in each of these classes, classical harmonic
dictionaries fail to provide sparse representations for such signals. The problem comes
from the (P − 1)-dimensional discontinuity, whose smooth geometric structure is not
captured by local isotropic representations such as wavelets.

As a remedy, we propose a multiscale dictionary consisting of local parametric
atoms called surflets, each a piecewise constant function with a (tunable) polynomial
discontinuity separating the two constant regions. Our surflet dictionary falls outside
the traditional realm of bases and frames (where approximations are assembled as lin-
ear combinations of atoms from the dictionary). Rather our scheme is perhaps better
viewed as a “geometric tiling,” where precisely one atom from the dictionary is used
to describe the signal at each part of the domain (these atoms “tile” together to cover
the domain). We discuss multiscale (top-down, tree-based) schemes for assembling
and encoding surflet representations, and we prove that such schemes attain optimal
asymptotic approximation and compression performance on our piecewise constant
function classes. We also discuss techniques for interfacing surflets with wavelets
for representing more general classes of functions. The resulting dictionary, which
we term surfprints, attains near-optimal asymptotic approximation and compression
performance on our piecewise smooth function classes.

In Chapter 4 we study the geometry of signal manifolds in more detail, particu-
larly in the case of parametrized image manifolds (such as the 2-D surflet manifold).
We call these Image Appearance Manifolds (IAMs) and let θ denote the parameter
controlling the image formation. Our work builds upon a surprising realization [16]:
IAMs of continuous images having sharp edges that move as a function of θ are
nowhere differentiable. This presents an immediate challenge for signal processing al-
gorithms that might assume differentiability or smoothness of such manifolds. Using
Newton’s method, for example, to estimate the parameter θ for an unlabeled image,
would require successive projections onto tangent spaces of the manifold. Because
the manifold is not differentiable, however, these tangents do not exist.
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Although these IAMs lack differentiability, we identify a multiscale collection of
tangent spaces to the manifold, each one associated with both a location on the
manifold and scale of analysis; this multiscale structure can be accessed simply by
regularizing the images. Based on this multiscale perspective, we propose a Multi-
scale Newton algorithm to solve the parameter estimation problem. We also reveal a
second, more localized kind of IAM non-differentiability caused by sudden occlusions
of edges at special values of θ. This type of phenomenon has its own implications in
the signal processing and requires a special vigilance; it is not alleviated by merely
regularizing the images.

In Chapter 5 we consider another novel modeling perspective, as we turn our at-
tention toward a suite of signal models designed for simultaneous modeling of multiple
signals that have a shared concise structure. Our primary motivation for introducing
these models is to extend the CS theory and methods to a multi-signal setting —
while CS appears promising for applications such as sensor networks, at present it is
tailored only for the sensing of a single sparse signal.

We introduce a new theory for Distributed Compressed Sensing (DCS) that enables
new distributed coding algorithms that exploit both intra- and inter-signal correlation
structures. In a typical DCS scenario, a number of sensors measure signals that are
each individually sparse in some basis and also correlated from sensor to sensor. Each
sensor independently encodes its signal by projecting it onto another, incoherent basis
(such as a random one) and then transmits just a few of the resulting coefficients to a
single collection point. Under the right conditions, a decoder at the collection point
can reconstruct each of the signals precisely.

The DCS theory rests on a concept that we term the joint sparsity of a signal
ensemble. We study in detail three simple models for jointly sparse signals, propose
tractable algorithms for joint recovery of signal ensembles from incoherent projections,
and characterize theoretically and empirically the number of measurements per sen-
sor required for accurate reconstruction. While the sensors operate entirely without
collaboration, our simulations reveal that in practice the savings in the total number
of required measurements can be substantial over separate CS decoding, especially
when a majority of the sparsity is shared among the signals.

In Chapter 6, inspired again by a geometric perspective, we develop new theory
and methods for problems involving random projections for dimensionality reduc-
tion. In particular, we consider embedding results previously applicable only to finite
point clouds (the Johnson-Lindenstrauss lemma; see Section 2.7.2) or to sparse signal
models (Compressed Sensing) and generalize these results to include manifold-based
signal models. As our primary theoretical contribution (Theorem 6.2), we consider
the effect of a random projection operator on a smooth K-dimensional submanifold
of RN , establishing a sufficient number M of random projections to ensure a stable
embedding. We explore a number of possible applications of this result, particularly
in CS, which we generalize beyond the recovery of sparse signals to include the recov-
ery of manifold-modeled signals from small number of random projections. We also
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discuss other possible applications in manifold learning and dimensionality reduction.
We conclude in Chapter 7 with a final discussion and directions for future re-

search.

This thesis is a reflection of a series of intensive and inspiring collaborations.
Where appropriate, the first page of each chapter includes a list of primary collabo-
rators, who share the credit for this work.
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Chapter 2
Background on Signal Modeling and Processing

2.1 General Mathematical Preliminaries

2.1.1 Signal notation

We will treat signals as real- or complex-valued functions having domains that
are either discrete (and finite) or continuous (and either compact or infinite). Each
of these assumptions will be made clear in the particular chapter or section. As a
general rule, however, we will use x to denote a discrete signal in RN and f to denote a
function over a continuous domain D. We also commonly refer to these as discrete- or
continuous-time signals, though the domain need not actually be temporal in nature.
Additional chapter-specific conventions will be specified as necessary.

2.1.2 Lp and `p norms

As measures for signal energy, fidelity, or sparsity, we will often employ the Lp

and `p norms. For continuous-time functions, the Lp norm is defined as

‖f‖Lp(D) =

(∫

D
|f |p
)1/p

, p ∈ (0,∞),

and for discrete-time functions, the `p norm is defined as

‖x‖`p =





(
∑N

i=1 |x(i)|p)1/p, p ∈ (0,∞),

maxi=1,...,N |x(i)|, p =∞,
∑N

i=1 1x(i) 6=0, p = 0,

where 1 denotes the indicator function. (While we often refer to these measures as
“norms,” they actually do not meet the technical criteria for norms when p < 1.)

The mean-square error (MSE) between two discrete-time signals x1, x2 ∈ RN

is given by 1
N
‖x1 − x2‖22. The peak signal-to-noise ratio (PSNR), another common

measure of distortion between two signals, derives directly from the MSE; assuming
a maximum possible signal intensity of I, PSNR := 10 log10

I2

MSE
.
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2.1.3 Linear algebra

Let A be a real-valued M × N matrix. We denote the nullspace of A as N (A)
(note that N (A) is a linear subspace of RN), and we denote the transpose of A as
AT .

We call A an orthoprojector from RN to RM if it has orthonormal rows. From
such a matrix we call A

T
A the corresponding orthogonal projection operator onto the

M -dimensional subspace of RN spanned by the rows of A.

2.1.4 Lipschitz smoothness

We say a continuous-time function of D variables has smoothness of order H > 0,
where H = r+ν, r is an integer, and ν ∈ (0, 1], if the following criteria are met [57,58]:

• All iterated partial derivatives with respect to the D directions up to order r
exist and are continuous.

• All such partial derivatives of order r satisfy a Lipschitz condition of order ν
(also known as a Hölder condition).1

We will sometimes consider the space of smooth functions whose partial derivatives
up to order r are bounded by some constant Ω. We denote the space of such bounded
functions with bounded partial derivatives by CH , where this notation carries an
implicit dependence on Ω. Observe that r = dH−1e, where d·e denotes rounding up.
Also, when H is an integer CH includes as a subset the traditional space “CH” (the
class of functions that have H = r + 1 continuous partial derivatives).

2.1.5 Scale

We will frequently refer to a particular scale of analysis for a signal. Suppose our
functions f are defined over the continuous domain D = [0, 1]D. A dyadic hypercube
Xj ⊆ [0, 1]D at scale j ∈ N is a domain that satisfies

Xj = [β12
−j, (β1 + 1)2−j]× · · · × [βD2−j, (βD + 1)2−j]

with β1, β2, . . . , βD ∈ {0, 1, . . . , 2j − 1}. We call Xj a dyadic interval when D = 1 or
a dyadic square when D = 2 (see Figure 2.1). Note that Xj has sidelength 2−j.

For discrete-time functions the notion of scale is similar. We can imagine, for
example, a “voxelization” of the domain [0, 1]D (“pixelization” when D = 2), where
each voxel has sidelength 2−B, B ∈ N, and it takes 2BD voxels to fill [0, 1]D. The
relevant scales of analysis for such a signal would simply be j = 0, 1, . . . , B, and each
dyadic hypercube Xj would refer to a collection of voxels.

1A function d ∈ Lip(ν) if |d(t1 + t2)− d(t1)| ≤ C‖t2‖ν for all D-dimensional vectors t1, t2.
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Figure 2.1: Dyadic partitioning of the unit square at scales j = 0, 1, 2. The partitioning
induces a coarse-to-fine parent/child relationship that can be modeled using a tree structure.

2.2 Manifolds

We present here a minimal, introductory set of definitions and terminology from
differential geometry and topology, referring the reader to the introductory and clas-
sical texts [59–62] for more depth and technical precision.

2.2.1 General terminology

A K-dimensional manifold M is a topological space2 that is locally homeomor-
phic3 to RK [61]. This means that there exists an open cover of M with each such
open set mapping homeomorphically to an open ball in RK . Each such open set,
together with its mapping to RK is called a chart; the set of all charts of a manifold
is called an atlas.

The general definition of a manifold makes no reference to an ambient space in
which the manifold lives. However, as we will often be making use of manifolds as
models for sets of signals, it follows that such “signal manifolds” are actually subsets
of some larger space (for example, of L2(R) or RN). In general, we may think of a
K-dimensional submanifold embedded in RN as a nonlinear, K-dimensional “surface”
within RN .

2.2.2 Examples of manifolds

One of the simplest examples of a manifold is simply the circle in R2. A small,
open-ended segment cut from the circle could be stretched out and associated with
an open interval of the real line (see Figure 2.2). Hence, the circle is a 1-D manifold.

2A topological space is simply a set X, together with a collection T of subsets of X called open
sets, such that: (i) the empty set belongs to T , (ii) X belongs to T , (iii) arbitrary unions of elements
of T belong to T , and (iv) finite intersections of elements of T belong to T .

3A homeomorphism is a function between two topological spaces that is one-to-one, onto, con-
tinuous, and has a continuous inverse.
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U U1 2ϕ 21ϕ

Figure 2.2: A circle is a manifold because there exists an open cover consisting of the sets
U1, U2, which are mapped homeomorphically onto open intervals in the real line via the
functions ϕ1, ϕ2. (It is not necessary that the intervals intersect in R.)

(We note that at least two charts are required to form an atlas for the circle, as the
entire circle itself cannot be mapped homeomorphically to an open interval in R1.)

We refer the reader to [63] for an excellent overview of several manifolds with
relevance to signal processing, including the rotation group SO(3), which can be used
for representing orientations of objects in 3-D space, and the Grassman manifold
G(K,N), which represents all K-dimensional subspaces of RN . (Without working
through the technicalities of the definition of a manifold, it is easy to see that both
types of data have a natural notion of neighborhood.)

2.2.3 Tangent spaces

A manifold is differentiable if, for any two charts whose open sets onM overlap,
the composition of the corresponding homeomorphisms (from RK in one chart toM
and back to RK in the other) is differentiable. (In our simple example, the circle is a
differentiable manifold.)

To each point x in a differentiable manifold, we may associate a K-dimensional
tangent space Tanx. For signal manifolds embedded in L2 or RN , it suffices to think
of Tanx as the set of all directional derivatives of smooth paths on M through x.
(Note that Tanx is a linear subspace and has its origin at 0, rather than at x.)

2.2.4 Distances

One is often interested in measuring distance along a manifold. For abstract
differentiable manifolds, this can be accomplished by defining a Riemannian metric
on the tangent spaces. A Riemannian metric is a collection of inner products 〈, 〉x
defined at each point x ∈M. The inner product gives a measure for the “length” of
a tangent, and one can then compute the length of a path on M by integrating its
tangent lengths along the path.

For differentiable manifolds embedded in RN , the natural metric is the Euclidean
metric inherited from the ambient space. The length of a path γ : [0, 1] 7→ M can
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then be computed simply using the limit

length(γ) = lim
j→∞

j∑

i=1

‖γ(i/j)− γ((i− 1)/j)‖2 .

The geodesic distance dM(x, y) between two points x, y ∈ M is then given by the
length of the shortest path γ onM joining x and y.

2.2.5 Curvature

Several notions of curvature also exist for manifolds. The curvature of a unit-speed
path in RN is simply given by its second derivative. More generally, for manifolds
embedded in RN , characterizations of curvature generally relate to the second deriva-
tives of paths alongM (in particular, the components of the second derivatives that
are normal toM). Section 2.2.6 characterizes the notions of curvature and “twisting”
of a manifold that will be most relevant to us.

2.2.6 Condition number

To give ourselves a firm footing for later analysis, we find it helpful assume a
certain regularity to the manifold beyond mere differentiability. For this purpose, we
adopt the condition number defined recently by Niyogi et al. [51].

Definition 2.1 [51] LetM be a compact submanifold of RN . The condition number
of M is defined as 1/τ , where τ is the largest number having the following property:
The open normal bundle about M of radius r is imbedded in RN for all r < τ .

The open normal bundle of radius r at a point x ∈ M is simply the collection of
all vectors of length < r anchored at x and with direction orthogonal to Tanx.

In addition to controlling local properties (such as curvature) of the manifold,
the condition number has a global effect as well, ensuring that the manifold is self-
avoiding. These notions are made precise in several lemmata, which we will find
helpful for analysis and which we repeat below for completeness.

Lemma 2.1 [51] IfM is a submanifold of RN with condition number 1/τ , then the
norm of the second fundamental form is bounded by 1/τ in all directions.

This implies that unit-speed geodesic paths on M have curvature bounded by
1/τ . The second lemma concerns the twisting of tangent spaces.

Lemma 2.2 [51] Let M be a submanifold of RN with condition number 1/τ . Let
p, q ∈M be two points with geodesic distance given by dM(p, q). Let θ be the angle be-
tween the tangent spaces Tanp and Tanq defined by cos(θ) = minu∈Tanp maxv∈Tanq |〈u, v〉|.
Then cos(θ) > 1− 1

τ
dM(p, q).
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The third lemma concerns self-avoidance ofM.

Lemma 2.3 [51] Let M be a submanifold of RN with condition number 1/τ . Let
p, q ∈ M be two points such that ‖p− q‖2 = d. Then for all d ≤ τ/2, the geodesic

distance dM(p, q) is bounded by dM(p, q) ≤ τ − τ
√

1− 2d/τ .

From Lemma 2.3 we have an immediate corollary.

Corollary 2.1 LetM be a submanifold of RN with condition number 1/τ . Let p, q ∈
M be two points such that ‖p− q‖2 = d. If d ≤ τ/2, then d ≥ dM(p, q)− (dM(p,q))2

2τ
.

2.2.7 Covering regularity

For future reference, we also introduce a notion of “geodesic covering regularity”
for a manifold.

Definition 2.2 Let M be a compact submanifold of RN . Given T > 0, the geodesic
covering number G(T ) of M is defined as the smallest number such that there exists
a set A of points, #A = G(T ), so that for all x ∈M,

min
a∈A

dM(x, a) ≤ T.

Definition 2.3 Let M be a compact K-dimensional submanifold of RN having vol-
ume V . We say that M has geodesic covering regularity R if

G(T ) ≤ RVKK/2

TK
(2.1)

for all T > 0.

The volume referred to above is K-dimensional volume (also known as length
when K = 1 or surface area when K = 2).

The geodesic covering regularity of a manifold is closely related to its ambient
distance-based covering number C(T ) [51]. In fact, for a manifold with condition
number 1/τ , we can make this connection explicit. Lemma 2.3 implies that for small
d, dM(p, q) ≤ τ − τ

√
1− 2d/τ ≤ τ(1− (1− 2d/τ)) = 2d. This implies that G(T ) ≤

C(T/4) for small T . Pages 13–14 of [51] also establish that for small T , the ambient
covering number can be bounded by a packing number P (T ) of the manifold, from
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which we conclude that

G(T ) ≤ C(T/4) ≤ P (T/8)

≤ V

cos(arcsin( T
16τ

))Kvol(BK
T/8)

≤ V · Γ(K/2 + 1)

(1− ( T
16τ

)2)K/2πK/2(T/8)K

≤ Const · V K
K/2

TK
.

Although we point out this connection between the geodesic covering regularity and
the condition number, for future reference and flexibility we prefer to specify these as
distinct properties in our results in Chapter 6.

2.3 Signal Dictionaries and Representations

For a wide variety of signal processing applications (including analysis, compres-
sion, noise removal, and so on) it is useful to consider the representation of a signal
in terms of some dictionary [5]. In general, a dictionary Ψ is simply a collection
of elements drawn from the signal space whose linear combinations can be used to
represent or approximate signals.

Considering, for example, signals in RN , we may collect and represent the elements
of the dictionary Ψ as an N × Z matrix, which we also denote as Ψ. From this
dictionary, a signal x ∈ RN can be constructed as a linear combination of the elements
(columns) of Ψ. We write

x = Ψα

for some α ∈ RZ . (For much of our notation in this section, we concentrate on signals
in RN , though the basic concepts translate to other vector spaces.)

Dictionaries appear in a variety of settings. The most common may be the basis,
in which case Ψ has exactly N linearly independent columns, and each signal x has
a unique set of expansion coefficients α = Ψ−1x. The orthonormal basis (where the
columns are normalized and orthogonal) is also of particular interest, as the unique
set of expansion coefficients α = Ψ−1x = Ψ

T
x can be obtained as the inner products

of x against the columns of Ψ. That is, α(i) = 〈x, ψi〉 , i = 1, 2, . . . , N , which gives us
the expansion

x =
N∑

i=1

〈x, ψi〉ψi.

We also have that ‖x‖22 =
∑N

i=1 〈x, ψi〉2.
Frames are another special type of dictionary [64]. A dictionary Ψ is a frame if
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Figure 2.3: A simple, redundant frame Ψ containing three vectors that span R2.

there exist numbers A and B, 0 < A ≤ B <∞ such that, for any signal x

A ‖x‖22 ≤
∑

z

〈x, ψz〉2 ≤ B ‖x‖22 .

The elements of a frame may be linearly dependent in general (see Figure 2.3), and
so there may exist many ways to express a particular signal among the dictionary
elements. However, frames do have a useful analysis/synthesis duality: for any frame

Ψ there exists a dual frame Ψ̃ such that

x =
∑

z

〈x, ψz〉 ψ̃z =
∑

z

〈
x, ψ̃z

〉
ψz.

A frame is called tight if the frame bounds A and B are equal. Tight frames have
the special properties of (i) being their own dual frames (after a rescaling by 1/A)
and (ii) preserving norms, i.e.,

∑N
i=1 〈x, ψi〉2 = A ‖x‖22. The remainder of this section

discusses several important dictionaries.

2.3.1 The canonical basis

The standard basis for representing a signal is the canonical (or “spike”) basis.
In RN , this corresponds to a dictionary Ψ = IN (the N ×N identity matrix). When
expressed in the canonical basis, signals are often said to be in the “time domain.”

2.3.2 Fourier dictionaries

The frequency domain provides one alternative representation to the time domain.
The Fourier series and discrete Fourier transform are obtained by letting Ψ contain
complex exponentials and allowing the expansion coefficients α to be complex as well.
(Such a dictionary can be used to represent real or complex signals.) A related “har-
monic” transform to express signals in RN is the discrete cosine transform (DCT), in
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which Ψ contains real-valued, approximately sinusoidal functions and the coefficients
α are real-valued as well.

2.3.3 Wavelets

Closely related to the Fourier transform, wavelets provide a framework for local-
ized harmonic analysis of a signal [5]. Elements of the discrete wavelet dictionary
are local, oscillatory functions concentrated approximately on dyadic supports and
appear at a discrete collection of scales, locations, and (if the signal dimension D > 1)
orientations.

The wavelet transform offers a multiscale decomposition of a function into a nested
sequence of scaling spaces V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · · . Each scaling space is spanned
by a discrete collection of dyadic translations of a lowpass scaling function ϕj. The
collection of wavelets at a particular scale j spans the difference between adjacent
scaling spaces Vj and Vj−1. (Each wavelet function at scale j is concentrated approx-
imately on some dyadic hypercube Xj, and between scales, both the wavelets and
scaling functions are “self-similar,” differing only by rescaling and dyadic dilation.)
When D > 1, the difference spaces are partitioned into 2D − 1 distinct orientations
(when D = 2 these correspond to vertical, horizontal, and diagonal directions). The
wavelet transform can be truncated at any scale j. We then let the basis Ψ consist
of all scaling functions at scale j plus all wavelets at scales j and finer.

Wavelets are essentially bandpass functions that detect abrupt changes in a signal.
The scale of a wavelet, which controls its support both in time and in frequency,
also controls its sensitivity to changes in the signal. This is made more precise by
considering the wavelet analysis of smooth signals. Wavelet are often characterized
by their number of vanishing moments; a wavelet basis function is said to have H
vanishing moments if it is orthogonal to (its inner product is zero against) any H-
degree polynomial. Section 2.4.2 discusses further the wavelet analysis of smooth and
piecewise smooth signals.

The dyadic organization of the wavelet transform lends itself to a multiscale, tree-
structured organization of the wavelet coefficients. Each “parent” function, concen-
trated on a dyadic hypercube Xj of sidelength 2−j, has 2D “children” whose supports
are concentrated on the dyadic subdivisions of Xj. This relationship can be repre-
sented in a top-down tree structure. Because the parent and children share a location,
they will presumably measure related phenomena about the signal, and so in general,
any patterns in their wavelet coefficients tend to be reflected in the connectivity of
the tree structure.

In addition to their ease of modeling, wavelets are computationally attractive for
signal processing; using a filter bank, the wavelet transform of an N -voxel signal can
be computed in just O(N) operations.
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2.3.4 Other dictionaries

A wide variety of other dictionaries have been proposed in signal processing and
harmonic analysis. As one example, complex-valued wavelet transforms have proven
useful for image analysis and modeling [65–71], thanks to a phase component that
captures location information at each scale. Just a few of the other harmonic dic-
tionaries popular in image processing include wavelet packets [5], Gabor atoms [5],
curvelets [13,14], and contourlets [72,73], all of which involve various space-frequency
partitions. We mention additional dictionaries in Section 2.6, and we also discuss in
Chapter 3 alternative methods for signal representation such as tilings, where pre-
cisely one atom from the dictionary is used to describe the signal at each part of the
domain (and these atoms “tile” together to cover the entire domain).

2.4 Low-Dimensional Signal Models

We now survey some common and important models in signal processing, each
of which involves some notion of conciseness to the signal structure. We see in each
case that this conciseness gives rise to a low-dimensional geometry within the ambient
signal space.

2.4.1 Linear models

Some of the simplest models in signal processing correspond to linear subspaces of
the ambient signal space. Bandlimited signals are one such example. Supposing, for
example, that a 2π-periodic signal f has Fourier transform F (ω) = 0 for |ω| > B, the
Shannon/Nyquist sampling theorem [5] states that such signals can be reconstructed
from 2B samples. Because the space of B-bandlimited signals is closed under addition
and scalar multiplication, it follows that the set of such signals forms a 2B-dimensional
linear subspace of L2([0, 2π)).

Linear signal models also appear in cases where a model dictates a linear constraint
on a signal. Considering a discrete length-N signal x, for example, such a constraint
can be written in matrix form as

Ax = 0

for some M × N matrix A. Signals obeying such a model are constrained to live in
N (A) (again, obviously, a linear subspace of RN).

A very similar class of models concerns signals living in an affine space, which can
be represented for a discrete signal using

Ax = y.

The class of such x lives in a shifted nullspace x̂+N (A), where x̂ is any solution to
the equation Ax̂ = y.
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Figure 2.4: Simple models for signals in R2. (a) The linear space spanned by one element
of the dictionary Ψ. (b) The nonlinear set of 1-sparse signals that can be built using Ψ.
(c) A manifoldM.

Revisiting the dictionary setting (see Section 2.3), one last important linear model
arises in cases where we select K specific elements from the dictionary Ψ and then
construct signals using linear combinations of only these K elements; in this case the
set of possible signals forms a K-dimensional hyperplane in the ambient signal space
(see Figure 2.4(a)).

For example, we may construct low-frequency signals using combinations of only
the lowest frequency sinusoids from the Fourier dictionary. Similar subsets may be
chosen from the wavelet dictionary; in particular, one may choose only elements
that span a particular scaling space Vj. As we have mentioned previously, harmonic
dictionaries such as sinusoids and wavelets are well-suited to representing smooth
signals. This can be seen in the decay of their transform coefficients. For example, we
can relate the smoothness of a continuous 1-D function f to the decay of its Fourier
coefficients F (ω); in particular, if

∫
|F (ω)|(1 + |ω|H)dω < ∞, then f ∈ CH [5].

Wavelet coefficients exhibit a similar decay for smooth signals: supposing f ∈ CH

and the wavelet basis function has at least H vanishing moments, then as the scale
j → ∞, the magnitudes of the wavelet coefficients decay as 2−j(H+1/2) [5]. (Recall
from Section 2.1.4 that f ∈ CH implies f is well-approximated by a polynomial,
and so due the vanishing moments this polynomial will have zero contribution to the
wavelet coefficients.) Indeed, these results suggest that the largest coefficients tend to
concentrate at the coarsest scales (lowest-frequencies). In Section 2.5.1, we see that
linear approximations formed from just the lowest frequency elements of the Fourier
or wavelet dictionaries provide very accurate approximations to smooth signals.

2.4.2 Sparse (nonlinear) models

Sparse signal models can be viewed as a generalization of linear models. The
notion of sparsity comes from the fact that, by the proper choice of dictionary Ψ,
many real-world signals x = Ψα have coefficient vectors α containing few large entries,
but across different signals the locations (indices in α) of the large entries may change.
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We say a signal is strictly sparse (or “K-sparse”) if all but K entries of α are zero.
Some examples of real-world signals for which sparse models have been proposed

include neural spike trains (in time), music and other audio recordings (in time and
frequency), natural images (in the wavelet or curvelet dictionaries [5, 8–14]), video
sequences (in a 3-D wavelet dictionary [74, 75]), and sonar or radar pulses (in a
chirplet dictionary [76]). In each of these cases, the relevant information in a sparse
representation of a signal is encoded in both the locations (indices) of the significant
coefficients and the values to which they are assigned. This type of uncertainty is an
appropriate model for many natural signals with punctuated phenomena.

Sparsity is a nonlinear model. In particular, let ΣK denote the set of all K-sparse
signals for a given dictionary. It is easy to see that the set ΣK is not closed under
addition. (In fact, ΣK + ΣK = Σ2K .) From a geometric perspective, the set of all
K-sparse signals from the dictionary Ψ forms not a hyperplane but rather a union
of K-dimensional hyperplanes, each spanned by K vectors of Ψ (see Figure 2.4(b)).
For a dictionary Ψ with Z entries, there are

(
Z
K

)
such hyperplanes. (The geometry

of sparse signal collections has also been described in terms of orthosymmetric sets;
see [77].)

Signals that are not strictly sparse but rather have a few “large” and many “small”
coefficients are known as compressible signals. The notion of compressibility can be
made more precise by considering the rate at which the sorted magnitudes of the
coefficients α decay, and this decay rate can in turn be related to the `p norm of
the coefficient vector α. Letting α̃ denote a rearrangement of the vector α with the
coefficients ordered in terms of decreasing magnitude, then the reordered coefficients
satisfy [78]

α̃k ≤ ‖α‖`pk
−1/p. (2.2)

As we discuss in Section 2.5.2, these decay rates play an important role in nonlinear
approximation, where adaptive, K-sparse representations from the dictionary are used
to approximate a signal.

We recall from Section 2.4.1 that for a smooth signal f , the largest Fourier and
wavelet coefficients tend to cluster at coarse scales (low frequencies). Suppose, how-
ever, that the function f is piecewise smooth; i.e., it is CH at every point t ∈ R

except for one point t0, at which it is discontinuous. Naturally, this phenomenon will
be reflected in the transform coefficients. In the Fourier domain, this discontinuity
will have a global effect, as the overall smoothness of the function f has been reduced
dramatically from H to 0. Wavelet coefficients, however, depend only on local signal
properties, and so the wavelet basis functions whose supports do not include t0 will
be unaffected by the discontinuity. Coefficients surrounding the singularity will decay
only as 2−j/2, but there are relatively few such coefficients. Indeed, at each scale there
are only O(1) wavelets that include t0 in their supports, but these locations are highly
signal-dependent. (For modeling purposes, these significant coefficients will persist
through scale down the parent-child tree structure.) After reordering by magnitude,
the wavelet coefficients of piecewise smooth signals will have the same general decay
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rate as those of smooth signals. In Section 2.5.2, we see that the quality of nonlinear
approximations offered by wavelets for smooth 1-D signals is not hampered by the
addition of a finite number of discontinuities.

2.4.3 Manifold models

Manifold models generalize the conciseness of sparsity-based signal models. In
particular, in many situations where a signal is believed to have a concise description
or “few degrees of freedom,” the result is that the signal will live on or near a particular
submanifold of the ambient signal space.

Parametric models

We begin with an abstract motivation for the manifold perspective. Consider a
signal f (such as a natural image), and suppose that we can identify some single 1-D
piece of information about that signal that could be variable; that is, other signals
might rightly be called “similar” to f if they differ only in this piece of information.
(For example, this 1-D parameter could denote the distance from some object in an
image to the camera.) We let θ denote the variable parameter and write the signal as
fθ to denote its dependence on θ. In a sense, θ is a single “degree of freedom” driving
the generation of the signal fθ under this simple model. We let Θ denote the set of
possible values of the parameter θ. If the mapping between θ and fθ is well-behaved,
then the collection of signals {fθ : θ ∈ Θ} forms a 1-D path in the ambient signal
space.

More generally, when a signal has K degrees of freedom, we may model it as
depending on some parameter θ that is chosen from a K-dimensional manifold Θ.
(The parameter space Θ could be, for example, a subset of RK , or it could be a more
general manifold such as SO(3).) We again let fθ denote the signal corresponding to
a particular choice of θ, and we let F = {fθ : θ ∈ Θ}. Assuming the mapping f is
continuous and injective over Θ (and its inverse is continuous), then by virtue of the
manifold structure of Θ, its image F will correspond to a K-dimensional manifold
embedded in the ambient signal space (see Figure 2.4(c)).

These types of parametric models arise in a number of scenarios in signal pro-
cessing. Examples include: signals of unknown translation, sinusoids of unknown
frequency (across a continuum of possibilities), linear radar chirps described by a
starting and ending time and frequency, tomographic or light field images with ar-
ticulated camera positions, robotic systems with few physical degrees of freedom,
dynamical systems with low-dimensional attractors [41,42], and so on.

In general, parametric signals manifolds are nonlinear (by which we mean non-
affine as well); this can again be seen by considering the sum of two signals fθ0 + fθ1 .
In many interesting situations, signal manifolds are non-differentiable as well. In
Chapter 4, we study this issue in much more detail.
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Nonparametric models

Manifolds have also been used to model signals for which there is no known para-
metric model. Examples include images of faces and handwritten digits [43,53], which
have been found empirically to cluster near low-dimensional manifolds. Intuitively,
because of the configurations of human joints and muscles, it may be conceivable that
there are relatively “few” degrees of freedom driving the appearance of a human face
or the style of handwriting; however, this inclination is difficult or impossible to make
precise. Nonetheless, certain applications in face and handwriting recognition have
benefitted from algorithms designed to discover and exploit the nonlinear manifold-
like structure of signal collections. Section 2.7.1 discusses such methods for learning
parametrizations and other information from data living along manifolds.

Much more generally, one may consider, for example, the set of all natural images.
Clearly, this set has small volume with respect to the ambient signal space — gen-
erating an image randomly pixel-by-pixel will almost certainly produce an unnatural
noise-like image. Again, it is conceivable that, at least locally, this set may have
a low-dimensional manifold-like structure: from a given image, one may be able to
identify only a limited number of meaningful changes that could be performed while
still preserving the natural look to the image. Arguably, most work in signal modeling
could be interpreted in some way as a search for this overall structure. As part of
this thesis, however, we hope to contribute explicitly to the geometric understanding
of signal models.

2.5 Approximation

To this point, we have discussed signal representations and models as basic tools
for signal processing. In the remainder of this chapter, we discuss the actual applica-
tion of these tools to tasks such as approximation and compression, and we continue
to discuss the geometric implications.

2.5.1 Linear approximation

One common prototypical problem in signal processing is to find the best linear
approximation to a signal x. By “best linear approximation,” we mean the best
approximation to x from among a class of signals comprising a linear (or affine)
subspace. This situation may arise, for example, when we have a noisy observation of
a signal believed to obey a linear model. If we choose an `2 error criterion, the solution
to this optimization problem has a particularly strong geometric interpretation.

To be more concrete, suppose S is a K-dimensional linear subspace of RN . (The
case of an affine subspace follows similarly.) If we seek

s∗ := arg min
s∈S
‖s− x‖2 ,
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Figure 2.5: Approximating a signal x ∈ R2 with an `2 error criterion. (a) Linear approxi-
mation using one element of the dictionary Ψ. (b) Nonlinear approximation, choosing the
best 1-sparse signal that can be built using Ψ. (c) Manifold-based approximation, finding
the nearest point onM.

standard linear algebra results state that the minimizer is given by

s∗ = A
T

Ax, (2.3)

where A is a K ×N matrix whose rows form an orthonormal basis for S. Geometri-
cally, one can easily see that this solution corresponds to an orthogonal projection of
x onto the subspace S (see Figure 2.5(a)).

The linear approximation problem arises frequently in settings involving signal
dictionaries. In some settings, such as the case of an oversampled bandlimited signal,
certain coefficients in the vector α may be assumed to be fixed at zero. In the case
where the dictionary Ψ forms an orthonormal basis, the linear approximation estimate
of the unknown coefficients has a particularly simple form: rows of the matrix A in
(2.3) are obtained by selecting and transposing the columns of Ψ whose expansion
coefficients are unknown, and consequently, the unknown coefficients can be estimated
simply by taking the inner products of x against the appropriate columns of Ψ.

For example, in choosing a fixed subset of the Fourier or wavelet dictionaries, one
may rightfully choose the lowest frequency (coarsest scale) basis functions for the set
S because, as discussed in Section 2.4.1, the coefficients generally tend to decay at
higher frequencies (finer scales). For smooth functions, this strategy is appropriate
and effective; functions in Sobolev smoothness spaces are well-approximated using
linear approximations from the Fourier or wavelet dictionaries [5]. For piecewise
smooth functions, however, even the wavelet-domain linear approximation strategy
would miss out on significant coefficients at fine scales. Since the locations of such
coefficients are unknown a priori, it is impossible to propose a linear wavelet-domain
approximation scheme that could simultaneously capture all piecewise smooth signals.
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2.5.2 Nonlinear approximation

A related question often arises in settings involving signal dictionaries. Rather
than finding the best approximation to a signal f using a fixed collection ofK elements
from the dictionary Ψ, one may often seek the best K-term representation to f among
all possible expansions that use K terms from the dictionary. Compared to linear
approximation, this type of nonlinear approximation [6, 7] utilizes the ability of the
dictionary to adapt: different elements may be important for representing different
signals.

The K-term nonlinear approximation problem corresponds to the optimization

s∗K,p := arg min
s∈ΣK

‖s− f‖p. (2.4)

(For the sake of generality, we consider general Lp and `p norms in this section.) Due
to the nonlinearity of the set ΣK for a given dictionary, solving this problem can be
difficult. Supposing Ψ is an orthonormal basis and p = 2, the solution to (2.4) is
easily obtained by thresholding: compute the coefficients α and keep the K largest.
The approximation error is then given simply by

‖s∗K,2 − f‖2 =

(∑

k>K

α̃2
k

)1/2

.

When Ψ is a redundant dictionary, however, the situation is much more complicated.
We mention more on this below (see also Figure 2.5(b)).

Measuring approximation quality

One common measure for the quality of a dictionary Ψ in approximating a signal
class is the fidelity of its K-term representations. Often one examines the asymptotic
rate of decay of the K-term approximation error as K grows large. Defining

σK(f)p := ‖s∗K,p − f‖p, (2.5)

for a given signal f we may consider the asymptotic decay of σK(f)p as K →∞. (We
recall the dependence of (2.4) and hence (2.5) on the dictionary Ψ.) In many cases,
the function σK(f)p will decay as K−r for some r, and when Ψ represents a harmonic
dictionary, faster decay rates tend to correspond to smoother functions. Indeed, one
can show that when Ψ is an orthonormal basis, then σK(f)2 will decay as K−r if and
only if α̃k decays as k−r+1/2 [78].

Nonlinear approximation of piecewise smooth functions

Let f ∈ CH be a 1-D function. Supposing the wavelet dictionary has more than H
vanishing moments, then f can be well approximated using its K largest coefficients
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(most of which are at coarse scales). As K grows large, the nonlinear approximation
error will decay4 as σK(f)2 . K−H .

Supposing that f is piecewise smooth, however, with a finite number of discon-
tinuities, then (as discussed in Section 2.4.2) f will have a limited number of signif-
icant wavelet coefficients at fine scales. Because of the concentration of these sig-
nificant coefficients within each scale, the nonlinear approximation rate will remain
σK(f)2 . K−H as if there were no discontinuities present [5].

Unfortunately, this resilience of wavelets to discontinuities does not extend to
higher dimensions. Suppose, for example, that f is a CH smooth 2-D signal. Assuming
the proper number of vanishing moments, a wavelet representation will achieve the
optimal nonlinear approximation rate σK(f)2 . K−H/2 [5,79]. As in the 1-D case, this
approximation rate is maintained when a finite number of point discontinuities are
introduced into f . However, when f contains 1-D discontinuities (edges separating
the smooth regions), the approximation rate will fall to σK(f)2 . K−1/2 [5]. The
problem actually arises due to the isotropic, dyadic supports of the wavelets; instead
of O(1) significant wavelets at each scale, there are now O(2j) wavelets overlapping
the discontinuity. We revisit this important issue in Section 2.6.

Finding approximations

As mentioned above, in the case where Ψ is an orthonormal basis and p = 2, the
solution to (2.4) is easily obtained by thresholding: compute the coefficients α and
keep the K largest. Thresholding can also be shown to be optimal for arbitrary `p
norms in the special case where Ψ is the canonical basis. While the optimality of
thresholding does not generalize to arbitrary norms and bases, thresholding can be
shown to be a near-optimal approximation strategy for wavelet bases with arbitrary
Lp norms [78].

In the case where Ψ is a redundant dictionary, however, the expansion coefficients
α are not unique, and the optimization problem (2.4) can be much more difficult
to solve. Indeed, supposing even that an exact K-term representation exists for f
in the dictionary Ψ, finding that K-term approximation is NP-complete in general,
requiring a combinatorial enumeration of the

(
Z
K

)
possible sparse subspaces [28]. This

search can be recast as the optimization problem

α̂ = arg min ‖α‖0 s.t. f = Ψα. (2.6)

While solving (2.6) is prohibitively complex, a variety of algorithms have been pro-
posed as alternatives. One approach convexifies the optimization problem by replac-
ing the `0 fidelity criterion by an `1 criterion

α̂ = arg min ‖α‖1 s.t. f = Ψα.

4We use the notation f(α) . g(α), or f(α) = O(g(α)), if there exists a constant C, possibly large
but not dependent on the argument α, such that f(α) ≤ Cg(α).
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This problem, known as Basis Pursuit [80], is significantly more approachable and
can be solved with traditional linear programming techniques whose computational
complexities are polynomial in Z. Iterative greedy algorithms such as Matching
Pursuit (MP) and Orthogonal Matching Pursuit (OMP) [5] have also been suggested
to find sparse representations α for a signal f . Both MP and OMP iteratively select
the columns from Ψ that are most correlated with f , then subtract the contribution
of each column, leaving a residual. OMP includes an additional step at each iteration
where the residual is orthogonalized against the previously selected columns.

2.5.3 Manifold approximation

We also consider the problem of finding the best manifold-based approximation
to a signal (see Figure 2.5(c)). Suppose that F = {fθ : θ ∈ Θ} is a parametrized K-
dimension manifold and that we are given a signal I that is believed to approximate
fθ for an unknown θ ∈ Θ. From I we wish to recover an estimate of θ. Again, we
may formulate this parameter estimation problem as an optimization, writing the
objective function (here we concentrate solely on the L2 or `2 case)

D(θ) = ‖fθ − I‖22
and solving for

θ∗ = arg min
θ∈Θ

D(θ).

We suppose that the minimum is uniquely defined.
Standard nonlinear parameter estimation [81] tells us that, ifD is differentiable, we

can use Newton’s method to iteratively refine a sequence of guesses θ(0), θ(1), θ(2), . . .
to θ∗ and rapidly convergence to the true value. Supposing that F is a differentiable
manifold, we would let

J = [∂D/∂θ0 ∂D/∂θ1 . . . ∂D/∂θK−1]
T

be the gradient of D, and let H be the K ×K Hessian, Hij = ∂2D
∂θi∂θj

. Assuming D is

differentiable, Newton’s method specifies the following update step:

θ(k+1) ← θ(k) + [H(θ(k))]−1J(θ(k)).

To relate this method to the structure of the manifold, we can actually express the
gradient and Hessian in terms of signals, writing

D(θ) = ‖fθ − I‖22 =

∫
(fθ − I)2 dx =

∫
f 2

θ − 2Ifθ + I2 dx.
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Differentiating with respect to component θi, we obtain

∂D

∂θi

= Ji =
∂

∂θi

(∫
f 2

θ − 2Ifθ + I2 dx

)

=

∫
∂

∂θi

(f 2
θ )− 2I

∂

∂θi

fθ dx

=

∫
2fθτ

i
θ − 2Iτ i

θ dx

= 2〈fθ − I, τ i
θ〉,

where τ i
θ = ∂fθ

∂θi
is a tangent signal. Continuing, we examine the Hessian,

∂2D

∂θi∂θj

= Hij =
∂

∂θj

(
∂D

∂θi

)

=

∫
∂

∂θj

(
2fθτ

i
θ − 2Iτ i

θ

)
dx

=

∫
2τ i

θτ
j
θ + 2fθτ

ij
θ − 2Iτ ij

θ dx

= 2〈τ i
θ, τ

j
θ 〉+ 2〈fθ − I, τ ij

θ 〉, (2.7)

where τ ij
θ = ∂2fθ

∂θi∂θj
denotes a second-derivative signal. Thus, we can interpret New-

ton’s method geometrically as (essentially) a sequence of successive projections onto
tangent spaces on the manifold.

Again, the above discussion assumes the manifold to be differentiable. However,
as we discuss in Chapter 4, many interesting parametric signal manifolds are in fact
nowhere differentiable — the tangent spaces demanded by Newton’s method do not
exist. However, we do identify a type of multiscale tangent structure to the manifold
that permits a coarse-to-fine technique for parameter estimation. Section 4.5.2 details
our Multiscale Newton method.

2.6 Compression

2.6.1 Transform coding

In Section 2.5.2, we measured the quality of a dictionary in terms of its K-term
approximations to signals drawn from some class. One reason that such approxima-
tions are desirable is that they provide concise descriptions of the signal that can be
easily stored, processed, etc. There is even speculation and evidence that neurons in
the human visual system may use sparse coding to represent a scene [82].

For data compression, conciseness is often exploited in a popular technique known
as transform coding. Given a signal f (for which a concise description may not be
readily apparent in its native domain), the idea is simply to use the dictionary Ψ to
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transform f to its coefficients α, which can then be efficiently and easily described.
As discussed above, perhaps the simplest strategy for summarizing a sparse α is
simply to threshold, keeping the K largest coefficients and discarding the rest. A
simple encoder would then just encode the positions and quantized values of these K
coefficients.

2.6.2 Metric entropy

Suppose f is a function and let f̂R be an approximation to f encoded using R bits.
To evaluate the quality of a coding strategy, it is common to consider the asymptotic
rate-distortion (R-D) performance, which measures the decay rate of ‖f − f̂R‖Lp as
R→∞. The metric entropy [57] for a class F gives the best decay rate that can be
achieved uniformly over all functions f ∈ F . We note that this is a true measure for
the complexity of a class and is tied to no particular dictionary or encoding strategy.
The metric entropy also has a very geometric interpretation, as it relates to the
smallest radius possible for a covering of 2R balls over the set F .

Metric entropies are known for certain signal classes. For example, the results of
Clements [58] (extending those of Kolmogorov and Tihomirov [57]) regarding metric
entropy give bounds on the optimal achievable asymptotic rate-distortion performance
for D-dimensional CH-smooth functions f (see also [79]):

∥∥∥f − f̂R

∥∥∥
Lp

.

(
1

R

)H
D

.

Rate-distortion performance measures the complexity of a representation and en-
coding strategy. In the case of transform coding, for example, R-D results account
for the bits required to encode both the values of the significant coefficients and their
locations. Nonetheless, in many cases transform coding is indeed an effective strat-
egy for encoding signals that have sparse representations [7]. For example, in [79]
Cohen et al. propose a wavelet-domain coder that uses a connected-tree structure
to efficiently encode the positions of the significant coefficients and prove that this
encoding strategy achieves the optimal rate

∥∥∥f − f̂R

∥∥∥
Lp

.

(
1

R

)H
D

.

2.6.3 Compression of piecewise smooth images

In some cases, however, the sparsity of the wavelet transform may not reflect the
true underlying structure of a signal. Examples are 2-D piecewise smooth signals
with a smooth edge discontinuity separating the smooth regions. As we discussed
in Section 2.5.2, wavelets fail to sparsely represent these functions, and so the R-D
performance for simple thresholding-based coders will suffer as well. In spite of all
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of the benefits of wavelet representations for signal processing (low computational
complexity, tree structure, sparse approximations for smooth signals), this failure to
efficiently represent edges is a significant drawback. In many images, edges carry
some of the most prominent and important information [83], and so it is desirable to
have a representation well-suited to compressing edges in images.

To address this concern, recent work in harmonic analysis has focused on devel-
oping representations that provide sparse decompositions for certain geometric image
classes. Examples include curvelets [13, 14] and contourlets [73], slightly redundant
tight frames consisting of anisotropic, “needle-like” atoms. In [84], bandelets are
formed by warping an orthonormal wavelet basis to conform to the geometrical struc-
ture in the image. A nonlinear multiscale transform that adapts to discontinuities
(and can represent a “clean” edge using very few coarse scale coefficients) is proposed
in [85]. Each of these new representations has been shown to achieve near-optimal
asymptotic approximation and R-D performance for piecewise smooth images consist-
ing of CH regions separated by discontinuities along CH curves, with H = 2 (H ≥ 2
for bandelets). Some have also found use in specialized compression applications such
as identification photos [86].

In Chapter 3, we propose an alternative approach for representing and compress-
ing piecewise smooth images in the wavelet domain, demonstrating that the lack of
wavelet sparsity can be overcome by using joint tree-based models for wavelet coef-
ficients. Our scheme is based on the simple yet powerful observation that geometric
features can be efficiently approximated using local, geometric atoms in the spatial
domain, and that the projection of these geometric primitives onto wavelet subspaces
can therefore approximate the corresponding wavelet coefficients. We prove that the
resulting dictionary achieves the optimal nonlinear approximation rates for piecewise
smooth signal classes. To account for the added complexity of this encoding strategy,
we also consider R-D results and prove that this scheme comes within a logarith-
mic factor of the optimal performance rate. Unlike the techniques mentioned above,
our method also generalizes to arbitrary orders of smoothness and arbitrary signal
dimension.

2.7 Dimensionality Reduction

Recent years have seen a proliferation of novel techniques for what can loosely be
termed “dimensionality reduction.” Like the tasks of approximation and compression
discussed above, these methods involve some aspect in which low-dimensional infor-
mation is extracted about a signal or collection of signals in some high-dimensional
ambient space. Unlike the tasks of approximation and compression, however, the goal
of these methods is not always to maintain a faithful representation of each signal.
Instead, the purpose may be to preserve some critical relationships among elements
of a data set or to discover information about a manifold on which the data lives.

In this section, we review two general methods for dimensionality reduction. Sec-
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tion 2.7.1 begins with a brief overview of techniques for manifold learning. Sec-
tion 2.7.2 then discusses the Johnson-Lindenstrauss (JL) lemma, which concerns the
isometric embedding of a cloud points as it is projected to a lower-dimensional space.
Though at first glance the JL lemma does not pertain to any of the low-dimensional
signal models we have previously discussed, we later see (Section 2.8.6) that the JL
lemma plays a critical role in the core theory of CS, and we also employ the JL lemma
in developing a theory for isometric embeddings of manifolds (Theorem 6.2).

2.7.1 Manifold learning

Several techniques have been proposed for manifold learning in which a set of
points sampled from a K-dimensional submanifold of RN are mapped to some lower
dimension RM (ideally, M = K) while preserving some characteristic property of
the manifold. Examples include ISOMAP [44], Hessian Eigenmaps (HLLE) [45], and
Maximum Variance Unfolding (MVU) [46], which attempt to learn isometric embed-
dings of the manifold (preserving pairwise geodesic distances); Locally Linear Em-
bedding (LLE) [47], which attempts to preserve local linear neighborhood structures
among the embedded points; Local Tangent Space Alignment (LTSA) [48], which at-
tempts to preserve local coordinates in each tangent space; and a method for charting
a manifold [49] that attempts to preserve local neighborhood structures. These algo-
rithms can be useful for learning the dimension and parametrizations of manifolds, for
sorting data, for visualization and navigation through the data, and as preprocessing
to make further analysis more tractable; common demonstrations include analysis of
face images and classification of and handwritten digits. A related technique, the
Whitney Reduction Network [41, 42], seeks a linear mapping to RM that preserves
ambient pairwise distances on the manifold and is particularly useful for processing
the output of dynamical systems having low-dimensional attractors.

Other algorithms have been proposed for characterizing manifolds from sampled
data without constructing an explicit embedding in RM . The Geodesic Minimal Span-
ning Tree (GMST) [50] models the data as random samples from the manifold and
estimates the corresponding entropy and dimensionality. Another technique [51] has
been proposed for using random samples of a manifold to estimate its homology (via
the Betti numbers, which essentially characterize its dimension, number of connected
components, etc.). Persistence Barcodes [52] are a related technique that involves
constructing a type of signature for a manifold (or simply a shape) that uses tangent
complexes to detect and characterize local edges and corners.

Additional algorithms have been proposed for constructing meaningful functions
on the point samples in RN . To solve a semi-supervised learning problem, a method
called Laplacian Eigenmaps [53] has been proposed that involves forming an adjacency
graph for the data in RN , computing eigenfunctions of the Laplacian operator on the
graph (which form a basis for L2 on the graph), and using these functions to train a
classifier on the data. The resulting classifiers have been used for handwritten digit
recognition, document classification, and phoneme classification. (The M smoothest
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eigenfunctions can also be used to embed the manifold inM , similar to the approaches
described above.) A related method called Diffusion Wavelets [54] uses powers of
the diffusion operator to model scale on the manifold, then constructs wavelets to
capture local behavior at each scale. The result is a wavelet transform adapted not
to geodesic distance but to diffusion distance, which measures (roughly) the number
of paths connecting two points.

2.7.2 The Johnson-Lindenstrauss lemma

As with the above techniques in manifold learning, the Johnson-Lindenstrauss
(JL) lemma [87–90] provides a method for dimensionality reduction of a set of data
in RN . Unlike manifold-based methods, however, the JL lemma can be used for any
arbitrary set Q of points in RN ; the data set is not assumed to have any a priori
structure.

Despite the apparent lack of structure, the JL lemma suggests that the data set
Q does carry information that can be preserved when the data is mapped to a lower-
dimensional space RM . In particular, the original formulation of the JL lemma [87]
states that there exists a Lipschitz mapping Φ : RN 7→ RM with M = O(log(#Q))
such that all pairwise distances between points in Q are approximately preserved.
This fact is useful for solving problems such as Approximate Nearest Neighbor [90], in
which one desires the nearest point in Q to some query point y ∈ RN (but a solution
not much further than the optimal point is also acceptable). Such problems can be
solved significantly more quickly in RM than in RN .

Recent reformulations of the JL lemma propose random linear operators that,
with high probability, will ensure a near isometric embedding. These typically build
on concentration of measure results such as the following.

Lemma 2.4 [88, 89] Let x ∈ RN , fix 0 < ε < 1, and let Φ be a matrix constructed
in one of the following two manners:

1. Φ is a random M ×N matrix with i.i.d. N (0, σ2) entries, where σ2 = 1/N , or

2. Φ is random orthoprojector from RN to RM .

Then with probability exceeding

1− 2 exp

(
−M(ε2/2− ε3/3)

2

)
,

the following holds:

(1− ε)
√
M

N
≤ ‖Φx‖2‖x‖2

≤ (1 + ε)

√
M

N
. (2.8)
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The random orthoprojector referred to above is clearly related to the first case
(simple matrix multiplication by a Gaussian Φ) but subtly different; one could think
of constructing a random Gaussian Φ, then using Gram-Schmidt to orthonormalize
the rows before multiplying x. (This adjustment could even be made after computing
Φx, a fact which is possibly more relevant for results such as Theorem 6.2.) We note

also that simple rescaling of Φ can be used to eliminate the
√

M
N

in (2.8); however we

prefer this formulation for later reference.
By using the union bound over all

(
#Q
2

)
pairs of distinct points in Q, Lemma 2.4

can be used to prove a randomized version of the Johnson-Lindenstrauss lemma.

Lemma 2.5 (Johnson-Lindenstrauss) Let Q be a finite collection of points in RN .
Fix 0 < ε < 1 and β > 0. Set

M ≥
(

4 + 2β

ε2/2− ε3/3

)
ln(#Q).

Let Φ be a matrix constructed in one of the following two manners:

1. Φ is a random M ×N matrix with i.i.d. N (0, σ2) entries, where σ2 = 1/N , or

2. Φ is random orthoprojector from RN to RM .

Then with probability exceeding 1− (#Q)−β, the following statement holds: for every
x, y ∈ Q,

(1− ε)
√
M

N
≤ ‖Φx− Φy‖2
‖x− y‖2

≤ (1 + ε)

√
M

N
.

Indeed, [88] establishes that both Lemma 2.4 and Lemma 2.5 also hold when the
elements of Φ are chosen i.i.d. from a random Rademacher distribution (±σ with equal
probability 1/2) or from a similar ternary distribution (±

√
3σ with equal probability

1/6; 0 with probability 2/3). These can further improve the computational benefits
of the JL lemma.

2.8 Compressed Sensing

A new theory known as Compressed Sensing (CS) has recently emerged that can
also be categorized as a type of dimensionality reduction. Like manifold learning,
CS is strongly model-based (relying on sparsity in particular). However, unlike many
of the standard techniques in dimensionality reduction (such as manifold learning or
the JL lemma), the goal of CS is to maintain a low-dimensional representation of a
signal x from which a faithful approximation to x can be recovered. In a sense, this
more closely resembles the traditional problem of data compression (see Section 2.6).
In CS, however, the encoder requires no a priori knowledge of the signal structure.
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Only the decoder uses the model (sparsity) to recover the signal. In Chapter 6, we
will indeed see that without changing the CS encoder we can also recover manifold-
modeled signals simply by changing the decoder. We justify such an approach again
using geometric arguments.

2.8.1 Motivation

Consider a signal x ∈ RN , and suppose that the basis Ψ provides a K-sparse
representation of x

x = Ψα,

with ‖α‖0 = K. (In this section, we focus on exactly K-sparse signals, though many
of the key ideas translate to compressible signals [20, 21]. In addition, we note that
the CS concepts are also extendable to tight frames.)

As we discussed in Section 2.6, the standard procedure for compressing sparse
signals, known as transform coding, is to (i) acquire the full N -sample signal x;
(ii) compute the complete set of transform coefficients α; (iii) locate the K largest,
significant coefficients and discard the (many) small coefficients; (iv) encode the values
and locations of the largest coefficients.

This procedure has three inherent inefficiencies: First, for a high-dimensional
signal, we must start with a large number of samples N . Second, the encoder must
compute all N of the transform coefficients α, even though it will discard all but K
of them. Third, the encoder must encode the locations of the large coefficients, which
requires increasing the coding rate since the locations change with each signal.

2.8.2 Incoherent projections

This raises a simple question: For a given signal, is it possible to directly estimate
the set of large α(n)’s that will not be discarded? While this seems improbable,
Candès, Romberg, and Tao [20, 22] and Donoho [21] have shown that a reduced
set of projections can contain enough information to reconstruct sparse signals. An
offshoot of this work, often referred to as Compressed Sensing (CS) [20,21,24–27,29],
has emerged that builds on this principle.

In CS, we do not measure or encode the K significant α(n) directly. Rather, we
measure and encode M < N projections y(m) = 〈x, φm

T 〉 of the signal onto a second
set of functions {φm},m = 1, 2, . . . ,M . In matrix notation, we measure

y = Φx,

where y is an M × 1 column vector and the measurement basis matrix Φ is M × N
with each row a basis vector φm. Since M < N , recovery of the signal x from the
measurements y is ill-posed in general; however the additional assumption of signal
sparsity makes recovery possible and practical.
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The CS theory tells us that when certain conditions hold, namely that the func-
tions {φm} cannot sparsely represent the elements of the basis {ψn} (a condition
known as incoherence of the two dictionaries [20–22,91]) and the number of measure-
ments M is large enough, then it is indeed possible to recover the set of large {α(n)}
(and thus the signal x) from a similarly sized set of measurements y. This incoherence
property holds for many pairs of bases, including for example, delta spikes and the
sine waves of a Fourier basis, or the Fourier basis and wavelets. Significantly, this
incoherence also holds with high probability between an arbitrary fixed basis and a
randomly generated one.

2.8.3 Methods for signal recovery

Although the problem of recovering x from y is ill-posed in general (because
x ∈ RN , y ∈ RM , and M < N), it is indeed possible to recover sparse signals
from CS measurements. Given the measurements y = Φx, there exist an infinite
number of candidate signals in the shifted nullspace N (Φ) + x that could generate
the same measurements y (see Section 2.4.1). Recovery of the correct signal x can be
accomplished by seeking a sparse solution among these candidates.

Recovery via `0 optimization

Supposing that x is exactly K-sparse in the dictionary Ψ, then recovery of x from
y can be formulated as the `0 minimization

α̂ = arg min ‖α‖0 s.t. y = ΦΨα. (2.9)

Given some technical conditions on Φ and Ψ (see Theorem 2.1 below), then with high
probability this optimization problem returns the proper K-sparse solution α, from
which the true x may be constructed. (Thanks to the incoherence between the two
bases, if the original signal is sparse in the α coefficients, then no other set of sparse
signal coefficients α′ can yield the same projections y.) We note that the recovery
program (2.9) can be interpreted as finding a K-term approximation to y from the
columns of the dictionary ΦΨ, which we call the holographic basis because of the
complex pattern in which it encodes the sparse signal coefficients [21].

In principle, remarkably few incoherent measurements are required to recover
a K-sparse signal via `0 minimization. Clearly, more than K measurements must
be taken to avoid ambiguity; the following theorem establishes that K + 1 random
measurements will suffice. (Similar results were established by Venkataramani and
Bresler [92].)

Theorem 2.1 Let Ψ be an orthonormal basis for RN , and let 1 ≤ K < N . Then the
following statements hold:
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1. Let Φ be an M × N measurement matrix with i.i.d. Gaussian entries with
M ≥ 2K. Then with probability one the following statement holds: all sig-
nals x = Ψα having expansion coefficients α ∈ RN that satisfy ‖α‖0 = K can
be recovered uniquely from the M-dimensional measurement vector y = Φx via
the `0 optimization (2.9).

2. Let x = Ψα such that ‖α‖0 = K. Let Φ be an M ×N measurement matrix with
i.i.d. Gaussian entries (notably, independent of x) with M ≥ K + 1. Then with
probability one the following statement holds: x can be recovered uniquely from
the M-dimensional measurement vector y = Φx via the `0 optimization (2.9).

3. Let Φ be an M × N measurement matrix, where M ≤ K. Then, aside from
pathological cases (specified in the proof), no signal x = Ψα with ‖α‖0 = K can
be uniquely recovered from the M-dimensional measurement vector y = Φx.

Proof: See Appendix A.

The second statement of the theorem differs from the first in the following respect:
when K < M < 2K, there will necessarily exist K-sparse signals x that cannot be
uniquely recovered from the M -dimensional measurement vector y = Φx. However,
these signals form a set of measure zero within the set of all K-sparse signals and can
safely be avoided if Φ is randomly generated independently of x.

Unfortunately, as discussed in Section 2.5.2, solving this `0 optimization prob-
lem is prohibitively complex. Yet another challenge is robustness; in the setting of
Theorem 2.1, the recovery may be very poorly conditioned. In fact, both of these
considerations (computational complexity and robustness) can be addressed, but at
the expense of slightly more measurements.

Recovery via `1 optimization

The practical revelation that supports the new CS theory is that it is not necessary
to solve the `0-minimization problem to recover α. In fact, a much easier problem
yields an equivalent solution (thanks again to the incoherency of the bases); we need
only solve for the `1-sparsest coefficients α that agree with the measurements y [20–
22,24–27,29]

α̂ = arg min ‖α‖1 s.t. y = ΦΨα. (2.10)

As discussed in Section 2.5.2, this optimization problem, also known as Basis Pur-
suit [80], is significantly more approachable and can be solved with traditional linear
programming techniques whose computational complexities are polynomial in N .

There is no free lunch, however; according to the theory, more than K + 1 mea-
surements are required in order to recover sparse signals via Basis Pursuit. Instead,
one typically requires M ≥ cK measurements, where c > 1 is an oversampling factor.
As an example, we quote a result asymptotic in N . For simplicity, we assume that
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the sparsity scales linearly with N ; that is, K = SN , where we call S the sparsity
rate.

Theorem 2.2 [28, 38, 39] Set K = SN with 0 < S � 1. Then there exists an
oversampling factor c(S) = O(log(1/S)), c(S) > 1, such that, for a K-sparse signal
x in the basis Ψ, the following statements hold:

1. The probability of recovering x via Basis Pursuit from (c(S) + ε)K random
projections, ε > 0, converges to one as N →∞.

2. The probability of recovering x via Basis Pursuit from (c(S) − ε)K random
projections, ε > 0, converges to zero as N →∞.

In an illuminating series of recent papers, Donoho and Tanner [38–40] have char-
acterized the oversampling factor c(S) precisely (see also Section 2.8.5). With ap-
propriate oversampling, reconstruction via Basis Pursuit is also provably robust to
measurement noise and quantization error [22].

In the remainder of this section and in Chapter 5, we often use the abbreviated
notation c to describe the oversampling factor required in various settings even though
c(S) depends on the sparsity K and signal length N .

Recovery via greedy pursuit

At the expense of slightly more measurements, iterative greedy algorithms such
as Orthogonal Matching Pursuit (OMP) [91], Matching Pursuit (MP) [5], and Tree
Matching Pursuit (TMP) [93, 94] have also been proposed to recover the signal x
from the measurements y (see Section 2.5.2). In CS applications, OMP requires
c ≈ 2 ln(N) [91] to succeed with high probability. OMP is also guaranteed to converge
within M iterations. In Chapter 5, we will exploit both Basis Pursuit and greedy
algorithms for recovering jointly sparse signals from incoherent measurements. We
note that Tropp and Gilbert require the OMP algorithm to succeed in the first K
iterations [91]; however, in our simulations, we allow the algorithm to run up to the
maximum of M possible iterations. While this introduces a potential vulnerability to
noise in the measurements, our focus in Chapter 5 is on the noiseless case. The choice
of an appropriate practical stopping criterion (likely somewhere between K and M
iterations) is a subject of current research in the CS community.

2.8.4 Impact and applications

CS appears to be promising for a number of applications in signal acquisition and
compression. Instead of sampling a K-sparse signal N times, only cK incoherent
measurements suffice, where K can be orders of magnitude less than N . Therefore,
a sensor can transmit far fewer measurements to a receiver, which can reconstruct
the signal and then process it in any manner. Moreover, the cK measurements need
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not be manipulated in any way before being transmitted, except possibly for some
quantization. Finally, independent and identically distributed (i.i.d.) Gaussian or
Bernoulli/Rademacher (random ±1) vectors provide a useful universal basis that is
incoherent with all others. Hence, when using a random basis, CS is universal in the
sense that the sensor can apply the same measurement mechanism no matter what
basis the signal is sparse in (and thus the coding algorithm is independent of the
sparsity-inducing basis) [20,21,95].

These features of CS make it particularly intriguing for applications in remote
sensing environments that might involve low-cost battery operated wireless sensors,
which have limited computational and communication capabilities. Indeed, in many
such environments one may be interested in sensing a collection of signals using a
network of low-cost signals. In Chapter 5, we propose a series of models for joint
sparsity structure among a collection of signals, and we propose the corresponding
algorithms for Distributed Compressed Sensing (DCS) of such signals.

Other possible application areas of CS include imaging [33], medical imaging [22,
96], and RF environments (where high-bandwidth signals may contain low-dimensional
structures such as radar chirps) [97]. As research continues into practical methods for
signal recovery (see Section 2.8.3), additional work has focused on developing physical
devices for acquiring random projections. Our group has developed, for example, a
prototype digital CS camera based on a digital micromirror design [33]. Additional
work suggests that standard components such as filters (with randomized impulse
responses) could be useful in CS hardware devices [98].

2.8.5 The geometry of Compressed Sensing

It is important to note that the core theory of CS draws from a number of deep
geometric arguments. For example, when viewed together, the CS encoding/decoding
process can be interpreted as a linear projection Φ : RN 7→ RM followed by a non-
linear mapping ∆ : RM 7→ RN . In a very general sense, one may naturally ask for
a given class of signals F ∈ RN (such as the set of K-sparse signals or the set of
signals with coefficients ‖α‖`p ≤ 1), what encoder/decoder pair Φ,∆ will ensure the
best reconstruction (minimax distortion) of all signals in F . This best-case perfor-
mance is proportional to what is known as the Gluskin n-width [99,100] of F (in our
setting n = M), which in turn has a geometric interpretation. Roughly speaking, the
Gluskin n-width seeks the (N − n)-dimensional slice through F that yields signals of
greatest energy. This n-width bounds the best-case performance of CS on classes of
compressible signals, and one of the hallmarks of CS is that, given a sufficient number
of measurements this optimal performance is achieved (to within a constant) [21,78].

Additionally, one may view the `0/`1 equivalence problem geometrically. In par-
ticular, given the measurements y = Φx, we have an (N−M)-dimensional hyperplane
Hy = {x′ ∈ RN : y = Φx′} = N (Φ) + x of feasible signals that could account for the
measurements y. Supposing the original signal x is K-sparse, the `1 recovery program
will recover the correct solution x if and only if ‖x′‖1 > ‖x‖1 for every other signal
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x′ ∈ Hy on the hyperplane. This happens only if the hyperplane Hy (which passes
through x) does not “cut into” the `1-ball of radius ‖x‖1. This `1-ball is a polytope,
on which x belongs to a (K − 1)-dimensional “face.” If Φ is a random matrix with
i.i.d. Gaussian entries, then the hyperplane Hy will have random orientation. To an-
swer the question of how M must relate to K in order to ensure reliable recovery, it
helps to observe that a randomly generated hyperplane H will have greater chance to
slice into the `1 ball as dim(H) = N−M grows (or as M shrinks) or as the dimension
K − 1 of the face on which x lives grows. Such geometric arguments have been made
precise by Donoho and Tanner [38–40] and used to establish a series of sharp bounds
on CS recovery.

In Section 6.1.3, we will also present an alternative proof for the first statement in
Theorem 2.1 based purely on geometric arguments (following, in fact, from a result
about manifold embeddings).

2.8.6 Connections with dimensionality reduction

We have also identified [95] a fundamental connection between the CS and the
JL lemma. In order to make this connection, we considered the Restricted Isometry
Property (RIP), which has been identified as a key property of the CS projection
operator Φ to ensure stable signal recovery. We say Φ has RIP of order K if for every
K-sparse signal x,

(1− ε)
√
M

N
≤ ‖Φx‖2‖x‖2

≤ (1 + ε)

√
M

N
.

A random M × N matrix with i.i.d. Gaussian entries can be shown to have this
property with high probability if M = O(K log(N/K)).

While the JL lemma concerns pairwise distances within a finite cloud of points,
the RIP concerns isometric embedding of an infinite number of points (comprising a
union of K-dimensional subspaces in RN). However, the RIP can in fact be derived
by constructing an effective sampling of K-sparse signals in RN , using the JL lemma
to ensure isometric embeddings for each of these points, and then arguing that the
RIP must hold true for all K-sparse signals. (See [95] for the full details.)

In Chapter 6, we will again employ the JL lemma to prove that manifolds also have
near-isometric embeddings under random projections to lower-dimensional space; this
fact will allow us to extend the applicability of CS beyond sparse signal recovery to
include parameter estimation and manifold learning from random measurements.
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Chapter 3
Parametric Representation and Compression of

Multi-Dimensional Piecewise Functions

In this chapter1 we consider the task of approximating and compressing two model
classes of functions for which traditional harmonic dictionaries fail to provide sparse
representations. However, the model itself dictates a low-dimensional structure to the
signals, which we capture using a novel parametric multiscale dictionary.

The functions we consider are both highly relevant in signal processing and highly
structured. In particular, we consider piecewise constant signals in P dimensions
where a smooth (P −1)-dimensional discontinuity separates the two constant regions,
and we also consider the extension of this class to piecewise smooth signals, where
a smooth (P − 1)-dimensional discontinuity separates two smooth regions. These
signal classes provide basic models, for example, for images containing edges, video
sequences of moving objects, or seismic data containing geological horizons.

Despite the underlying (indeed, low-dimensional) structure in each of these classes,
classical harmonic dictionaries fail to provide sparse representations for such signals.
The problem comes from the (P − 1)-dimensional discontinuity, whose smooth geo-
metric structure is not captured by local isotropic representations such as wavelets.

As a remedy, we propose a multiscale dictionary consisting of local parametric
atoms called surflets, each a piecewise constant function with a (tunable) polynomial
discontinuity separating the two constant regions. Our surflet dictionary falls outside
the traditional realm of bases and frames (where approximations are assembled as lin-
ear combinations of atoms from the dictionary). Rather, our scheme is perhaps better
viewed as a “geometric tiling,” where precisely one atom from the dictionary is used
to describe the signal at each part of the domain (these atoms “tile” together to cover
the domain). We discuss multiscale, tree-based schemes for assembling and encoding
surflet representations, and we prove that such schemes attain optimal asymptotic ap-
proximation and compression performance on our piecewise constant function classes.

We also see limitations to this scheme, however. As designed for piecewise con-
stant functions, our surflet model fails to account for relevant activity away from the
discontinuity. Turning our attention, then, to the problem of approximating and com-
pressing piecewise smooth functions, we propose a hybrid scheme combining surflets

1This work is in collaboration with Venkat Chandrasekaran, Dror Baron, and Richard Bara-
niuk [101] and also builds upon earlier work in collaboration with Justin Romberg, Hyeokho Choi,
and Richard Baraniuk [102].
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with wavelets. Our scheme is based on the simple yet powerful observation that geo-
metric features can be efficiently approximated using local surflet atoms in the spatial
domain, and that the projection of these geometric primitives onto wavelet subspaces
can therefore approximate the corresponding wavelet coefficients — we dub the result-
ing projections surfprints. Hence we develop an entirely wavelet-domain approxima-
tion and compression scheme for piecewise smooth signals, where wavelet coefficients
near edges are grouped together (as surfprints) and described parametrically. We
prove that surfprint/wavelet schemes attain near-optimal asymptotic approximation
and compression performance on our piecewise smooth function classes.

Our work in this chapter can be viewed as a generalization of the wedgelet [103]
and wedgeprint [102] representations. (Wedgelets are 2-D atoms localized on dyadic
squares with a straight edge separating two constant regions.) Our extensions in this
chapter, however, provide fundamental new insights in the following directions:

• The wedgelet and wedgeprint dictionaries are restricted to 2-D signals, while
our proposed representations are relevant in higher dimensions.

• Wedgelets and wedgeprints achieve optimal approximation rates only for func-
tions that are C2-smooth and contain a C2-smooth discontinuity; our results not
only show that surflets and surfprints can be used to achieve optimal rates for
more general classes, but also highlight the necessary polynomial orders and
quantization scheme (a nontrivial extension from wedgelets).

• We also present a more thorough analysis of discretization effects, including
new insights on the multiscale behavior (not revealed by considering wedgelets
alone), a new strategy for reducing the surflet dictionary size at fine scales, and
the first treatment of wedgeprint/surfprint discretization.

This chapter is organized as follows. In Section 3.1, we define our function mod-
els and state the specific goals of our approximation and compression algorithms.
We introduce surflets in Section 3.2. In Section 3.3, we describe our surflet-based
representation schemes for piecewise constant functions. In Section 3.4, we present
our novel dictionary of wavelets and surfprints for effectively representing piecewise
smooth functions. Section 3.5 discusses extensions to discrete data and presents nu-
merical experiments.

3.1 Function Classes and Performance Bounds

3.1.1 Multi-dimensional signal models

In this chapter, we consider functions over the continuous domain [0, 1]P . We let
x = [x1, x2, · · · , xP ] ∈ [0, 1]P denote an arbitrary point in this domain. (Note the
use boldface characters to denote vectors in this chapter.) We denote the first P − 1
elements of x by y, i.e., y = [x1, x2, · · · , xP−1] ∈ [0, 1]P−1.
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Figure 3.1: (a) Piecewise constant (“Horizon-class”) functions for dimensions P = 2 and
P = 3. (b) Piecewise smooth function for dimension P = 2.

We will often find it useful construct a P -dimensional function by combining two
P -dimensional functions separated by a (P − 1)-dimensional discontinuity. As an
example, suppose that g1 and g2 are functions of P variables

g1, g2 : [0, 1]P → R,

and that b is a function of P − 1 variables

b : [0, 1]P−1 → R.

We define the function f : [0, 1]P → R in the following piecewise manner:

f(x) =

{
g1(x), xP ≥ b(y)
g2(x), xP < b(y).

Piecewise constant model

The first class of functions we consider is a “piecewise constant” case where g1 = 1
and g2 = 0. In this case, the (P − 1)-dimensional discontinuity b defines a boundary
between two constant regions in P dimensions. (Piecewise constant functions f de-
fined in this manner are sometimes known as Horizon-class functions [103].) When
b ∈ CHd , with Hd = rd+νd, we denote the resulting space of functions f by FC(P,Hd).
When P = 2, these functions can be interpreted as images containing a CHd-smooth
one-dimensional discontinuity that separates a 0-valued region below from a 1-valued
region above. For P = 3, functions in FC(P,Hd) can be interpreted as cubes with
a 2-D CHd-smooth surface cutting through them, dividing them into two regions —
0-valued below the surface and 1-valued above it (see Figure 3.1(a) for examples in
2-D and 3-D).

We often use f c to denote an arbitrary function in FC(P,Hd), in such cases we
denote its (P − 1)-dimensional CHd-smooth discontinuity by bc.
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Piecewise smooth model

The second class of functions we consider is a “piecewise smooth” model. For
this class of functions, we let g1, g2 ∈ CHs , with Hs = rs + νs, and b ∈ Hd, with
Hd = rd + νd. The resulting piecewise smooth function f consists of a (P − 1)-
dimensional CHd-smooth discontinuity that separates two CHs-smooth regions in P
dimensions (see Figure 3.1(b) for an example in 2-D). We denote the class of such
piecewise smooth functions by FS(P,Hd, Hs). One can check that both FC(P,Hd)
and the space of P -dimensional uniformly CHs functions are subsets of FS(P,Hd, Hs).

We often use f s to denote an arbitrary function in FS(P,Hd, Hs). For such a
function, we denote the (P − 1)-dimensional CHd-smooth discontinuity by bs and the
P -dimensional CHs-smooth regions by gs

1 and gs
2.

3.1.2 Optimal approximation and compression rates

In this chapter, we define dictionaries of atoms from which we construct an approx-
imation f̂ to f , which may belong to FC(P,Hd) or FS(P,Hd, Hs). We analyze the per-
formance of our coding scheme using the squared-L2 distortion measure between the
P -dimensional functions f and f̂ . We measure the ability of our dictionary of atoms
to represent f sparsely by the asymptotic approximation performance ‖f − f̂N‖2L2

as

N →∞, where f̂N is the best N -term approximant to f . We also present compression
algorithms that encode those atoms from the corresponding dictionaries (depending

on whether f ∈ FC(P,Hd) or f ∈ FS(P,Hd, Hs)) used to construct f̂ . We measure
the performance of these compression algorithms by the asymptotic rate-distortion
function ‖f − f̂R‖2L2

R → ∞, where f̂R is the best approximation to f that can be
encoded using R bits [104].

A function belonging to either class FC(P,Hd) or FS(P,Hd, Hs) contains a certain
degree of structure due to the smooth functions of which it is comprised. (One of these
component functions is not only smooth but has lower dimension than f .) Indeed,
we see that the optimal approximation and compression performance rates derive
directly from these degrees of smoothness.

In [79], Cohen et al. establish the optimal approximation rate for D-dimensional
CH-smooth functions d: ∥∥∥d− d̂N

∥∥∥
2

Lp

.

(
1

N

) 2H
D

.

Similarly, as we discussed in Section 2.6, the optimal achievable asymptotic rate-
distortion performance for D-dimensional CH-smooth functions d is given by

∥∥∥d− d̂R

∥∥∥
2

Lp

.

(
1

R

) 2H
D

.

These results, however, are only useful for characterizing optimal separate representa-
tions for the (P−1)-dimensional discontinuity and the P -dimensional smooth regions.
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We extend these results to non-separable representations of the P -dimensional
function classes FC(P,Hd) and FS(P,Hd, Hs) in Theorems 3.1 and 3.2, respectively.

Theorem 3.1 The optimal asymptotic approximation performance that can be ob-
tained for all f c ∈ FC(P,Hd) is given by

∥∥∥f c − f̂ c
N

∥∥∥
2

L2

.

(
1

N

) Hd
P−1

.

Similarly, the optimal asymptotic compression performance that can be obtained for
all f c ∈ FC(P,Hd) is given by

∥∥∥f c − f̂ c
R

∥∥∥
2

L2

.

(
1

R

) Hd
P−1

.

Proof: See [101, Appendix A].

Implicit in the proof of the above theorem is that any scheme that is optimal
for representing and compressing the P -dimensional function f c ∈ FC(P,Hd) in the
squared-L2 sense is equivalently optimal for the (P − 1)-dimensional discontinuity in
the L1 sense. Roughly, the squared-L2 distance between two Horizon-class functions
f c

1 and f c
2 over a P -dimensional domain D = [D1

b,D1
e ]× · · · × [DP

b ,DP
e ] is equal to the

L1 distance over the (P − 1)-dimensional subdomain [D1
b,D1

e ] × · · · × [DP−1
b ,DP−1

e ]
between the (P − 1)-dimensional discontinuities bc1 and bc2 in f c

1 and f c
2 respectively.

More precisely and for future reference, for every y in the (P − 1)-dimensional
subdomain of D, we define the D-clipping of a (P − 1)-dimensional function b as

b(y) =





b(y), DP
b ≤ b(y) ≤ DP

e

DP
e , b(y) > DP

e

DP
b , b(y) < DP

b .

The D-active region of b is defined to be

{
y ∈ [D1

b,D1
e ]× · · · × [DP−1

b ,DP−1
e ] : b(y) ∈ [DP

b ,DP
e ]
}
,

that subset of the subdomain of D for which the range of b lies in [DP
b ,DP

e ]. The
D-clipped L1 distance between bc1 and bc2 is then defined as

L1(b
c
1, b

c
2) =

∥∥bc1 − bc2
∥∥

L1([D1
b,D1

e ]×···×[DP−1
b ,DP−1

e ])
.

One can check that ‖f c
1 − f c

2‖2L2(D) = L1(b
c
1, b

c
2) for any D.

The following theorem characterizes the optimal achievable asymptotic approxi-
mation rate and rate-distortion performance for approximating and encoding elements
of the function class FS(P,Hd, Hs).
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Theorem 3.2 The optimal asymptotic approximation performance that can be ob-
tained for all f s ∈ FS(P,Hd, Hs) is given by

∥∥∥f s − f̂ s
N

∥∥∥
2

L2

.

(
1

N

)min
(

Hd
P−1

, 2Hs
P

)

.

Similarly, the optimal asymptotic compression performance that can be obtained for
all f s ∈ FS(P,Hd, Hs) is given by

∥∥∥f s − f̂ s
R

∥∥∥
2

L2

.

(
1

R

)min
(

Hd
P−1

, 2Hs
P

)

.

Proof: See [101, Appendix B].

3.1.3 “Oracle” coders and their limitations

In order to approximate or compress an arbitrary function f c ∈ FC(P,Hd), we
presume that an algorithm is given the function f c itself. Again, however, all of
the critical information about f c is contained in the discontinuity bc, and one would
expect any efficient coder to exploit such a fact. Methods through which this is
achieved may vary.

One can imagine a coder that explicitly encodes an approximation b̂c to bc and
then constructs a Horizon approximation f̂ c. Knowledge of bc could be provided from
an external “oracle” [105], or bc could conceivably be estimated from the provided
data f c. As discussed in Section 2.6.2, a tree-structured wavelet coder could provide
one efficient method for compressing the (P −1)-dimensional smooth function bc with
optimal L1 rate-distortion performance. Such a wavelet/Horizon coder would then
be optimal (in the squared-L2 sense) for coding instances of f c at the optimal rate of
Theorem 3.1. In practice, however, a coder would not provided with explicit infor-
mation of bc, and a method for estimating bc from f c may be difficult to implement.
Estimates for bc may also be quite sensitive to noise in the data.

A similar strategy could also be employed for f s ∈ FS(P,Hd, Hs). Approximations

to the discontinuity b̂s and the P -dimensional smooth regions ĝs
1 and ĝs

2 may be
encoded separately and explicitly. This strategy would have disadvantages for the
same reasons mentioned above. In fact, estimating the discontinuity in this scenario
would be much harder.

In this chapter, we seek and propose representation schemes and algorithms that
approximate f c and f s directly in P dimensions. For our surflet and surfprint schemes,
we emphasize that no explicit knowledge of the functions bc, bs, gs

1, or gs
2 is required.

We prove that surflet-based approximation techniques and encoding algorithms for
f c achieve the optimal decay rates, while our surfprint-based methods for f s achieve
the optimal approximation decay rate and a near-optimal rate-distortion decay rate
(within a logarithmic factor of the optimal decay rate of Theorem 3.2). Although
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we omit the discussion, our algorithms can be extended to similar piecewise constant
and piecewise smooth function spaces. Our spatially localized approach, for exam-
ple, allows for changes in the variable along which the discontinuity varies (assumed
throughout this chapter to be xP as described in Section 3.1.1).

3.2 The Surflet Dictionary

In this section, we introduce a discrete, multiscale dictionary of P -dimensional
atoms called surflets that can be used to construct approximations to a function
f c ∈ FC(P,Hd). A surflet is a piecewise constant function defined on a P -dimensional
dyadic hypercube, where a (P−1)-dimensional polynomial specifies the discontinuity.
Section 3.3 describes compression using surflets.

3.2.1 Motivation — Taylor’s theorem

The surflet atoms are motivated by the following property. If d is a function of D
variables in CH with H = r + ν, r is a positive integer, and ν ∈ (0, 1], then Taylor’s
theorem states that

d(z + h) = d(z) +
1

1!

D∑

i1=1

dzi1
(z)hi1 +

1

2!

D∑

i1,i2=1

dzi1
,zi2

(z)hi1hi2 + · · ·

+
1

r!

D∑

i1,...,ir=1

dzi1
,··· ,zir

(z)hi1 · · ·hir +O(‖h‖H), (3.1)

where dz1,··· ,z`
refers to the iterated partial derivatives of d with respect to z1, . . . , z` in

that order. (Note that there are D` `’th order derivative terms.) Thus, over a small
domain, the function d is well approximated using a polynomial of order r (where the
polynomial coefficients correspond to the partial derivatives of d evaluated at z).

Clearly, in the case of f c, one method for approximating the discontinuity bc

would be to assemble a piecewise polynomial approximation, where each polynomial
is derived from the local Taylor approximation of bc (let D = P − 1, H = Hd, and
d = bc in the above characterization). These piecewise polynomials can be used to
assemble a Horizon-class approximation of the function f c. Surflets provide the P -
dimensional framework for constructing such approximations and can be implemented
without explicit knowledge of bc or its derivatives.
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3.2.2 Definition

Recall from Section 2.1.5 that a dyadic hypercube Xj ⊆ [0, 1]P at scale j ∈ N is a
domain that satisfies2

Xj = [β12
−j, (β1 + 1)2−j)× · · · × [βP 2−j, (βP + 1)2−j)

with β1, β2, . . . , βP ∈ {0, 1, . . . , 2j − 1}. We explicitly denote the (P − 1)-dimensional
hypercube subdomain of Xj as

Yj = [β12
−j, (β1 + 1)2−j)× · · · × [βP−12

−j, (βP−1 + 1)2−j). (3.2)

The surflet s(Xj; p; ·) is a Horizon-class function over the dyadic hypercubeXj defined
through the (P − 1)-dimensional polynomial p. For x ∈ Xj with corresponding
y = [x1, x2, · · · , xP−1],

s(Xj; p;x) =

{
1, xP ≥ p(y)
0, otherwise,

where the polynomial p(y) is defined as

p(y) = p0 +
P−1∑

i1=1

p1,i1 yi1 +
P−1∑

i1,i2=1

p2,i1,i2 yi1yi2 + · · ·+
P−1∑

i1,...,ird=1

prd,i1,i2,...,ird
yi1yi2 · · · yird

.

We call the polynomial coefficients {p`,i1,...,i`}rd
`=0 the surflet coefficients.3 We note

here that, in some cases, a surflet may be identically 0 or 1 over the entire domain
Xj. We sometimes denote a generic surflet by s(Xj), indicating only its region of
support.

A surflet s(Xj) approximates the function f c over the dyadic hypercube Xj. One
can cover the entire domain [0, 1]P with a collection of dyadic hypercubes (possibly
at different scales) and use surflets to approximate f c over each of these smaller
domains. For P = 3, these surflets tiled together look like piecewise polynomial
“surfaces” approximating the discontinuity bc in the function f c. Figure 3.2 illustrates
a collection of surflets with P = 2 and P = 3.

2In this chapter we use half-open intervals, but in order to cover the entire domain [0, 1]P , in the
case where (βi + 1)2−j = 1, i ∈ {1, . . . , P}, we replace the half-open interval [βi2

−j , (βi + 1)2−j)
with the closed interval [βi2

−j , (βi + 1)2−j ].
3Because the ordering of the terms yi1yi2 · · · yi`

in a monomial is irrelevant, only
(
`+P−2

`

)
mono-

mial coefficients (not (P − 1)`) need to be encoded for order `. We preserve the slightly redundant
notation for ease of comparison with (3.1).
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(a) (b) (c) (d)

Figure 3.2: Example surflets, designed for (a) P = 2, Hd ∈ (1, 2]; (b) P = 2, Hd ∈ (2, 3];
(c) P = 3, Hd ∈ (1, 2]; (d) P = 3, Hd ∈ (2, 3].

3.2.3 Quantization

We obtain a discrete surflet dictionary S(j) at scale j by quantizing the set of
allowable surflet polynomial coefficients. For ` ∈ {0, 1, . . . , rd}, the surflet coefficient
p`,i1,...,i` at scale j ∈ N is restricted to values {µ ·∆Hd

`,j }µ∈Z, where the stepsize satisfies

∆Hd
`,j = 2−(Hd−`)j. (3.3)

The necessary range for µ will depend on the derivative bound Ω (Section 2.1.4). We
emphasize that the relevant discrete surflet dictionary S(j) is finite at every scale j.

These quantization stepsizes are carefully chosen to ensure the proper fidelity of
surflet approximations without requiring excess bitrate. The key idea is that higher-
order terms can be quantized with lesser precision without increasing the residual
error term in the Taylor approximation (3.1). In fact, Kolmogorov and Tihomirov [57]
implicitly used this concept to establish the metric entropy for bounded uniformly
smooth functions.

3.3 Approximation and Compression of Piecewise Constant
Functions

3.3.1 Overview

We now propose a surflet-based multiresolution geometric tiling approach to ap-
proximate and encode an arbitrary function f c ∈ FC(P,Hd). The tiling is arranged
on a 2P -tree, where each node in the tree at scale j corresponds to a hypercube of
sidelength 2−j. Each node is labeled with a surflet appropriately chosen from S(j)
and is either a leaf node (hypercube) or has 2P children nodes (children hypercubes
that perfectly tile the volume of the parent hypercube). Leaf nodes provide the ac-
tual approximation to the function f c, while interior nodes are useful for predicting
and encoding their descendants. This framework enables an adaptive, multiscale ap-
proximation of f c — many small surflets can be used at fine scales for complicated
regions, while few large surflets will suffice to encode simple regions of f c (such as
those containing all 0 or 1). Figure 3.3 shows surflet tiling approximations for P = 2
and P = 3.
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(a) (b)

Figure 3.3: Example surflet tilings, (a) piecewise cubic with P = 2 and (b) piecewise
linear with P = 3.

Section 3.3.2 discusses techniques for determining the proper surflet at each node.
Section 3.3.3 describes a constructive algorithm for building tree-based surflet approx-
imations. Section 3.3.4 describes the performance of a simple surflet encoder acting
only on the leaf nodes. Section 3.3.5 presents a more advanced surflet coder, using
a top-down predictive technique to exploit the correlation among surflet coefficients.
Finally, Section 3.3.6 discusses extensions of our surflet-based representation schemes
to broader function classes.

3.3.2 Surflet selection

Consider a node at scale j that corresponds to a dyadic hypercube Xj, and let Yj

be the (P − 1)-dimensional subdomain of Xj as defined in (3.2).
We first examine a situation where the coder is provided with explicit information

about the discontinuity bc and its derivatives. In this case, determination of the surflet
at the node that corresponds to Xj can proceed as implied by Section 3.2. The coder
constructs the Taylor expansion of bc around any point y ∈ Yj and quantizes the
polynomial coefficients (3.3). We choose

yep =

[(
β1 +

1

2

)
2−j,

(
β2 +

1

2

)
2−j, . . . ,

(
βP−1 +

1

2

)
2−j

]

and call this an expansion point. We refer to the resulting surflet as the quantized
Taylor surflet. From (3.1), it follows that the squared-L2 error between f c and the
quantized Taylor surflet approximation s(Xj) (which equals the Xj-clipped L1 error
between bc and the polynomial defining s(Xj)) obeys

‖f c − s(Xj)‖2L2(Xj)
=

∫

Xj

(f c − s(Xj))
2 = O

(
2−j(Hd+P−1)

)
. (3.4)

However, as discussed in Section 3.1.3, our coder is not provided with explicit in-
formation about bc. Therefore, approximating functions in FC(P,Hd) using Taylor
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surflets is impractical.4

We now define a technique for obtaining a surflet estimate directly from the func-
tion f c. We assume that there exists a method to compute the squared-L2 error
‖f c − s(Xj)‖2L2(Xj)

between a given surflet s(Xj) and the function f c on the dyadic

block Xj. In such a case, we can search the finite surflet dictionary S(j) for the
minimizer of this error without explicit knowledge of bc. We refer to the resulting
surflet as the native L2-best surflet; this surflet will necessarily obey (3.4) as well.
Practically speaking, there may be certain challenges to solving this L2 optimization
problem. These challenges are revealed by taking a geometric perspective, viewing the
parameter estimation problem as the orthogonal projection from f c onto the manifold
of possible surflets. As we discuss in Chapter 4, this manifold is not differentiable,
which poses an apparent barrier to techniques that might invoke the manifold’s tan-
gent spaces in order to apply calculus-based optimization. However, in Chapter 4, we
also introduce a multiscale estimation algorithm designed to circumvent this difficulty.

Section 3.3.4 discusses the coding implications of using L2-best surflets from S(j).
Using native L2-best surflets over dyadic blocks Xj achieves near-optimal perfor-
mance. As will be made apparent in Section 3.3.5, in order to achieve optimal perfor-
mance, a coder must exploit correlations among nearby surflets. Unfortunately, these
correlations may be difficult to exploit using native L2-best surflets. The problem
arises because surflets with small Xj-active regions (Section 3.1.2) may be close in L2

distance over Xj yet have vastly different underlying polynomial coefficients. (These
coefficients are used explicitly in our encoding strategy.)

To resolve this problem, we suggest computing L2-best surflet fits to f c over the
L-extension of each dyadic hypercube Xj. That is, if Xj = [β12

−j, (β1 + 1)2−j) ×
· · · × [βP 2−j, (βP + 1)2−j) then the L-extension of Xj is defined to be

XL
j = [(β1 − L)2−j, (β1 + 1 + L)2−j)× · · · × [(βP − L)2−j, (βP + 1 + L)2−j),

where L > 0 is an extension factor (designed to expand the domain of analysis and
increase correlations between scales).5 An L-extended surflet is a surflet from S(j)
that is now defined over XL

j whose polynomial discontinuity has a non-empty Xj-
active region. We define the L-extended surflet dictionary SL(j) to be the set of
L-extended surflets from S(j) plus the all-zero and all-one surflets s(Xj) = 0 and
s(Xj) = 1. An L-extended L2-best surflet fit to f c over Xj is then defined to be the
L2-best surflet to f c over XL

j chosen from SL(j). Note that even though extended
surflets are defined over extended domains XL

j , they are used to approximate the
function only over the associated native domains Xj. Such extended surflet fits (over
extended domains) provide sufficient mathematical constraints for a coder to relate
nearby surflets, since extended surflets that are close in terms of squared-L2 distance

4We refer the reader to a technical report [106] for a thorough treatment of Taylor surflet-based
approximation of piecewise constant multi-dimensional functions.

5If necessary, each L-extension is truncated to the hypercube [0, 1]P .
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over XL
j have similar polynomial coefficients (even if extended surflets have small

Xj-active regions, they have large XL
j -active regions). In Section 3.3.5, we describe a

coder that uses extended surflets from SL(j) to achieve optimal performance.

3.3.3 Tree-based surflet approximations

The surflet dictionary consists of P -dimensional atoms at various scales. Thus, a
2P -tree offers a natural topology for arranging the surflets used in an approximation.
Specifically, each node at scale j in a 2P -tree is labeled by a surflet that approximates
the corresponding dyadic hypercube region Xj of the function f c. This surflet can be
assigned according to any of the procedures outlined in Section 3.3.2.

Given a method for assigning a surflet to each tree node, it is also necessary to
determine the proper dyadic segmentation for the tree approximation. This can be
accomplished using the CART algorithm, which is based on dynamic programming,
in a process known as tree-pruning [103,107]. Tree-pruning proceeds from the bottom
up, determining whether to prune the tree beneath each node (causing it to become
a leaf node). Various criteria exist for making such a decision. In particular, the
approximation-theoretic optimal segmentation can be obtained by minimizing the La-
grangian cost D+λN for a penalty term λ. Similarly, the Lagrangian rate-distortion
cost D + λR can be used to obtain the optimal rate-distortion segmentation.

We summarize the construction of a surflet-based approximation as follows:

Surflet-based approximation

• Choose scale: Choose a maximal scale J ∈ Z for the 2P -tree.

• Label all nodes: For each scale j = 0, 1, . . . , J , label all nodes at scale j with
either a native or an extended L2-best surflet chosen appropriately from either
discrete dictionary of surflets S(j) or SL(j).

• Prune tree: Starting at the second-finest scale j = J − 1, determine whether
each node at scale j should be pruned (according to an appropriate pruning
rule). Then proceed up to the root of the tree, i.e., until j = 0.

The approximation performance of this algorithm is described in the following theo-
rem.

Theorem 3.3 Using either quantized Taylor surflets or L2-best surflets (extended or
native), a surflet tree-pruned approximation of an element f c ∈ FC(P,Hd) achieves
the optimal asymptotic approximation rate of Theorem 3.1:

∥∥∥f c − f̂ c
N

∥∥∥
2

L2

.

(
1

N

) Hd
P−1

.

Proof: See [101, Appendix C].
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3.3.4 Leaf encoding

An initial approach toward surflet encoding would involve specification of the
tree segmentation map (which denotes the location of the leaf nodes) along with the
quantized surflet coefficients at each leaf node. Rate-distortion analysis then yields
the following result.

Theorem 3.4 Using either quantized Taylor surflets or L2-best surflets (extended
or native), a surflet leaf-encoder applied to an element f c ∈ FC(P,Hd) achieves the
following rate-distortion performance

∥∥∥f c − f̂ c
R

∥∥∥
2

L2

.

(
logR

R

) Hd
P−1

.

Proof: See [101, Appendix D].

Comparing with Theorem 3.1, this simple coder is near-optimal in terms of rate-
distortion performance. The logarithmic factor is due to the fact that it requires O(j)
bits to encode each surflet at scale j. In Section 3.3.5, we propose an alternative coder
that requires only a constant number of bits to encode each surflet.

3.3.5 Top-down predictive encoding

Achieving the optimal performance of Theorem 3.1 requires a more sophisticated
coder that can exploit the correlation among nearby surflets. We now briefly describe
a top-down surflet coder that predicts surflet parameters from previously encoded
values.

Top-down predictive surflet coder

• Encode root node: Encode the best surflet fit s([0, 1]P ) to the hypercube
[0, 1]P . Encode a flag (1-bit) specifying whether this node is interior or a leaf.
Set j ← 0.

• Predict surflets from parent scale: For every interior node/hypercube Xj

at scale j, partition its domain into 2P children hypercubes at scale j + 1.
Compute the polynomial coefficients on each child hypercube Xj+1 that agree
with the encoded parent surflet s(XL

j ). These serve as “predictions” for the
polynomial coefficients at the child.

• Encode innovations at child nodes: For each predicted polynomial coeffi-
cient, encode the discrepancy with the L-extended surflet fit s(XL

j+1).

• Descend tree: Set j ← j + 1 and repeat until no interior nodes remain.
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This top-down predictive coder encodes an entire tree segmentation starting with the
root node, and proceeding from the top down. Given an L-extended surflet s(XL

j ) at
an interior node at scale j, we show in [101, Appendix E] that the number of possible
L-extended surflets from SL(j) that can be used for approximation at scale j + 1 is
constant, independent of the scale j. Thus, given a best-fit surflet at scale 0, a constant
number of bits is required to encode each surflet at subsequent scales. This prediction
is possible because L-extended surflets are defined over L-extended domains, which
ensures coherency between the surflet fits (and polynomial coefficients) at a parent
and child node.

We note that predicting L-extended best-fit surflets to dyadic hypercube regions
around the borders of [0, 1]P may not be possible with a constant number of bits when
the discontinuity is not completely contained within the dyadic hypercube. However,
we make the mild simplifying assumption that the intersections of the discontinuity
with the hyperplanes xP = 0 or xP = 1 can be contained within O(2(P−2)j) hyper-
cubes at each scale j. Therefore, using O(Hdj) bits to encode such “border” dyadic
hypercubes (with the discontinuity intersecting xP = 0 or xP = 1) does not affect the
asymptotic rate-distortion performance of the top-down predictive coder.

Theorem 3.5 The top-down predictive coder applied to an element f c ∈ FC(P,Hd)
using L-extended L2-best surflets from SL(j) achieves the optimal rate-distortion per-
formance of Theorem 3.1:

∥∥∥f c − f̂ c
R

∥∥∥
2

L2

.

(
1

R

) Hd
P−1

.

Proof: See [101, Appendix E].

Although only the leaf nodes provide the ultimate approximation to the function,
the additional information encoded at interior nodes provides the key to efficiently
encoding the leaf nodes. In addition, unlike the surflet leaf-encoder of Section 3.3.3,
this top-down approach yields a progressive bitstream — the early bits encode a
low-resolution (coarse scale) approximation, which is then refined using subsequent
bits.

3.3.6 Extensions to broader function classes

Our results for classes of functions that contain a single discontinuity can be ex-
tended to spaces of signals that contain multiple discontinuities. Functions containing
multiple discontinuities that do not intersect can be represented using the surflet-
based approximation scheme described in Section 3.3.3 at the optimal asymptotic
approximation rate. This is because at a sufficiently high scale, dyadic hypercubes
that tile signals containing multiple non-intersecting discontinuities contain at most
one discontinuity.
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Analysis of the surflet-based approximation scheme of Section 3.3.3 applied to
signals containing intersecting discontinuities is more involved. Let f c

] be a P -
dimensional piecewise constant function containing two (P − 1)-dimensional CHd-
smooth discontinuities that intersect each other (the analysis that follows can easily
be extended to allow for more than two intersecting discontinuities). Note that the
intersection of (P − 1)-dimensional functions forms a (P − 2)-dimensional manifold.
Again, we make the mild simplifying assumption that the intersection of the disconti-
nuities can be contained in O(2(P−2)j) hypercubes at each scale j. The following theo-
rem describes the approximation performance achieved by the scheme in Section 3.3.3
applied to f c

] . A consequence of this theorem is that there exists a smoothness thresh-

old Hth
d that defines the boundary between optimal and sub-optimal approximation

performance.

Theorem 3.6 Using either quantized Taylor surflets or L2-best surflets (extended
or native), the approximation scheme of Section 3.3.3 applied to a piecewise con-
stant P -dimensional function f c

] that contains two intersecting CHd-smooth (P − 1)-
dimensional discontinuities achieves performance given by:

• P > 2, Hd ≤ 2(P−1)
P−2

:

∥∥∥f c
] − f̂ c

],N

∥∥∥
2

L2

.

(
1

N

) Hd
P−1

.

• P > 2, Hd >
2(P−1)

P−2
:

∥∥∥f c
] − f̂ c

],N

∥∥∥
2

L2

.

(
1

N

) 2
P−2

.

• P = 2, any Hd:
∥∥∥f c

] − f̂ c
],N

∥∥∥
2

L2

.

(
1

N

) Hd
P−1

.

Proof: See [101, Appendix F].

Thus, the representation scheme in Section 3.3.3 achieves optimal approximation
performance for P = 2 even in the presence of intersecting discontinuities, while it
achieves optimal performance for P > 2 up to a smoothness threshold of Hth

d = 2(P−1)
P−2

(for Hd > Hth
d , the scheme performs sub-optimally: ‖f c

] − f̂ c
],N‖2L2

.
(

1
N

) Hth
d

P−1 ).
This performance of the approximation scheme for P > 2 is still superior to that
of wavelets, which have Hth,wl

d = 1. The reason for this difference in performance
between the cases P = 2 and P > 2 is that intersections of discontinuities when
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P = 2 correspond to points,6 while intersections in higher dimensions correspond
to low-dimensional manifolds. Hence, the number of hypercubes that contain inter-
sections in the two-dimensional case is constant with scale, whereas the number of
hypercubes that contain the intersections when P > 2 grows exponentially with scale.
The analysis above can clearly be extended to prove analogous results for functions
containing piecewise CHd-smooth discontinuities.

Future work will focus on improving the threshold Hth
d for the case P > 2. In

order to achieve optimal performance for P > 2, one may need a dictionary contain-
ing regular surflets and specially-designed “intersection” surflets that are specifically
tailored for intersections.

3.4 Approximation and Compression of Piecewise Smooth
Functions

In this section, we extend our coding strategies for piecewise constant functions
to encoding an arbitrary element f s from the class FS(P,Hd, Hs) of piecewise smooth
functions.

3.4.1 Motivation

For a CHs-smooth function f in P dimensions, a wavelet basis with sufficient van-
ishing moments provides approximations at the optimal rate [79] — ‖f − f̂N‖2L2

.
(

1
N

) 2Hs
P (see also Section 2.5.2). Even if one introduces a finite number of point sin-

gularities into the P -dimensional CHs-smooth function, wavelet-based approximation
schemes still attain the optimal rate. Wavelets succeed in approximating smooth
functions because most of the wavelet coefficients have small magnitudes and can
thus be neglected. Moreover, an arrangement of wavelet coefficients on the nodes of a
tree leads to an interesting consequence: wavelet coefficients used in the approxima-
tion of P -dimensional smooth functions are coherent — often, if a wavelet coefficient
has small magnitude, then its children coefficients also have small magnitude. These
properties of the wavelet basis have been exploited in state-of-the-art wavelet-based
image coders [9, 11].

Although wavelets approximate smooth functions well, the wavelet basis is not
well-equipped to approximate functions containing higher-dimensional manifold dis-
continuities. As discussed in Section 2.5.2, wavelets also do not take advantage of
any structure (such as smoothness) that the (P − 1)-dimensional discontinuity might
have, and therefore many high-magnitude coefficients are often required to represent
discontinuities. Regardless of the smoothness order of the discontinuity, the approxi-
mation rate achieved by wavelets remains the same.

6Our analysis also applies to “T-junctions” in images, where one edge terminates at its intersection
with another.
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Figure 3.4: Example surflet and the corresponding surfprint. The white box is the dyadic
hypercube in which we define the surflet; note that the removal of coarse scale and neigh-
boring wavelets causes the surfprint to appear different from the surflet.

Despite this drawback, we desire a wavelet domain solution to approximate f s ∈
FS(P,Hd, Hs) because most of the function f s is smooth in P dimensions, except
for a (P − 1)-dimensional discontinuity. In order to solve the problem posed by the
discontinuity, we propose the addition of surfprint atoms to the dictionary of wavelet
atoms. A surfprint is a weighted sum of wavelet basis functions derived from the
projection of a piecewise polynomial surflet atom (a (P − 1)-dimensional polynomial
discontinuity separating two P -dimensional polynomial regions) onto a subspace in
the wavelet domain (see Figure 3.4 for an example in 2-D). Surfprints possess all
the properties that make surflets well-suited to represent discontinuities. In addition,
surfprints coherently model wavelet coefficients that correspond to discontinuities.
Thus, we obtain a single unified wavelet-domain framework that is well-equipped to
sparsely represent both discontinuities and smooth regions.

The rest of this section is devoted to the definition of surfprints and their use in
a wavelet domain framework to represent and encode approximations to elements of
FS(P,Hd, Hs). We do not discuss the extension of our results to classes of piecewise
smooth signals containing multiple intersecting discontinuities, but note that such an
analysis would be similar to that described in Section 3.3.6.

3.4.2 Surfprints

Let XJo be a dyadic hypercube at scale Jo. Let v1, v2 be P -dimensional polyno-
mials of degree rsp

s , and let v be a P -dimensional function as follows:

v1, v2, v : XJo → R.

Let q be a (P − 1)-dimensional polynomial of degree rsp
d :

q : YJo → R.
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As defined in Section 3.1.1, let x ∈ XJo and let y denote the first P − 1 elements of
x. Let the P -dimensional piecewise polynomial function v be defined as follows:

v(x) =

{
v1(x), xP ≥ q(y)
v2(x), xP < q(y).

Next, we describe how this piecewise polynomial function is projected onto a wavelet
subspace to obtain a surfprint atom. Let W be a compactly supported wavelet basis
in P dimensions with Hwl

s vanishing moments. A surfprint sp(v,XJo ,W) is a weighted
sum of wavelet basis functions with the weights derived by projecting the piecewise
polynomial v onto the subtree of basis functions whose idealized supports nest in the
hypercube XJo :

sp(v,XJo ,W) =
∑

j≥Jo,Xj⊆XJo

〈
v, wXj

〉
wXj

, (3.5)

where wXj
represents the wavelet basis function having idealized compact support on

the hypercube Xj. (The actual support of wXj
may extend slightly beyond Xj.) The

hypercube XJo thus defines the root node (or coarsest scale) of the surfprint atom.
We propose an approximation scheme in Section 3.4.5 where we use wavelet atoms

to represent uniformly smooth regions of f s and surfprint atoms to represent regions
through which the discontinuity passes. Before presenting our approximation scheme,
we begin in Section 3.4.3 by describing how to choose the surfprint polynomial degrees
rsp
s and rsp

d and the number of vanishing moments Hwl
s for the wavelet basis.

3.4.3 Vanishing moments and polynomial degrees

In general, when approximating elements f s ∈ FS(P,Hd, Hs), the required surf-
print polynomial degrees and wavelet vanishing moments are determined by the orders
of smoothness Hd and Hs:

Hwl
s ≥ Hs, rsp

d = dHd − 1e, and rsp
s = dHs − 1e.

(This is due to Taylor’s theorem.) However, the exponent in the expression of Theo-
rem 3.2 for the optimal approximation rate for FS(P,Hd, Hs) indicates that for every
(Hd, Hs), either the (P − 1)-dimensional discontinuity or the P -dimensional smooth
region dominates the decay rate. For instance, in two dimensions, the smaller of the
two smoothness orders Hd and Hs defines the decay rate.7 This implies that the surf-
print polynomial degrees and/or the number of wavelet vanishing moments can be
relaxed (as if either the discontinuity or the smooth regions had a lower smoothness
order), without affecting the approximation rate.

7We note also that in the case where the functions g1 and g2, which characterize f s above
and below the discontinuity, have differing orders of smoothness, the smaller smoothness order will
determine both the achievable approximation rates and the appropriate approximation strategies.
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Rather than match the surfprint parameters directly to the smoothness orders
Hd and Hs, we let Hsp

d and Hsp
s denote the operational smoothness orders to which

the surfprint parameters are matched. These operational smoothness orders are se-
lected to ensure the best approximation or rate-distortion performance. The detailed
derivations of [101, Appendices G–H] yield the following values for the operational
smoothness orders:

• Discontinuity dominates: In this case, Hd

P−1
< 2Hs

P
. We let Hsp

d = Hd and

choose Hsp
s ∈ [Hd−1

2
, Hs] and Hwl

s ∈ [ HdP
2(P−1)

, Hs].

• Smooth regions dominate: In this case, 2Hs

P
< Hd

P−1
. We let Hwl

s = Hs, and

choose Hsp
s ∈ [Hs(1− 1

P
)− 1

2
, Hs] and Hsp

d ∈ [2Hs(P−1)
P

, Hd].

• Both contribute equally: In this case, 2Hs

P
= Hd

P−1
. We let Hwl

s = Hs,

Hsp
d = Hd, and choose Hsp

s ∈ [Hs(1− 1
P
)− 1

2
, Hs].

The surfprint polynomial degrees are given by

rsp
d = dHsp

d − 1e and rsp
s = dHsp

s − 1e.

Therefore, if dHsp
d − 1e < dHd − 1e and dHsp

s − 1e < dHs − 1e, then the required
surfprint polynomial degrees for optimal approximations are lower than what one
would naturally expect. Note that even in the scenario where both terms in the
exponent of the approximation rate match, one can choose Hsp

s slightly smaller than
Hs while still attaining the optimal approximation rate of Theorem 3.2.

3.4.4 Quantization

In order to construct a discrete surfprint/wavelet dictionary, we quantize the co-
efficients of the wavelet and surfprint atoms. The quantization step-size ∆Hwl

s for the
wavelet coefficients depends on the specific parameters of an approximation scheme.
We present our prototype approximation scheme and discuss the wavelet coefficient
step-sizes in Section 3.4.5 (see (3.8) below).

The quantization step-size for the surfprint polynomial coefficients of order ` at
scale j is analogous to the step-size used to construct a discrete surflet dictionary
(3.3):

∆
Hsp

d
`,j = 2−(Hsp

d −`)j (3.6)

and
∆Hsp

s
`,j = 2−(Hsp

s −`)j. (3.7)

As before, the key idea is that higher-order polynomial coefficients can be quantized
with lesser precision without affecting the error term in the Taylor approximation
(3.1).
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3.4.5 Surfprint-based approximation

We present a tree-based representation scheme using quantized wavelet and surf-
print atoms and prove that this scheme achieves the optimal approximation rate for
every function f s ∈ FS(P,Hd, Hs). Let W be a compactly supported wavelet basis
in P dimensions with Hwl

s vanishing moments, as defined in Section 3.4.3. Consider
the decomposition of f s into the wavelet basis vectors: f s =

∑
j〈f s, wXj

〉wXj
. The

wavelet coefficients 〈f s, wXj
〉 are quantized according to the step-size ∆Hwl

s defined
below. Let these wavelet atoms be arranged on the nodes of a 2P -tree. We classify
the nodes based on the idealized support of the corresponding wavelet basis functions.
Nodes whose supports Xj are intersected by the discontinuity bs are called Type D
nodes. All other nodes (over which f s is smooth) are classified as Type S. Consider
now the following surfprint approximation strategy:8

Surfprint approximation

• Choose scales and wavelet quantization step-size: Choose a maximal
scale J ∈ Z and m,n ∈ Z such that m

n
= P

P−1
and both m and n divide J . The

quantization step-size for wavelet coefficients at all scales j is given by:

∆Hwl
s = 2−

J
m

(Hwl
s +P

2
) (3.8)

and thus depends only on the maximal scale J and the parameter m.

• Prune tree: Keep all wavelet nodes up to scale J
m

; from scale J
m

to scale J
n
,

prune the tree at all Type S nodes (discarding those wavelet coefficients and
their descendant subtrees).

• Select surfprint atoms: At scale J
n

replace the wavelet atom at each Type D
discontinuity node and its descendant subtree (up to depth J) by a quantized
surfprint atom chosen appropriately from the dictionary with Jo = J

n
in (3.5):

– P -dimensional polynomials: Choose P -dimensional polynomials v1 and
v2 of degree rsp

s = dHsp
s − 1e. These polynomials should approximate

the P -dimensional smooth regions up to an absolute (pointwise) error of

O
(
2

−H
sp
s J
n

)
. The existence of such polynomials is guaranteed by Taylor’s

theorem (3.1) (let D = P , H = Hsp
s , and r = rsp

s ) and the quantization
scheme (3.7).

– (P−1)-dimensional polynomial: Choose a (P−1)-dimensional polynomial
q of degree rsp

d = dHsp
d − 1e such that the discontinuity is approximated up

8The wavelet decomposition actually has 2P − 1 distinct directional subbands; we assume here
that each is treated identically. Also we assume the scaling coefficient at the coarsest scale j = 0 is
encoded as side information with negligible cost.
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to an absolute error of O

(
2

−H
sp
d

J

n

)
. The existence of such a polynomial

is guaranteed by Taylor’s theorem (3.1) (let D = P − 1, H = Hsp
d , and

r = rsp
d ) and the quantization scheme of (3.6).

The following theorem summarizes the performance analysis for such surfprint ap-
proximations.

Theorem 3.7 A surfprint-based approximation of an element f s ∈ FS(P,Hd, Hs) as
presented above achieves the optimal asymptotic approximation rate of Theorem 3.2:

∥∥∥f s − f̂ s
N

∥∥∥
2

L2

.

(
1

N

)min
(

Hd
P−1

, 2Hs
P

)

.

Proof: See [101, Appendix G].

An approximation scheme that uses the best configuration of N wavelet and surf-
print atoms in the L2 sense would perform at least as well as the scheme suggested
above. Hence, surfprint approximation algorithms designed to choose the best N -
term approximation (even without explicit knowledge of the discontinuity or the
P -dimensional smooth regions) will achieve the optimal approximation rate of Theo-
rem 3.2.

3.4.6 Encoding a surfprint/wavelet approximation

We now consider the problem of encoding the tree-based approximation of Sec-
tion 3.4.5. A simple top-down coding scheme that specifies the pruned tree topology,
quantized wavelet coefficients, and surfprint parameters achieves a near-optimal rate-
distortion performance.

Theorem 3.8 A coding scheme that encodes every element of the surfprint-based
approximation of an element f s ∈ FS(P,Hd, Hs) as presented in Section 3.4.5 achieves
the near-optimal asymptotic rate-distortion performance (within a logarithmic factor
of the optimal performance of Theorem 3.2):

∥∥∥f s − f̂ s
R

∥∥∥
2

L2

.

(
logR

R

)min
(

Hd
P−1

, 2Hs
P

)

.

Proof: See [101, Appendix H].

Repeating the argument of Section 3.4.5, this near optimal rate-distortion perfor-
mance serves as an upper bound for an encoding scheme that encodes elements of an
L2-best approximation. We will discuss the extension of these theoretical results to
the approximation of discrete data and related issues in Section 3.5.3.
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3.5 Extensions to Discrete Data

3.5.1 Overview

In this section, we consider the problem of representing discrete data obtained by
“voxelizing” (or pixelizing in 2-D) functions from the classes FC(P,Hd) and FS(P,Hd, Hs).
Let f be a continuous P -dimensional function. We discretize f according to a vector
π = [2π1 , . . . , 2πP ] ∈ ZP , which specifies the number of voxels along each dimension of

the discretized P -dimensional function f̃π. Each entry of f̃π is obtained either by av-
eraging f over a P -dimensional voxel or by sampling f at uniformly spaced intervals.
(Because of the smoothness characteristics of FC(P,Hd) and FS(P,Hd, Hs), both dis-
cretization mechanisms provide the same asymptotic performance.) In our analysis,
we allow the number of voxels along each dimension to vary in order to provide a
framework for analyzing various sampling rates along the different dimensions. Video
data, for example, is often sampled differently in the spatial and temporal dimensions.
Future research will consider different distortion criteria based on asymmetry in the
spatiotemporal response of the human visual system.

For our analysis, we assume that the voxelization vector π is fixed and denote
the resulting classes of voxelized functions by F̃C(P,Hd) and F̃S(P,Hd, Hs). Sec-

tions 3.5.2 and 3.5.3 describe the sparse representation of elements from F̃C(P,Hd)

and F̃S(P,Hd, Hs), respectively. In Section 3.5.4, we discuss the impact of discretiza-
tion effects on fine scale approximations. Finally, we present our simulation results
in Section 3.5.5.

3.5.2 Representing and encoding elements of F̃C(P,Hd)

Suppose f c ∈ FC(P,Hd) and let f̃ c
π ∈ F̃C(P,Hd) be its discretization. (We

view f̃ c
π as a function on the continuous domain [0, 1]P that is constant over each

voxel.) The process of voxelization affects the ability to approximate elements of

F̃C(P,Hd). At coarse scales, however, much of the intuition for coding FC(P,Hd)

can be retained. In particular, we can bound the distance from f̃ c
π to f c. We

note that f̃ c
π differs from f c only over voxels through which b passes. Because

each voxel has size 2−π1 × 2−π2 · · · × 2−πP , the number of voxels intersected by b is

O
(
2
∑P−1

i=1 πi

⌈(
Ω · 2−min(πi)

P−1
i=1

)
/ (2−πP )

⌉)
, where Ω is the universal derivative bound

(Section 2.1.4). The squared-L2 distortion incurred on each such voxel (assuming
only that the voxelization process is bounded and local) is O(2−(π1+···+πP )). Summing
over all voxels it follows that the (nonsquared) L2 distance obeys

∥∥∥f c − f̃ c
π

∥∥∥
L2([0,1]P )

< C1 · 2−(min πi)/2 (3.9)

where the minimum is taken over all i ∈ {1, . . . , P}.
Now we consider the problem of encoding elements of F̃C(P,Hd). At a particular
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bitrate R, we know from Theorem 3.1 that no encoder could represent all elements

of FC(P,Hd) using R bits and incurring L2 distortion less than C2 ·
(

1
R

) Hd
2(P−1) . (This

lower bound for metric entropy is in effect for R sufficiently large, which we assume to
be the case.) Suppose we consider a hypothetical encoder for elements of F̃C(P,Hd)

that, using R bits, could represent any element with L2 distortion of F̃C(P,Hd) less
than some Dhyp(R). This coder could also be used as an encoder for elements of
FC(P,Hd) (by voxelizing each function before encoding). This strategy would yield
L2 distortion no worse than C1 ·2−(min πi)/2+Dhyp(R). By applying the metric entropy
arguments on FC(P,Hd), we have the following constraint on Dhyp(R):

C1 · 2−(min πi)/2 +Dhyp(R) ≥ C2 ·
(

1

R

) Hd
2(P−1)

,

or equivalently,

Dhyp(R) ≥ C2 ·
(

1

R

) Hd
2(P−1)

− C1 · 2−(min πi)/2. (3.10)

This inequality helps establish a rate-distortion bound for the class F̃C(P,Hd).

At sufficiently low rates, the first term on the RHS dominates, and F̃C(P,Hd) faces
similar rate-distortion constraints to FC(P,Hd). At high rates, however, the RHS

becomes negative, giving little insight into the coding of F̃C(P,Hd). This breakdown
point occurs when R ∼ 2(min πi)(P−1)/Hd .

We can, in fact, specify a constructive encoding strategy for F̃C(P,Hd) that
achieves the optimal compression rate up to this breakdown point. We construct
a dictionary of discrete surflet atoms by voxelizing the elements of the continuous
quantized surflet dictionary. Assuming there exists a technique to find discrete `2-
best surflet fits to f̃ c

π, the tree-based algorithm described in Section 3.3.3 can simply

be used to construct an approximation
̂̃
f c

π.

Theorem 3.9 While R . 2(min πi)(P−1)/Hd, the top-down predictive surflet coder from

Section 3.3.5 applied to encode the approximation
̂̃
f c

π to f̃ c
π using discrete `2-best sur-

flets achieves the rate-distortion performance

∥∥∥∥f̃ c
π −

̂̃
f c

π

∥∥∥∥
2

L2

.

(
1

R

) Hd
P−1

.

Proof: See [101, Appendix I].

As detailed in the proof of this theorem, the breakdown point occurs when using
surflets at a critical scale Jvox = min πi

Hd
. Up to this scale, all of the familiar approxi-

mation and compression rates hold. Beyond this scale, however, voxelization effects
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dominate. An interesting corollary to Theorem 3.9 is that, due to the similarities up

to scale Jvox, the discrete approximation
̂̃
f c

π itself provides an effective approximation
to the function f c.

Corollary 3.1 While R . 2(min πi)(P−1)/Hd, the discrete approximation
̂̃
f c

π provides
an approximation to f c with the following rate-distortion performance:

∥∥∥∥f c − ̂̃f c
π

∥∥∥∥
2

L2

.

(
1

R

) Hd
P−1

.

Proof: See [101, Appendix J].

While we have provided an effective strategy for encoding elements of F̃C(P,Hd)
at sufficiently low rates (using surflets at scales j ≤ Jvox), this leaves open the question

of how to code F̃C(P,Hd) at higher rates. Unfortunately, (3.10) does not offer much
insight. In particular, it is not clear whether surflets are an efficient strategy for
encoding F̃C(P,Hd) beyond scale Jvox. We revisit this issue in Section 3.5.4.

3.5.3 Representing and encoding elements of F̃S(P,Hd, Hs)

Next, let f̃ s
π be an arbitrary signal belonging to F̃S(P,Hd, Hs). Similar arguments

apply to the voxelization effects for this class. In order to approximate functions
in F̃S(P,Hd, Hs), we use a dictionary of compactly supported discrete wavelet basis
functions with Hwl

s vanishing moments and discrete surfprint atoms. A discrete surf-
print atom is derived by projecting a discrete piecewise polynomial surflet atom onto
a subspace of the discrete wavelet basis.

We use the scheme described in Section 3.4.5 with Jvox

n
= min(πi)

min(Hsp
d ,2Hsp

s +1)
to ap-

proximate f̃ s
π by

̂̃
f s

π. According to [101, Appendix H], this scale corresponds to a range

of bitrates up to O(Jvox2
(P−1)Jvox

n ). Within this range, the approximation is encoded
as described in Section 3.4.6. The performance of this scheme appears below.

Theorem 3.10 While R . Jvox2
(P−1)Jvox

n where Jvox = n·min(πi)

min(Hsp
d ,2Hsp

s +1)
, the coding

scheme from Section 3.4.5 applied to encode the approximation
̂̃
f s

π to f̃ s
π using a

discrete wavelet/surfprint dictionary achieves the following near-optimal asymptotic
rate-distortion performance (within a logarithmic factor of the optimal performance
of Theorem 3.2):

∥∥∥∥f̃ s
π −

̂̃
f s

π

∥∥∥∥
2

L2

.

(
logR

R

)min
(

Hd
P−1

, 2Hs
P

)

.
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Proof: See [101, Appendix K].

Again, a corollary follows naturally.

Corollary 3.2 While R . Jvox2
(P−1)Jvox

n , the discrete approximation
̂̃
f s

π provides an
approximation to f s with the following rate-distortion performance:

∥∥∥∥f s − ̂̃f s
π

∥∥∥∥
2

L2

.

(
logR

R

)min
(

Hd
P−1

, 2Hs
P

)

.

Proof: See [101, Appendix L].

3.5.4 Discretization effects and varying sampling rates

We have proposed surflet algorithms for discrete data at sufficiently coarse scales.
Unfortunately, this leaves open the question of how to represent such data at finer
scales. In this section, we discuss one perspective on fine scale approximation that
leads to a natural surflet coding strategy.

Consider again the class F̃C(P,Hd). Section 3.5.2 provided an effective strategy

for encoding elements of F̃C(P,Hd) at sufficiently low rates (using surflets at scales
j ≤ Jvox = min πi

Hd
). Beyond scale Jvox, however, the voxelization effects dominate

the resolution afforded by surflet approximations. To restore a balance, we suggest a
coding strategy for finer scales based on the observation that FC(P,Hd) ⊂ FC(P,H)
forH < Hd. Surflet approximations on the class FC(P,H) (tied to the smoothnessH)

have lower accuracy in general. As a result, F̃C(P,H) has a higher “breakdown rate”

than F̃C(P,Hd), and discrete surflets tailored for smoothnessH will achieve the coding
rate O(R−H/(P−1)) up to scale min πi

H
. While this may not be a worthwhile strategy

before scale Jvox, it could be useful beyond scale Jvox and up to scale min πi

H
. In fact,

beyond that scale, we can again reduce H, obtaining a new breakdown rate and a finer
scale to code (using lower-order surflets). This gives us a concrete strategy for coding

F̃C(P,Hd) at all scales, although our optimality arguments apply only up to scale

Jvox. At scale j, we use surflets designed for smoothness Hj = min
(
Hd,

min(πi)
j

)
, 0 ≤

j ≤ min(πi). A surflet dictionary constructed using such scale-adaptive smoothness
orders consists of relatively few elements at coarse scales (due to the low value of j
in the quantization stepsize) and relatively few at fine scales (due to the decrease of
Hj), but many elements at medium scales. This agrees with the following intuitive
notions:

• The large block sizes at coarse scales do not provide sufficient resolution to
warrant large dictionaries for approximation at these scales.

• The relatively small number of voxels in each block at very fine scales also means
that a coder does not require large dictionaries in order to approximate blocks
at such scales well.
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• At medium scales where the block sizes are small enough to provide good reso-
lution but large enough to contain many voxels, the dictionary contains many
elements in order to provide good approximations.

Similar strategies can be proposed, of course, for the class F̃S(P,Hd, Hs).
Finally we note that the interplay between the sampling rate (number of voxels)

along the different dimensions and the critical approximation scale Jvox can impact
the construction of multiscale source coders. As an example of the potential effect
of this phenomenon in real-world applications, the sampling rate along the temporal
dimension could be the determining factor when designing a surfprint-based video
coder because this rate tends to be lower than the sampling rate along the spatial
dimensions.

3.5.5 Simulation results

To demonstrate the potential for coding gains based on surflet representations, we
perform the following numerical experiments in 2 and 3 dimensions.

2-D coding

We start by coding elements of F̃C(P,Hd) with P = 2 and Hd = 3. We generate
1024 × 1024 discretized versions of these images (that is, π1 = π2 = 10). Our two
example images are shown in Figures 3.5(a) and 3.6(a).

On each image we test three types of surflet dictionaries for encoding.

• Dictionary 1 uses wedgelets as implemented in our previous work [102, 108].
In this dictionary we do not use the quantization stepsizes as specified in (3.3).
Rather, we use a quantization stepsize ∆`,j ∼ 2−(1−`)j. As a result, the quantized
wedgelet dictionary has the same cardinality at each scale and is self-similar
(simply a dyadic scaling of the dictionary at other scales).

• Dictionary 2 adapts with scale. Following the arguments of Section 3.5.4, at
a given scale j, we use surflets tailored for smoothness Hj = min(2, min πi

j
) =

min(2, 10
j
). We use surflets of the appropriate polynomial order and quantize

the polynomial coefficients analogous to (3.3); that is, ∆`,j ∼ 2−(Hj−`)j. The
limitation Hj ≤ 2 restricts our surflets to linear polynomials (wedgelets) for
comparison with the first dictionary above.

• Dictionary 3 is a surflet dictionary that also adapts with scale. This dictionary
is constructed similarly to the second, except that it is tailored to the actual
smoothness of f c: we setHj = min(Hd,

min πi

j
) = min(Hd,

10
j
). This modification

allows quadratic surflets to be used at coarse scales 0 ≤ j ≤ 5, beyond which
Hj again dictates that wedgelets are used.
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Figure 3.5: (a) Test function f̃ c
π. (b) Rate-distortion performance for each dictionary

(with the best fixed set of dictionary parameters). (c) Rate-distortion performance for each
dictionary (selected using best convex hull in R-D plane over all dictionary parameters).

For each dictionary, we must also specify the range of allowable polynomial coefficients
and a constant multiplicative factor on each quantization stepsize. We optimize these
parameters through simulation.

Our coding strategy for each dictionary uses a top-down prediction. Based on the
prediction from a (previously coded) parent surflet, we partition the set of possible
children surflets into two classes for entropy coding. A probability mass of ρ is
distributed among the W surflets nearest the predicted surflet (measured using `2
distance), and a probability mass of (1− ρ) is distributed among the rest to allow for
robust encoding. We optimize the choice of W and ρ experimentally.

To find the discrete `2-best fit surflet to a given block, we use a coarse-to-fine
manifold search as suggested in Chapter 4. Based on the costs incurred by this coding
scheme, we optimize the surflet tree pruning using a Lagrangian tradeoff parameter
λ. We repeat the experiment for various values of λ.

Figure 3.5(b) shows what we judge to be the best R-D curve for each dictionary
(Dictionary 1: dotted curve, 2: dashed curve, and 3: solid curve). Each curve is gener-
ated by sweeping λ but fixing one combination of polynomial parameters/constants.
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Figure 3.6: (a) Test function f̃ c
π. (b) Rate-distortion performance for each dictionary

(selected using best convex hull in R-D plane over all dictionary parameters).

Table 3.1: Surflet dictionary size at each scale (using the surflet parameters chosen to gen-
erate Figure 3.5(b)). Our surflet dictionaries (2 and 3) adapt to scale, avoiding unnecessary
precision at coarse and fine scales.

Scale j 0 1 2 3 4 5 6 7 8 9

Dictionary 1 1.8e5 1.8e5 1.8e5 1.8e5 1.8e5 1.8e5 1.8e5 1.8e5 1.8e5 1.8e5
Dictionary 2 2.2e2 4.1e3 6.3e4 9.9e5 9.9e5 2.5e5 6.3e4 1.6e4 4.1e3 1.1e3
Dictionary 3 3.6e2 1.4e4 4.1e5 1.2e7 6.3e6 2.5e5 6.3e4 1.6e4 4.1e3 1.1e3

Over all simulations (all polynomial parameters/constants), we also take the con-
vex hull over all points in the R-D plane. The results are plotted in Figures 3.5(c)
and 3.6(b).

We see from the figures that Dictionary 2 outperforms Dictionary 1, requiring
0-20% fewer bits for an equivalent distortion (or improving PSNR by up to 4dB at a
given bitrate). Both dictionaries use wedgelets — we conclude that the coding gain
comes from the adaptivity through scale. Table 3.1 lists the number of admissible
quantized surflets as a function of scale j for each of our three dictionaries.

We also see from the figures that Dictionary 3 often outperforms Dictionary 2,
requiring 0-50% fewer bits for an equivalent distortion (or improving PSNR by up to
10dB at a given bitrate). Both dictionaries adapt to scale — we conclude that the
coding gain comes from the quadratic surflets used at coarse scales (which are designed
to exploit the actual smoothness Hd = 3). Figure 3.7 compares two pruned surflet
decompositions using Dictionaries 2 and 3. In this case, the quadratic dictionary
offers comparable distortion using 40% fewer bits than the wedgelet dictionary.
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Figure 3.7: Comparison of pruned surflet tilings using two surflet dictionaries. (a) Test
image with P = 2 and Hd = 3. (b) The wedgelets from Dictionary 2 can be encoded
using 482 bits and yields PSNR 29.86dB. (c) The quadratic/wedgelet combination from
Dictionary 3 can be encoded using only 275 bits and yields PSNR 30.19dB.
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Figure 3.8: (a) Horizon bc used to generate 3-D test function f̃ c
π. (b) Rate-distortion

performance for surflet coding compared with wavelet coding.

3-D coding

We now describe numerical experiments for coding elements of F̃C(P,Hd) and
P = 3. We generate 64×64×64 discretized versions of these signals (that is, πi = 6).
Our two example discontinuities bc are shown in Figure 3.8(a) (for which Hd = 2)
and Figure 3.10(a) (for which Hd =∞).

For these simulations we compare surflet coding (analogous to Dictionary 2 above,
with Hj = min(2, 6

j
)) with wavelet coding. Our wavelet coding is based on a 3-D

Haar wavelet transform, which we threshold at a particular level (keeping the largest
wavelet coefficients). For the purpose of the plots we assume (optimistically) that
each significant wavelet coefficient was coded with zero distortion using only three bits
per coefficient. We see from the figures that surflet coding significantly outperforms
the wavelet approach, requiring up to 80% fewer bits than our aggressive wavelet
estimate (or improving PSNR by up to 10dB a given bitrate). Figure 3.9 shows one
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(a) (b)

(c)

Figure 3.9: Volumetric slices of 3-D coded functions. (a) Original test function f̃ c
π from

Figure 3.8. (b) Surflet-coded function using 2540 bits; PSNR 33.22dB. (c) Wavelet-coded
function using approximately 2540 bits; PSNR 23.08dB.

set of coded results for the function in Figure 3.8; at an equivalent bitrate, we see
that surflets offer a significant improvement in PSNR and a dramatic reduction in
ringing/blocking artifacts compared with wavelets. We also notice from Figures 3.8
and 3.10, however, that at high bitrates the gains diminish relative to wavelets. We
believe this is due to small errors made in the surflet estimates at fine scales using
our current implementation of the manifold-based technique.

Future work will focus on improved surflet estimation algorithms; however using
even these suboptimal estimates we still see superior performance across a wide range
of bitrates. In Chapter 7, we discuss additional possible extensions of the multiscale
surflet/surfprint framework to incorporate new local models and representations.
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69



Chapter 4
The Multiscale Structure of Non-Differentiable

Image Manifolds

In Chapter 3, we considered a simple model for real world signals and, observing
the shortcomings of sparse representations for such signals, proposed specific para-
metric atoms designed to provide highly accurate local approximations. Recalling
the geometric viewpoint discussed in Section 2.4.3, then, we may argue that such lo-
cal signal regions live not near a union of low-dimensional hyperplanes (which could
be captured by some sparse dictionary), but rather near a low-dimensional manifold
generated by considering all possible surflet polynomial parameters.

In this chapter,1 we study the geometry of signal manifolds in more detail, par-
ticularly in the case of image manifolds such as the 2-D surflet manifold. More
precisely, we consider specific families of images related by changes of a natural artic-
ulation parameter θ controlling the image formation. Examples of such parameters
include translation, rotation, and position of an object. Such image families form low-
dimensional manifolds in the high-dimensional ambient space. We call them image
appearance manifolds (IAMs). We let Θ denote the space of parameters and denote
by fθ the image formed by a particular θ ∈ Θ. The particular IAM is then given by
F = {fθ : θ ∈ Θ}.

The articulation parameters we consider represent simple and fundamental ex-
amples of the prototypical information that comprises an image; our study of IAM
geometry gives new insight into the basic structural relationships that relate one
image to another.

Our work builds upon a surprising realization [16]: IAMs of continuous images
having sharp edges that move as a function of θ are nowhere differentiable. This
presents an immediate challenge for signal processing algorithms that might assume
differentiability or smoothness of such manifolds. As a motivating example, we con-
sider the problem of recovering, from an observed image I on or near the manifold,
the parameter θ that best describes that image. (This problem arises, for example,
in finding the best surflet fit to a given image segment.) A natural least-squares ap-
proach to solving such a problem using Newton’s method would involve a sequence
of projections onto tangent planes along the manifold. Because the manifold is not
differentiable, however, these tangents do not exist.

Although these IAMs lack differentiability in the traditional sense, we identify

1This work is in collaboration with David Donoho, Hyeokho Choi, and Richard Baraniuk [19].
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a multiscale collection of tangent spaces to the manifold, each one associated with
both a location on the manifold and scale of analysis. (This multiscale characteri-
zation of the non-differentiable manifold is not unlike the wavelet analysis of a non-
differentiable function [109].) We describe a simple experiment to reveal the multi-
scale structure, based on local hyperplane fits to neighborhoods on the manifold. At
a particular point fθ on the manifold, as the size ε of the neighborhood of analy-
sis shrinks, the planes continue to “twist off” and never converge to a fixed tangent
space. We also describe a second technique for accessing this multiscale structure by
regularizing the individual images fθ with a kernel of width s. The resulting manifold
of regularized images fθ,s (lacking sharp edges) is differentiable and more amenable
to computation and analysis.

To address the parameter estimation problem, we then propose a Multiscale New-
ton search, using a sequence of regularized manifolds and letting the scale parameter
s → 0. The algorithm typically converges within just a few iterations and returns
very accurate results. Our multiscale approach shares common features with a num-
ber of practical “coarse-to-fine differential estimation” methods of image registra-
tion [110–115] but can offer new justification and perspective on the relevant issues.

We also reveal a second, more localized kind of IAM non-differentiability caused
by occlusion. When an occluding surface exists in a scene, there will generally exist
special parameter points at which infinitesimal changes in the parameter can make an
edge vanish/appear from behind the occlusion (e.g., a rotating cube in 3-D at the point
where a face is appearing/disappearing from view). These articulations correspond
to multiscale cusps in the IAM with different “left” and “right” approximate tangent
spaces; the local dimensionality of the tangent space changes abruptly at such points.
This type of phenomenon has its own implications in the signal processing and requires
a special vigilance; it is not alleviated by merely regularizing the images.

This chapter is organized as follows. Section 4.1 elaborates on the manifold
viewpoint for articulated image families. Section 4.2 explores the first type of non-
differentiability, caused by the migration of edges. Section 4.3 analyzes the multiscale
tangent twisting behavior in more depth. Section 4.4 explores the second type of
non-differentiability, due to occlusion of edges. Section 4.5 considers the problem of
parameter estimation given an unlabeled image and includes numerical experiments.

4.1 Image Appearance Manifolds (IAMs)

We consider images both over the unbounded domain R2 and over bounded do-
mains such as the unit square [0, 1] × [0, 1]. In this chapter, we use x = (x0, x1) to
denote the coordinates of the image plane. We are interested in families of images
formed by varying a parameter θ ∈ Θ that controls the articulation of an object being
imaged and thus its appearance in each image. For example, θ could be a translation
parameter in R3 specifying the location of the object in a scene; an orientation pa-
rameter in SO(3) specifying its pose; or an articulation parameter specifying, for a
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Figure 4.1: Simple image articulation models. (a) Parametrization of translating disk
image fθ. (b) Parametrization of a surflet. (c) Simulated photograph of a 3-D icosahedron.

composite object, the relative placement of mobile components. We let K denote the
dimension of θ.

The image formed with parameter θ is a function fθ : R2 7→ R; the corresponding
family is the K-dimensional image appearance manifold (IAM) F = {fθ : θ ∈ Θ}.
We assume that the relation θ 7→ fθ is one-to-one. The set F is a collection of
functions, and we suppose that all of these functions are square-integrable: F ⊂
L2(R2). Equipping F with the L2 metric, we induce a metric on Θ

µ
(
θ(0), θ(1)

)
= ‖fθ(0) − fθ(1)‖L2 . (4.1)

Assuming that θ 7→ fθ is a continuous mapping for the L2 metric, M = (Θ, µ) is a
metric space.

We use a range of models to illustrate the structural phenomena of IAMs and
highlight the basic challenges that can arise in image processing. Similar models are
discussed in [16,17]; the most elaborate such involve combining models to create, for
example, articulating cartoon faces.

4.1.1 Articulations in the image plane

The simplest IAMs are formed by articulating cartoon shapes within the image
plane. First, consider translations of an indicator function in the image plane. Let f0

be an indicator function in R2 — a disk, ellipse, square, or rectangle, for example. Let
Θ = R2 act on the indicator function according to fθ(x) = f0(x−θ); see Figure 4.1(a)
for an example with the unit disk. Then it is easy to see that µ(θ(0), θ(1)) = m(‖θ(0)−
θ(1)‖) for a monotone increasing function m ≥ 0, m(0) = 0. In fact, if we let By

denote the indicator function centered at y ∈ R2, then

m(ρ) = Area(B(0,0)4B(ρ,0))
1/2,

where 4 denotes the symmetric difference: A4B = (A\B) ∪ (B\A).
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In a bounded image domain, a translating indicator function will eventually reach
one or both frontiers, where it begins changing shape until it finally disappears com-
pletely. We will discuss this occlusion phenomenon in more detail in Section 4.4.

Surflets offer another bounded domain model (see Chapter 3). If we let p : [0, 1] 7→
R be a polynomial of degree r > 1 and let θ ∈ Rr+1 denote the set of polynomial
coefficients, then the resulting surflet on the unit square is given by s([0, 1]2; p;x) =
1{x1≥p(x0), x1∈[0,1]} (see Figure 4.1(b)).

4.1.2 Articulations of 3-D objects

Our model is not limited just to articulations in the image plane. Consider,
for example, photography of a 3-D object. In this case, the object may be subject
to translations (Θ = R3), rotations (Θ = SO(3)), or a combination of both; the
metric on Θ simply involves the difference between two rendered images as in (4.1).
Figure 4.1(d) shows an example rendering of an icosahedron at an arbitrary position.
Additional articulation parameters, such as camera position or lighting conditions
[116], can also be considered.

4.2 Non-Differentiability from Edge Migration

Each of the image models mentioned in Section 4.1 involves sharp edges that
move as a function of the parameter θ. This simple effect, relevant in many natural
settings where images may feature objects having unknown or moving locations, has
a profound consequence on the structure of the resulting IAMs: these manifolds are
nowhere differentiable. This presents an apparent difficulty for image understanding
algorithms that might attempt to exploit the local manifold geometry using calculus.

4.2.1 The problem

This lack of differentiability can be seen analytically: the metric spaces resulting
from the IAMs in Section 4.1 all have a non-Lipschitz relation between the metric
distance and the Euclidean distance. As one can check by detailed computations [16],
we have

µ
(
θ(0), θ(1)

)
≥ c

∥∥θ(0) − θ(1)
∥∥1/2

2
as µ→ 0.

The exponent 1/2 — rather than 1 — implies that the parametrization θ 7→ fθ is not
differentiable. As with a standard function of Hölder regularity 1/2, we are unable
to compute the derivative. For example, to estimate ∂fθ

∂θi

∣∣
θ=θ(0) , we would let θ(0) and

θ(1) differ only in component θi and would observe that

∥∥∥∥∥
fθ(1) − fθ(0)

θ
(1)
i − θ(0)

i

∥∥∥∥∥
2

≥ c
∥∥θ(1) − θ(0)

∥∥−1/2

2
→∞ as θ(1) → θ(0).
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This relation is non-differentiable at every parameter θ for which local perturbations
cause edges to move. Moreover, this failure of differentiability is not something remov-
able by mere reparametrization; no parametrization exists under which there would
be a differentiable relationship.

We can also view this geometrically. The metric space M = (Θ, µ) is isometric
to F = (F , ‖ · ‖L2). F is not a smooth manifold; there simply is no system of charts
that can make F even a C1 manifold. At base, the lack of differentiability of the
manifold F is due to the lack of spatial differentiability of these images [16]. In brief:
images have edges, and if the locations of edges move as the parameters change then
the manifold is not smooth.

4.2.2 Approximate tangent planes via local PCA

An intrinsic way to think about non-smoothness is to consider approximate tan-
gent planes generated by local principal component analysis (PCA) [43]. Suppose
we pick an ε-neighborhood Nε(θ

(0); Θ) of some θ(0) ∈ Θ; this induces a neighborhood
Nε(fθ(0) ;F) around the point fθ(0) ∈ F . We define the ε-tangent plane to F at fθ(0) as
follows. We place a uniform probability measure on θ ∈ Nε(θ

(0); Θ), thereby inducing
a measure ν on the neighborhood Nε(fθ(0)). Viewing this measure as a probability
measure on a subset of L2, we can obtain the first K principal components of that
probability measure. These K functions span a K-dimensional affine hyperplane,
the approximate tangent plane T ε

f
θ(0)

(F); it is an approximate least-squares fit to the

manifold over the neighborhood Nε(fθ(0)).
If the manifold were differentiable, then the approximate tangent planes T ε

f
θ(0)

(F)

would converge to a fixed K-dimensional space as ε→ 0; namely, the plane spanned
by the K directional derivatives ∂

∂θi
fθ

∣∣
θ=θ(0) , i = 0, 1, . . . , K − 1. However, when

these do not exist, the approximate tangent planes do not converge as ε → 0, but
continually “twist off” into other dimensions.

Consider as an example the translating disk model, where the underlying para-
metrization is 2-D and the tangent planes are 2-D as well. Figure 4.2(a) shows the
approximate tangent plane obtained from this approach at scale ε = 1/4. The tan-
gent plane has a basis consisting of two elements, each of which can be considered an
image. Figure 4.2(b) shows the tangent plane basis images at the finer scale ε = 1/8.
It is visually evident that the tangent plane bases at these two scales are different; in
fact the angle between the two subspaces is approximately 30◦. Moreover, since the
basis elements resemble annuli of shrinking width and growing amplitude, it is ap-
parent for continuous-domain images2 that as ε→ 0, the tangent plane bases cannot
converge in L2.

2In the case of a pixelized image, this phenomenon cannot continue indefinitely. However, the
twisting behavior does continue up until the very finest scale, making our analysis relevant for
practical algorithms (e.g., see Section 4.5).
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Figure 4.2: Tangent plane basis vectors of the translating disk IAM estimated: using local
PCA at (a) scale ε = 1/4 and (b) scale ε = 1/8; using image regularization at (c) scale
s = 1/8 and (d) scale s = 1/16.

4.2.3 Approximate tangent planes via regularization

The lack of IAM differentiability poses an apparent difficulty for image processing:
the geometric relationship among images nearby in articulation space seems to be
quite complicated. In addition to illuminating this challenge, however, the local PCA
experiments in Section 4.2.2 also suggest a way out. Namely, the “twisting off”
phenomenon can be understood as the existence of an intrinsic multiscale structure
to the manifold. Tangent planes, instead of being associated with a location only, as
in traditional monoscale analysis, are now associated with a location and a scale.

For a variety of reasons, it is convenient in formalizing this notion to work with a
different notion of approximate tangent plane. We first define the family of regularized
manifolds as follows. Associated with a given IAM, we have a family of regularization
operators Gs that act on functions f ∈ F to smooth them; the parameter s > 0
is a scale parameter. For example, for the translated disk model, we let Gs be the
operator of convolution with a Gaussian of standard deviation s: Gsf = gs ∗f , where

gs(x) = 1
2πs2 exp{−‖x‖2

2s2 }. We also define fθ,s = Gsfθ. The functions fθ,s are smooth,
and the collection of such functions for θ varying and s > 0 makes a manifold Fs.
The operator family (Gs)s>0 has the property that, as we smooth less, we do less:
Gsfθ →L2 fθ, s→ 0. It follows that, at least on compact subsets of F ,

Fs →L2 F , s→ 0. (4.2)

Because the regularized images contain no sharp edges, it follows that the regularized
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IAMs are differentiable. We define the approximate tangent plane at scale s > 0,
T (s, θ(0);F), to be the exact tangent plane of the approximate manifold Fs; that is
Tf

θ(0),s
(Fs).

T (s, θ(0)) is the affine span of the functions ∂
∂θi
fθ,s

∣∣
θ=θ(0) , i = 0, 1, . . . , K − 1. This

notion of approximate tangent plane is different from the more intrinsic local PCA
approach but is far more amenable to analysis and computation. In practice, the two
notions are similar: regularizing an image averages nearby pixel values, whereas local
PCA analyzes a set of images related approximately by small shifts in space.

As an example, consider again the translating disk model. Figures 4.2(c),(d) show
the tangent planes obtained from the image regularization process at scales s = 1/8
and s = 1/16. It is again visually evident that the tangent plane bases at the two
scales are different, with behavior analogous to the bases obtained using the local
PCA approach in Figures 4.2(a),(b). In this case, the angle between the two tangent
planes is 26.4◦.

4.2.4 Regularized tangent images

It is instructive to pursue an explicit description for the multiscale tangent images.
We begin by deriving the regularized tangents for a restricted class of IAMs, where we
have smooth articulations of an indicator set in the plane. This work follows closely
certain computations in [16].

Let B denote an indicator set (for example, a disk), and let ∂B denote the bound-
ary of B, which we assume to be C2. For a point b ∈ ∂B, let n(b) denote the
outward-pointing normal vector to ∂B. The set B = Bθ may change as a function
of θ, but we assume the evolution of ∂Bθ to be smooth. Thus we can attach to each
boundary point b ∈ ∂Bθ a motion vector vi(b, θ) that indicates the local direction in
which the boundary shifts with respect to changes in component θi. For example,
note that vi is constant-valued when the articulations simply translate the set B.

From Lemma A.2 in [16], it follows that

∂

∂θi

fθ,s(x)

∣∣∣∣
θ=θ(0)

=

∫

∂B

gs(x− b)σi(b) db,

where σi(b) := 〈vi(b, θ
(0)), n(b)〉 measures the amount of shift in the direction normal

to the edge. This can be rewritten as the convolution of the regularization kernel
gs with a Schwartz distribution γi(x). This distribution can be understood as a 1-D
ridge of delta functions around the boundary ∂B with “height” σi(p) for p ∈ ∂B
(and height zero elsewhere). Indeed, this distribution also corresponds to the limiting
“tangent image” on the unregularized manifold F . We have essentially justified the
last link in this chain of equalities

∂

∂θi

fθ,s =
∂

∂θi

(gs ∗ fθ) =

(
gs ∗

∂

∂θi

fθ

)
= gs ∗ γi. (4.3)
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The problem, of course, is that γi /∈ L2(R2), and so we rely on the regularization
process. The formula (4.3) is one on which we may rely for general images fθ — the
regularized tangents can be obtained by convolving a Gaussian with the distributional
tangent images.

4.3 Multiscale Twisting of IAMs

IAMs of images with sharp edges are non-differentiable, because their tangent
planes continually “twist off” into new dimensions. In this section, we examine the
multiscale structure of this phenomenon, for the example case of the translating disk
IAM. First, we study the twisting phenomenon of the family of smoothed manifolds
Fs as a function of scale s; next we examine twisting at a single scale as a function of
position on the manifold. As we will discover, the multiscale characterization of the
manifold is not unlike the wavelet analysis of non-differentiable functions.

4.3.1 Tangent bases for translating disk IAM

We can provide some quantitative values for regularized tangent images in the
case of a translated disk. For technical reasons we let the image be the full plane R2

and also let Θ = R2.
We start by identifying the boundary ∂B with the circle [0, 2π) (we let b = 0 de-

note the rightmost point of B and traverse ∂B in the counterclockwise direction). For

clarity, we write ~b when referring to the boundary point in R2 and write b when refer-
ring to the corresponding angle. For example, we have that n(~b) = [cos(b), sin(b)]T .

For translations we have simply that v0(~b) = [1, 0]T and v1(~b) = [0, 1]T . This gives

σ0(~b) = cos(b) and σ1(~b) = sin(b).
In order to examine the inter-scale twisting of the tangent planes, we use as a

basis for the approximate tangent space T (s, θ(0)) the functions

τ i
s =

∂

∂θi

fθ,s

∣∣∣∣
θ=θ(0)

.

The L2(R2) inner product between these tangent images is given by

〈τ i
s, τ

j
s 〉 = 〈gs ∗ γi, gs ∗ γj〉

=

∫

R2

∫

∂B

gs(x−~b)σi(~b) d~b

∫

∂B

gs(x− ~β)σj(~β) d~β dx

=

∫

∂B

∫

∂B

σi(~b)σj(~β)

∫

R2

gs(x−~b) gs(x− ~β) dx d~β d~b

=

∫

∂B

∫

∂B

σi(~b)σj(~β) g√2s(
~b− ~β) d~β d~b.

The last step follows because the convolution of two Gaussians yields another Gaus-
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sian; a similar derivation appears in Lemma A.3 of [16]. Considering the case where
i 6= j, we have

〈τ 0
s , τ

1
s 〉 =

∫ 2π

0

∫ 2π

0

cos(b) sin(β) g√2s(
~b− ~β) dβ db

=

∫ 2π−π/2

−π/2

∫ 2π−π/2

−π/2

cos(b+ π/2) sin(β + π/2) g√2s(
~b− ~β) dβ db

= −
∫ 2π

0

∫ 2π

0

sin(b) cos(β) g√2s(
~b− ~β) dβ db

= −〈τ 1
s , τ

0
s 〉,

which implies that 〈τ 0
s , τ

1
s 〉 = 0. Thus we have that 〈τ i

s, τ
j
s 〉 = cs,sδi,j, where, for

generality useful below, we set

cs0,s1 :=

∫

∂B

∫

∂B

cos(b) cos(β) g√
s2
0+s2

1
(~b− ~β) d~β d~b.

Hence, the {τ i
s} form an orthogonal basis for the approximate tangent plane T (s, θ(0))

for every s > 0.
Consider now the bases {τ i

s0
}1i=0, {τ i

s1
}1i=0 at two different scales s0 and s1. Then

by a similar calculation
〈τ i

s0
, τ j

s1
〉 = cs0,s1δi,j. (4.4)

Hence, a basis element at one scale correlates with only one basis element at another
scale.

4.3.2 Inter-scale twist angle

We can give (4.4) a geometric interpretation based on angles between subspaces.
At each scale, define the new basis

ψi
s = c−1/2

s,s τ i
s, i = 0, 1,

which is an orthonormal basis for the approximate tangent space T (s, θ(0)). These
bases are canonical for measuring the angles between any two tangent spaces. For-
mally, if we let Ps denote the linear orthogonal projection operator from L2(R2) onto
T (s, θ(0)), then the subspace correlation operator Γs0,s1 = Ps0Ps1 has a singular value
decomposition using the two bases as left and right singular systems, respectively:

Γs0,s1 =
1∑

i=0

ψi
s0
λi〈ψi

s1
, ·〉;
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or, in an informal but obvious notation,

Γs0,s1 = [ψ0
s0

; ψ1
s0

] diag(λ0, λ1) [ψ0
s1

; ψ1
s1

]T .

The diagonal entries are given by

λi
s0,s1

=
cs0,s1

c
1/2
s1,s1c

1/2
s0,s0

.

Now from the theory of angles between subspaces [117, 118], we have that the
angles between the subspaces T (s0, θ

(0)) and T (s1, θ
(0)) are naturally expressed as

cos(angle #i) = λi
s0,s1

, i = 0, 1. In this instance, λ0 = λ1, and so we write simply

cos(angle{T (s0, θ
(0)), T (s1, θ

(0))}) =
cs0,s1

c
1/2
s0,s0 c

1/2
s1,s1

.

We can perform a simple asymptotic analysis of the cs0,s1 .

Theorem 4.1 In the translating disk model, let the regularization kernel gs be a
Gaussian with standard deviation s > 0. Fix 0 < α < 1 and let s1 = αs0. Then

lim
s0→0

cos(angle{T (s0, θ
(0)), T (s1, θ

(0))}) =

√
2α

α2 + 1
. (4.5)

Proof: See [19, Appendix].

This analytical result is fully in line with the results found in Sections 4.2.2
and 4.2.3 by empirically calculating angles between subspaces (for the case α = 1/2,
the formula predicts an angle of 26.6◦).

4.3.3 Intra-scale twist angle

We can also examine the twisting phenomenon of the smoothed IAM Fs at a single
scale s as a function of position on the manifold.

A simple experiment reveals the basic effect. We choose δ > 0 and set ∆ = [δ; 0]T .
We then compute

angle {T (s, θ), T (s, θ + s∆)}
at a variety of scales s. Figure 4.3 shows the experimental results for 256×256 images;
tangents are estimated using a local difference between two synthesized images. This
experiment reveals the following effects. First, and not surprisingly, larger changes in
θ cause a larger twist in the tangent spaces. Second, and more surprisingly, the twist
angle is approximately constant across scale when the change in θ is proportional to
the scale. This behavior can also be confirmed analytically following the techniques
of Section 4.3.1, though the analysis is a bit more complicated.
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This experiment pertains to images over the unbounded domain R2. In case of a
bounded domain, the disk will ultimately experience occlusion at the boundary of the
image. In this region of occlusion, we have found that the twisting of the manifold Fs

will depend not only on δ, but also more strongly on s and θ, unlike the experiment
above.

4.3.4 Sampling

Through the process of regularization, we have defined a continuous multiscale
characterization of an IAM tangent space. It is interesting, however, to consider the
problem of sampling the multiscale tangent space while still preserving its essential
structure. For example, we may be interested in answering the following question:
“How finely must we sample in scale s at a fixed θ(0) so that, between adjacent scales,
the manifold twists no more than ρ degrees?” Similarly, “How finely must we sample
in θ at a fixed scale s so that, between adjacent samples, the manifold twists no more
than ρ degrees?” (For example, the success of our parameter estimation algorithm in
Section 4.5 will depend on similar questions.)

From Theorem 4.1, it follows that by choosing a sequence

si = αis0, i = 1, 2, . . .

with an appropriate α < 1, we can ensure that the tangent planes at adjacent scales
change by no more than a fixed angle. Within a fixed scale, as we have seen in
Section 4.3.3, to obtain a constant angle of twist, the amount of shift should be pro-
portional to the smoothing scale si. These “sampling rules” for the multiscale tangent
space are reminiscent of the sampling of the continuous wavelet transform to obtain
the discrete wavelet transform (a case where α = 1/2). Just as a non-differentiable
function can be characterized with a multiresolution analysis, the translated disk
IAM can be characterized by a multiresolution analysis having a similar scale-space
structure. This basic behavior is common among a range of IAM models, though the
precise details will vary. For use in an algorithm, additional analytic or experimental
investigation may be necessary.

4.4 Non-Differentiability from Edge Occlusion

The first type of non-differentiability, as discussed in Sections 4.2 and 4.3, arises
due to the migration of sharp edges. This non-differentiability is global, occurring at
every point on the manifold. A second type of non-differentiability, however, can also
arise on IAMs. This effect is local, occurring at only particular articulations where
the tangents (even the regularized tangents) experience a sudden change.
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Figure 4.3: Intra-scale twist angles for translating disk.

(a) (b) (c) (d)

Figure 4.4: Changing tangent images for translating square before and after occlusion.
Pre-occlusion: (a) image and (b) tangent. Post-occlusion: (c) image and (d) tangent.

4.4.1 Articulations in the image plane

To illustrate the basic effect, consider a simple translating-square image model.
We assume a bounded image domain of [−1, 1]× [−1, 1]; the occlusion of the square at
the image border is the critical effect. The square indicator function has sidelength 1
and is centered at θ = (θ0, θ1). We will fix θ1 = 0 and examine the effects of changing
component θ0.

For the non-occluded regime, where −1/2 < θ0 < 1/2, it is easy to visualize
the tangent images: γ0 consists of two traveling ridges of delta functions, one with
height −1 connecting the points (θ0 − 1/2,±1/2), and one with height 1 connecting
the points (θ0 + 1/2,±1/2). These delta ridges are convolved with gs to obtain the
regularized tangent image (see Figure 4.4(a),(b)).

Consider now the occluded regime, for example 1/2 < θ0 < 3/2. In this case, a
portion of the square has been eliminated by the image boundary. We can equate
the changing image with a rectangle sitting against the right side of the image, with
width shrinking from the left. In this case γ0 consists of only one traveling delta
ridge, having height −1 and connecting the points (θ0−1/2,±1/2). Again, this ridge
is convolved with gs to obtain the regularized tangent image (see Figure 4.4(c),(d)).
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This change in the tangent images is abrupt, occurring at precisely θ = [1/2, 0]T .
Around this point, the manifold has differing “left” and “right” tangent images. It is
simple to compute for this case that, as s→∞, then at the “moment of occlusion”,
there is an abrupt 45◦ change in tangent direction on each regularized manifold. This
effect is not merely an artifact of the regularization process; a local PCA approxima-
tion would also be sensitive to the direction in which points are sampled.

This example demonstrates that, aside from the global issues of non-differentiability,
IAMs may have localized cusps that persist even after regularization. These cusps
indicate that the geometric structure relating nearby images can undergo a sudden
change.

4.4.2 3-D articulations

Occlusion-based non-differentiability is much more natural in the 3-D case and
occurs when an object self-occludes and a new edge appears in view. One example
is a 3-D cube viewed face-on and then rotated in some direction. Other examples
include polygonal solids, cylinders (when viewed from the end), and so on.

We use two numerical experiments to illustrate this phenomenon. For these ex-
periments, we consider a 3-D cube viewed head-on and examine the tangent space
around this point under SO(3) articulations (roll, pitch, yaw) at a fixed scale. For
simplicity, we assume an imaging model where the 3-D object has a parallel projection
onto the image plane, and we assume that the face of the cube displays a different
color/intensity than the sides.

In the first experiment, we compute local tangent approximations on the reg-
ularized manifold. We assume θ parametrizes (roll, pitch, yaw) about the face-on
appearance fθ(0) . Around θ(0), we perturb each articulation parameter individually
by +ε or −ε and compute the difference relative to the original image (then divide
by ±ε and normalize). The six resulting tangent images are shown in Figure 4.5(a).
The leftmost two images are almost identical, suggesting that the tangent space is
smooth in the roll variable. The next two images differ significantly from one another,
as do the last two. Thus with respect to the pitch and yaw parameters, the “left”
and “right” tangents apparently differ. Following the arguments in Section 4.4.1, it is
easy to understand what causes this discrepancy. For example, when the cube pitches
forward, the image shows two moving edges at the bottom, and one at the top. Yet
when the cube pitches back, the reverse is true.

In the second experiment, we perform a local PCA approximation to the manifold.
We sample points randomly from the 3-D parameter space and run PCA on the
resulting regularized images. Figure 4.5(a) shows a plot of the singular values. This
plot suggests that most of the local energy is captured in a 5-D subspace.

These experiments indicate that, at the point where the cube is viewed head-on,
we are at a cusp in the IAM with 5 relevant tangent directions — the manifold has a
5-D tangent complex [52] at this point. Clearly, this happens only at a small subset
of all possible views of the cube (when only one face is visible). Similar effects (when
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Figure 4.5: (a) Tangent images for head-on view of a cube in 3-D space. Left: roll (vectors
are similar). Middle: pitch (vectors are different). Right: yaw (vectors are different). (b)
PCA on regularized cube images; first 20 singular values are shown.

only two faces are visible) give rise to 4-D tangent complexes. Otherwise, for purely
generic views of the cube (where three faces are visible), the tangent space has only 3
dimensions, corresponding to the 3 dimensions of Θ. This typical behavior echoes the
assumption of “generic view” that is common in models of visual perception [119]: in
order to understand a scene, an observer might assume a view to not be accidental
(such as seeing a cube face-on).

4.5 Application: High-Resolution Parameter Estimation

With the multiscale viewpoint as background, we now consider the problem of
inferring the articulation parameters from individual images. We will see that while
the lack of differentiability prevents the application of conventional techniques, the
multiscale perspective offers a way out. This perspective offers new justification for
similar multiscale approaches employed in techniques such as image registration.

4.5.1 The problem

Let us recall the setup for parameter estimation from Section 2.5.3. Suppose
F = {fθ : θ ∈ Θ} is an IAM and that we are given a signal I that is believed to
approximate fθ for an unknown θ ∈ Θ. From I we wish to recover an estimate of
θ. We may formulate this parameter estimation problem as an optimization, writing
the objective function (again we concentrate solely on the L2 or `2 case)

D(θ) = ‖fθ − I‖22
and solving for

θ∗ = arg min
θ∈Θ

D(θ).
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We suppose that the minimum is uniquely defined. Supposing that F is a differen-
tiable manifold, we could employ Newton’s method to solve the minimization using
an iterative procedure, where each iteration would involve projecting onto tangent
images (as well as second derivative images).

In our setting, however, the tangent vectors τ i
θ do not exist as functions, mak-

ing it impossible to directly implement such an algorithm. We turn again to the
regularization process in order to remedy this situation.

4.5.2 Multiscale Newton algorithm

As discussed in Section 4.2, the lack of differentiability can be alleviated by regu-
larizing the images fθ. Thus, navigation is possible on any of the regularized manifolds
Fs using Newton’s method as described above. This fact, in conjunction with the
convergence property (4.2), suggests a multiscale technique for parameter estimation.
Note that we focus on dealing with “migration-based” non-differentiability from Sec-
tion 4.2. In cases where we have occasional occlusion-based non-differentiability as
in Section 4.4, it may be necessary to project onto additional tangent images; this
adaptation is not difficult, but it does require an awareness of the parameters at which
occlusion-based non-differentiability occurs.

The idea is to select a sequence of scales s0 > s1 > · · · > skmax , and to start with
an initial guess θ(0). At each scale we take a Newton-like step on the corresponding
smoothed manifold. We find it helpful in practice to ignore the second derivative
term from equation (2.7). This is in the typical spirit of making slight changes to
Newton’s Method; in fact it is similar to the Gauss-Newton method for minimizing
D.

To be specific, iteration k + 1 of the Multiscale Newton algorithm proceeds as
follows:

1. Compute the local tangent vectors on the smoothed manifold Fsk
at the point

fθ(k),sk
:

τ i
θ(k),sk

=
∂

∂θi

fθ,sk

∣∣∣∣
θ=θ(k)

, i = 0, 1, . . . , K − 1.

2. Project the estimation error fθ(k),sk
−Isk

(relative to the regularized image Isk
=

gsk
∗ I) onto the tangent space T (sk, θ

(k)), setting

Ji = 2〈fθ(k),sk
− Isk

, τ i
θ(k),sk

〉.

3. Compute the pairwise inner products between tangent vectors

Hij = 2〈τ i
θ(k),sk

, τ j

θ(k),sk
〉.
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Table 4.1: Estimation errors of Multiscale Newton iterations, translating disk, no noise.

s θ0 error θ1 error image MSE
Initial -1.53e-01 1.92e-01 9.75e-02
1/2 -2.98e-02 5.59e-02 3.05e-02
1/4 -4.50e-04 1.39e-03 1.95e-04
1/16 -1.08e-06 8.62e-07 8.29e-10
1/256 1.53e-08 1.55e-07 1.01e-10

Table 4.2: Estimation errors of Multiscale Newton iterations, translating disk, with noise.
MSE between noisy image and true disk = 3.996.

s θ0 error θ1 error image MSE
Initial -1.53e-01 1.93e-01 4.092
1/2 -3.46e-02 7.40e-02 4.033
1/4 -1.45e-02 -2.61e-03 4.003
1/16 -1.55e-03 -1.77e-03 3.997
1/256 -5.22e-04 1.10e-03 3.996

4. Use the projection coefficients to update the estimate

θ(k+1) ← θ(k) +H−1J.

We note that when the tangent vectors are orthogonal to one another, H is diagonal,
and so the update for component θ

(k)
i is simply determined by the inner product of the

estimation error vector and the tangent vector τ i
θ(k),sk

. Moreover, when the regularized
manifold Fsk

is linear in the range of interest, the update in Step 4 immediately
achieves the minimizer to D at that scale.

Under certain conditions on the accuracy of the initial guess and the sequence {sk}
it can be shown that this algorithm provides estimation accuracy ‖θ − θ(k)‖ < cs2

k.
Ideally, we would be able to square the scale between successive iterations, sk+1 = s2

k.
The exact sequence of steps, and the accuracy required of the initial guess θ(0), will
depend on the specific multiscale structure of the IAM under consideration. We
omit the convergence analysis in this thesis, instead providing several examples to
demonstrate the basic effectiveness of the algorithm.
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Table 4.3: Estimation errors after Multiscale Newton iterations, ellipse.

s θ0 error θ1 error θ2 error θ3 error θ4 error image MSE
Initial -5.75e-02 3.95e-02 -8.16e+00 7.72e-02 -3.56e-02 8.47e-02
1/2 5.82e-02 1.48e-02 7.91e-01 -3.66e-02 -8.74e-03 3.62e-02
1/4 -4.86e-03 -1.56e-03 -4.14e+00 3.19e-02 -1.28e-02 1.91e-02
1/16 4.25e-04 1.99e-04 -7.95e-01 -2.64e-03 -1.05e-03 1.42e-03
1/256 -3.61e-05 2.71e-05 -3.38e-03 -1.49e-04 -3.86e-05 2.72e-06

Table 4.4: Estimation errors after Multiscale Newton iterations, 3-D icosahedron. MSE
between noisy image and true original = 2.98.

s θ0 error θ1 error θ2 error θ3 error θ4 error θ5 error MSE
Initial -50 -23 20 1.00e-1 -1.00e-1 5.00e-1 3.13
1/2 -8.81e+1 1.53e+0 6.07e+1 -2.60e-2 5.00e-2 -3.28e-1 3.14
1/4 -5.29e+1 4.70e+0 2.44e+1 3.44e-3 2.42e-2 4.24e-2 3.10
1/8 -1.15e+1 1.12e+0 -9.44e-1 -4.34e-3 3.19e-3 1.26e-1 3.03
1/16 8.93e-1 3.00e-1 -1.69e+0 -1.38e-3 2.21e-3 3.40e-2 2.98
1/256 5.28e-1 2.57e-1 -6.68e-1 6.91e-4 2.44e-3 2.12e-2 2.98

4.5.3 Examples

Translating disk

As a basic exercise of the proposed algorithm, we attempt to estimate the ar-
ticulation parameters for a translated disk. The process is illustrated in Figure 4.6.
The observed image I is shown on the far left; the top-left image in the grid is the
initial guess fθ(0) . For this experiment, we create 256 × 256 images with “subpixel”
accuracy (each pixel is assigned a value based on the proportion of its support that
overlaps the disk). Regularized tangent images are estimated using a local difference
of synthesized (and regularized) images.

We run the multiscale estimation algorithm using the sequence of stepsizes s =
1/2, 1/4, 1/16, 1/256. Figure 4.6 shows the basic computations of each iteration. Note
the geometric significance of the smoothed difference images Isk

− fθ(k),sk
; at each

scale this image is projected onto the tangent plane basis vectors. Table 4.1 gives the
estimation errors at each iteration, both for the articulation parameters θ and the
mean square error (MSE) of the estimated image. Using this sequence of scales, we
observe rapid convergence to the correct articulation parameters with accuracy far
better than the width of a pixel, 1/256 ≈ 3.91e-03.

We now run a similar experiment for the case where the observation I = fθ + n,
where n consists of additive white Gaussian noise of variance 4. Using the same
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Figure 4.6: Multiscale estimation of translation parameters for observed disk image. Each
row corresponds to the smoothing and tangent basis vectors for one iteration.
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Figure 4.7: Multiscale estimation of translation parameters for observed disk image with
noise.

sequence of smoothing filter sizes, the results are shown in Figure 4.7 and in Table 4.2.
Note that the estimated articulation parameters are approximately the best possible,
since the resulting MSE is approximately equal to the noise energy.

Articulated ellipse

We run a similar experiment for an ellipse image. In this case, the parameter
space Θ is 5-D, with two directions of translation, one rotation parameter, and two
parameters for the axis lengths of the ellipse. Figure 4.8 and Table 4.3 show the
estimation results. It is particularly interesting to examine the geometric structure
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Figure 4.8: Multiscale estimation of articulation parameters for ellipse.

among the tangent vectors and how it reflects the different effects of changing the
articulation parameters. Again, the algorithm successfully estimates the articulation
parameters with high accuracy.

3-D articulations

We now consider a different imaging modality, where we have articulations of a
3-D object. In this case, the parameter space Θ is 6-D; the articulations of the object
are three rotational coordinates, two shift coordinates parallel to the image plane,
and one shift toward/away from the camera. (We now use a pinhole imaging model,
so motions toward the camera make the object appear larger.)

For this example, we consider synthesized photographs of an icosahedron. Our
image model includes a directional light source (with location and intensity parame-
ters assumed known). We consider color images, treating each image as an element
of R256×256×3. Figure 4.9 and Table 4.4 show the successful estimation of the artic-
ulation parameters for a noisy image. For this example, we must use a slightly less
ambitious sequence of smoothing filters. (In this case, while we successfully ignore the
occlusion-based effects of the appearance/disappearance of faces, we find that these
should not be ignored in general.)
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Figure 4.9: Multiscale estimation of articulation parameters for 3-D icosahedron.

4.5.4 Related work

Our multiscale framework for estimation with IAMs shares common features with
a number of practical image registration algorithms; space considerations permit dis-
cussion of only a few here. Irani and Peleg [113] have developed a popular multiscale
algorithm for registering an image I(x) with a translated and rotated version for
the purposes of super-resolution. They employ a multiscale pyramid to speed up
the algorithm and to improve accuracy, but a clear connection is not made with the
non-differentiability of the corresponding IAM. While Irani and Peleg compute the
tangent basis images with respect to the x0 and x1 axes of the image, Keller and
Averbach [120] compute them with respect to changes in each of the registration pa-
rameters. They also use a multiscale pyramid and conduct a thorough convergence
analysis. Belhumeur [116] develops a tangent-based algorithm that estimates not only
the pose of a 3-D object, but also its illumination parameters.

Where we differ from these approaches is in deriving the multiscale approach
from the structure of the underlying manifold and in explaining the properties of the
algorithm (e.g., how quickly the scale can be decreased) in terms of the twisting of the
tangent space. More importantly, our approach is general and in principle extends
far beyond the registration setting to many other image understanding problems of
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learning parameters from example images. We discuss possible extensions of our
estimation algorithm in Chapter 7.
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Chapter 5
Joint Sparsity Models for Multi-Signal

Compressed Sensing

In previous chapters we have looked for new insight and opportunities to be gained
by considering a parametric (manifold-based) framework as a model for concise, low-
dimensional signal structure. In this chapter,1 we consider another novel modeling
perspective, as we turn our attention toward a suite of signal models designed for
simultaneous modeling of multiple signals that have a shared concise structure.

As a primary motivation and application area for these models, we consider the
extension of Compressed Sensing to the multi-signal environment. At present, the CS
theory and methods are tailored for the sensing of a single sparse signal. However,
many of the attractive features of CS (with its simple, robust, and universal encoding)
make it well-suited to remote sensing environments. In many cases involving remote
sensing, however, the data of interest does not consist of a single signal but may
instead be comprised of multiple signals, each one measured by a node in a network
of low-cost, wireless sensors [122, 123]. As these sensors are often battery-operated,
reducing power consumption (especially in communication) is essential. Because the
sensors presumably observe related phenomena, however, we can anticipate that there
will be some sort of inter-signal structure shared by the sensors in addition to the
traditional intra-signal structure observed at a given sensor.

If we suppose that all of the sensors intend to transmit their data to a central
collection node, one potential method to reduce communication costs would be for
the sensors to collaborate (communicating among themselves) to discover and exploit
their shared structure and to jointly encode their data. A number of distributed
coding algorithms have been developed that involve collaboration amongst the sen-
sors [124, 125]. Any collaboration, however, involves some amount of inter-sensor
communication overhead. The Slepian-Wolf framework for lossless distributed cod-
ing [126–128] offers a collaboration-free approach in which each sensor node could
communicate losslessly at its conditional entropy rate, rather than at its individual
entropy rate. Unfortunately, however, most existing coding algorithms [127, 128] ex-
ploit only inter-signal correlations and not intra-signal correlations, and there has
been only limited progress on distributed coding of so-called “sources with memory.”
In certain cases, however — in particular when each signal obeys a sparse model

1This work is in collaboration with Dror Baron, Marco Duarte, Shriram Sarvotham, and Richard
Baraniuk [121].
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and the sparsities among the signals are somehow related — we believe that CS can
provide a viable solution to the distributed coding problem.

In this chapter, we introduce a new theory for Distributed Compressed Sensing
(DCS) that enables new distributed coding algorithms that exploit both intra- and
inter-signal correlation structures. In a typical DCS scenario, a number of sensors
measure signals that are each individually sparse in some basis and also correlated
from sensor to sensor. Each sensor independently encodes its signal by projecting it
onto another, incoherent basis (such as a random one) and then transmits just a few
of the resulting coefficients to a single collection point. Under the right conditions,
a decoder at the collection point (presumably equipped with more computational
resources than the individual sensors) can reconstruct each of the signals precisely.

The DCS theory rests on a concept that we term the joint sparsity of a signal
ensemble. We study in detail three simple models for jointly sparse signals, propose
tractable algorithms for joint recovery of signal ensembles from incoherent projections,
and characterize theoretically and empirically the number of measurements per sen-
sor required for accurate reconstruction. While the sensors operate entirely without
collaboration, our simulations reveal that in practice the savings in the total number
of required measurements can be substantial over separate CS decoding, especially
when a majority of the sparsity is shared among the signals.

This chapter is organized as follows. Section 5.1 introduces our three models for
joint sparsity: JSM-1, 2, and 3. We provide our detailed analysis and simulation
results for these models in Sections 5.2, 5.3, and 5.4, respectively.

5.1 Joint Sparsity Models

In this section, we generalize the notion of a signal being sparse in some basis to
the notion of an ensemble of signals being jointly sparse. In total, we consider three
different joint sparsity models (JSMs) that apply in different situations. In the first
two models, each signal is itself sparse, and so we could use the CS framework from
Section 2.8 to encode and decode each one separately (independently). However,
there also exists a framework wherein a joint representation for the ensemble uses
fewer total vectors. In the third model, no signal is itself sparse, yet there still
exists a joint sparsity among the signals that allows recovery from significantly fewer
measurements per sensor.

We will use the following notation in this chapter for signal ensembles and our
measurement model. Denote the signals in the ensemble by xj, j ∈ {1, 2, . . . , J}, and
assume that each signal xj ∈ RN . We use xj(n) to denote sample n in signal j, and
we assume that there exists a known sparse basis Ψ for RN in which the xj can be
sparsely represented. The coefficients of this sparse representation can take arbitrary
real values (both positive and negative). Denote by Φj the measurement matrix for
signal j; Φj is Mj×N and, in general, the entries of Φj are different for each j. Thus,
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yj = Φjxj consists of Mj < N incoherent measurements of xj.
2 We will emphasize

random i.i.d. Gaussian matrices Φj in the following, but other schemes are possible,
including random ±1 Bernoulli/Rademacher matrices, and so on.

In previous chapters, we discussed signals with intra-signal correlation (within
each xj) or signals with inter-signal correlation (between xj1 and xj2). The three
following models sport both kinds of correlation simultaneously.

5.1.1 JSM-1: Sparse common component + innovations

In this model, all signals share a common sparse component while each individual
signal contains a sparse innovation component; that is,

xj = zC + zj, j ∈ {1, 2, . . . , J}

with
zC = ΨαC , ‖αC‖0 = KC and zj = Ψαj, ‖αj‖0 = Kj.

Thus, the signal zC is common to all of the xj and has sparsity KC in basis Ψ. The
signals zj are the unique portions of the xj and have sparsity Kj in the same basis.
Denote by ΩC the support set of the nonzero αC values and by Ωj the support set of
αj.

A practical situation well-modeled by JSM-1 is a group of sensors measuring tem-
peratures at a number of outdoor locations throughout the day. The temperature
readings xj have both temporal (intra-signal) and spatial (inter-signal) correlations.
Global factors, such as the sun and prevailing winds, could have an effect zC that is
both common to all sensors and structured enough to permit sparse representation.
More local factors, such as shade, water, or animals, could contribute localized inno-
vations zj that are also structured (and hence sparse). A similar scenario could be
imagined for a network of sensors recording light intensities, air pressure, or other
phenomena. All of these scenarios correspond to measuring properties of physical
processes that change smoothly in time and in space and thus are highly correlated.

5.1.2 JSM-2: Common sparse supports

In this model, all signals are constructed from the same sparse set of basis vectors,
but with different coefficients; that is,

xj = Ψαj, j ∈ {1, 2, . . . , J}, (5.1)

where each αj is nonzero only on the common coefficient set Ω ⊂ {1, 2, . . . , N} with
|Ω| = K. Hence, all signals have `0 sparsity of K, and all are constructed from the

2Note that the measurements at sensor j can be obtained either indirectly by sampling the signal
xj and then computing the matrix-vector product yj = Φjxj or directly by special-purpose hardware
that computes yj without first sampling (see [33], for example).
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same K basis elements but with arbitrarily different coefficients.
A practical situation well-modeled by JSM-2 is where multiple sensors acquire

replicas of the same Fourier-sparse signal but with phase shifts and attenuations
caused by signal propagation. In many cases it is critical to recover each one of the
sensed signals, such as in many acoustic localization and array processing algorithms.
Another useful application for JSM-2 is MIMO communication [129].

Similar signal models have been considered by different authors in the area of
simultaneous sparse approximation [129–131]. In this setting, a collection of sparse
signals share the same expansion vectors from a redundant dictionary. The sparse
approximation can be recovered via greedy algorithms such as Simultaneous Orthogo-
nal Matching Pursuit (SOMP) [129,130] or MMV Order Recursive Matching Pursuit
(M-ORMP) [131]. We use the SOMP algorithm in our setting (see Section 5.3) to re-
cover from incoherent measurements an ensemble of signals sharing a common sparse
structure.

5.1.3 JSM-3: Nonsparse common component + sparse innovations

This model extends JSM-1 so that the common component need no longer be
sparse in any basis; that is,

xj = zC + zj, j ∈ {1, 2, . . . , J}

with
zC = ΨαC and zj = Ψαj, ‖αj‖0 = Kj,

but zC is not necessarily sparse in the basis Ψ. We also consider the case where the
supports of the innovations are shared for all signals, which extends JSM-2. Note
that separate CS reconstruction cannot be applied under JSM-3, since the common
component is not sparse.

A practical situation well-modeled by JSM-3 is where several sources are recorded
by different sensors together with a background signal that is not sparse in any basis.
Consider, for example, an idealized computer vision-based verification system in a
device production plant. Cameras acquire snapshots of components in the production
line; a computer system then checks for failures in the devices for quality control
purposes. While each image could be extremely complicated, the ensemble of images
will be highly correlated, since each camera is observing the same device with minor
(sparse) variations.

JSM-3 could also be useful in some non-distributed scenarios. For example, it
motivates the compression of data such as video, where the innovations or differences
between video frames may be sparse, even though a single frame may not be very
sparse. In this case, JSM-3 suggests that we encode each video frame independently
using CS and then decode all frames of the video sequence jointly. This has the
advantage of moving the bulk of the computational complexity to the video decoder.
Puri and Ramchandran have proposed a similar scheme based on Wyner-Ziv dis-
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tributed encoding in their PRISM system [132]. In general, JSM-3 may be invoked
for ensembles with significant inter-signal correlations but insignificant intra-signal
correlations.

5.1.4 Refinements and extensions

Each of the JSMs proposes a basic framework for joint sparsity among an en-
semble of signals. These models are intentionally generic; we have not, for example,
mentioned the processes by which the index sets and coefficients are assigned. In sub-
sequent sections, to give ourselves a firm footing for analysis, we will often consider
specific stochastic generative models, in which (for example) the nonzero indices are
distributed uniformly at random and the nonzero coefficients are drawn from a ran-
dom Gaussian distribution. While some of our specific analytical results rely on these
assumptions, the basic algorithms we propose should generalize to a wide variety of
settings that resemble the JSM-1, 2, and 3 models.

It should also be clear that there are many possible joint sparsity models beyond
the three we have introduced. One immediate extension is a combination of JSM-1
and JSM-2, where the signals share a common set of sparse basis vectors but with
different expansion coefficients (as in JSM-2) plus additional innovation components
(as in JSM-1). For example, consider a number of sensors acquiring different delayed
versions of a signal that has a sparse representation in a multiscale basis such as a
wavelet basis. The acquired signals will share the same wavelet coefficient support at
coarse scales with different values, while the supports at each sensor will be different
for coefficients at finer scales. Thus, the coarse scale coefficients can be modeled as
the common support component, and the fine scale coefficients can be modeled as the
innovation components.

Further work in this area will yield new JSMs suitable for other application sce-
narios. Applications that could benefit include multiple cameras taking digital photos
of a common scene from various angles [133]. Additional extensions are discussed in
Chapter 7.

5.2 Recovery Strategies for Sparse Common Component +
Innovations Model (JSM-1)

For this model, in order to characterize the measurement rates Mj required to
jointly reconstruct the signals xj, we have proposed an analytical framework inspired
by principles of information theory and parallels with the Slepian-Wolf theory. This
section gives a basic overview of the ideas and results; we refer the reader to [121] for
the full details.

Our information theoretic perspective allows us to formalize the following intu-
ition. Consider the simple case of J = 2 signals. By employing the CS machinery, we
might expect that (i) (KC +K1)c coefficients suffice to reconstruct x1, (ii) (KC +K2)c
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coefficients suffice to reconstruct x2, yet only (iii) (KC +K1 +K2)c coefficients should
suffice to reconstruct both x1 and x2, because we have KC + K1 + K2 nonzero ele-
ments in x1 and x2. In addition, given the (KC +K1)c measurements for x1 as side
information, and assuming that the partitioning of x1 into z and z1 is known, cK2

measurements that describe z2 should allow reconstruction of x2. (In this sense, we
may view K2 as a “conditional sparsity,” in parallel with the notion of conditional
entropy.)

Formalizing these arguments allows us to establish theoretical lower bounds on
the required measurement rates at each sensor. Like the single-signal CS problem,
these measurement rates depend also on the reconstruction scheme. For example,
suppose we formulate the recovery problem using matrices and vectors as

z ,



zC

z1

z2


 , x ,

[
x1

x2

]
, y ,

[
y1

y2

]
, Φ ,

[
Φ1 0
0 Φ2

]
, (5.2)

and supposing that Ψ = IN , we can define

Ψ̃ ,

[
Ψ Ψ 0
Ψ 0 Ψ

]
(5.3)

and write x = Ψ̃z.
Now, we consider the following reconstruction algorithm that minimizes the total

`0 sparsity among all feasible solutions

ẑ = arg min ‖zC‖0 + ‖z1‖0 + ‖z2‖0 s.t. y = ΦΨ̃z. (5.4)

We have proved that, for this algorithm to succeed, it is necessary and sufficient for
each measurement rate Mj to be at least one greater than the conditional sparsity
Kj and for the total measurement rate

∑
j Mj be at least one greater than the total

sparsity KC +
∑

j Kj; such bounds are clear analogues of the Slepian-Wolf theory. In
fact, these are lower bounds for any reconstruction algorithm to succeed. (This is only
the basic idea, and certain technical details must also be considered; see [121, Section
4].) For more tractable recovery algorithms, we establish similar lower bounds on the
measurement rates required for `1 recovery, and we also establish upper bounds on the
required measurement rates Mj by proposing a specific algorithm for reconstruction.
The algorithm uses carefully designed measurement matrices Φj (in which some rows
are identical and some differ) so that the resulting measurements can be combined to
allow step-by-step recovery of the sparse components.

Figure 5.1 shows such our bounds for the case of J = 2 signals, with signal
lengths N = 1000 and sparsities KC = 200, K1 = K2 = 50. We see that the
theoretical rates Mj are below those required for separable CS recovery of each signal
xj. Our numerical simulations (involving a slightly customized `1 algorithm where
the sparsity of zC is penalized by a factor γC) confirm the potential savings. As
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Figure 5.1: Converse bounds and achievable measurement rates for J = 2 signals with
common sparse component and sparse innovations (JSM-1). The measurement rates Rj :=
Mj/N reflect the number of measurements normalized by the signal length. The pink curve
denotes the rates required for separable CS signal reconstruction.

demonstrated in Figure 5.2, the degree to which joint decoding outperforms separate
decoding is directly related to the amount of shared information KC . For KC = 11,
K1 = K2 = 2, M is reduced by approximately 30%. For smaller KC , joint decoding
barely outperforms separate decoding.

5.3 Recovery Strategies for Common Sparse Supports Model
(JSM-2)

Under the JSM-2 signal ensemble model from Section 5.1.2, separate recovery of
each signal via `0 minimization would require K + 1 measurements per signal, while
separate recovery via `1 minimization would require cK measurements per signal. As
we now demonstrate, the total number of measurements can be reduced substantially
by employing specially tailored joint reconstruction algorithms that exploit the com-
mon structure among the signals, in particular the common coefficient support set
Ω.

The algorithms we propose are inspired by conventional greedy pursuit algorithms
for CS (such as OMP [91]). In the single-signal case, OMP iteratively constructs the
sparse support set Ω; decisions are based on inner products between the columns
of ΦΨ and a residual. In the multi-signal case, there are more clues available for
determining the elements of Ω.
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Figure 5.2: Reconstructing a signal ensemble with common sparse component and sparse
innovations (JSM-1). We plot the probability of perfect joint reconstruction (solid lines) and
independent CS reconstruction (dashed lines) as a function of the number of measurements
per signal M . The advantage of using joint instead of separate reconstruction depends on
the common sparsity.

5.3.1 Recovery via Trivial Pursuit

When there are many correlated signals in the ensemble, a simple non-iterative
greedy algorithm based on inner products will suffice to recover the signals jointly.
For simplicity but without loss of generality, we again assume that Ψ = IN and that
an equal number of measurements Mj = M are taken of each signal. We write Φj in
terms of its columns, with Φj = [φj,1, φj,2, . . . , φj,N ].

Trivial Pursuit (TP) Algorithm for JSM-2

1. Get greedy: Given all of the measurements, compute the test statistics

ξn =
1

J

J∑

j=1

〈yj, φj,n〉2, n ∈ {1, 2, . . . , N} (5.5)

and estimate the elements of the common coefficient support set by

Ω̂ = {n having one of the K largest ξn}.

When the sparse, nonzero coefficients are sufficiently generic (as defined below),
we have the following surprising result.

Theorem 5.1 Let Ψ be an orthonormal basis for RN , let the measurement matrices
Φj contain i.i.d. Gaussian entries, and assume that the nonzero coefficients in the αj
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are i.i.d. Gaussian random variables. Then with M ≥ 1 measurements per signal,
TP recovers Ω with probability approaching one as J →∞.

Proof: See [121, Appendix G].

In words, with fewer than K measurements per sensor, it is possible to recover
the sparse support set Ω under the JSM-2 model.3 Of course, this approach does
not recover the K coefficient values for each signal; K measurements per sensor are
required for this.

Theorem 5.2 Assume that the nonzero coefficients in the αj are i.i.d. Gaussian
random variables. Then the following statements hold:

1. Let the measurement matrices Φj contain i.i.d. Gaussian entries, with each
matrix having an oversampling factor of c = 1 (that is, Mj = K for each
measurement matrix Φj). Then TP recovers all signals from the ensemble {xj}
with probability approaching one as J →∞.

2. Let Φj be a measurement matrix with oversampling factor c < 1 (that is, Mj <
K), for some j ∈ {1, 2, . . . , J}. Then with probability one, the signal xj cannot
be uniquely recovered by any algorithm for any value of J .

The first statement is an immediate corollary of Theorem 5.1; the second state-
ment follows because each equation yj = Φjxj would be underdetermined even if the
nonzero indices were known. Thus, under the JSM-2 model, the Trivial Pursuit algo-
rithm asymptotically performs as well as an oracle decoder that has prior knowledge
of the locations of the sparse coefficients. From an information theoretic perspective,
Theorem 5.2 provides tight achievable and converse bounds for JSM-2 signals.

In a technical report [134], we derive an approximate formula for the probability
of error in recovering the common support set Ω given J , N , K, and M . Figure 5.3
depicts the performance of the formula in comparison to simulation results. While
theoretically interesting and potentially practically useful, these results require J to
be large. Our numerical experiments show that TP works well even when M is small,
as long as J is sufficiently large. However, in the case of fewer signals (small J),
TP performs poorly. We propose next an alternative recovery technique based on
simultaneous greedy pursuit that performs well for small J .

5.3.2 Recovery via iterative greedy pursuit

In practice, the common sparse support among the J signals enables a fast itera-
tive algorithm to recover all of the signals jointly. Tropp and Gilbert have proposed

3One can also show the somewhat stronger result that, as long as
∑

j Mj � N , TP recovers Ω

with probability approaching one. We have omitted this additional result for brevity.
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Figure 5.3: Reconstruction using TP for JSM-2. Approximate formula (dashed lines) for
the probability of error in recovering the support set Ω in JSM-2 using TP given J , N ,
K, and M [134] compared against simulation results (solid) for fixed N = 50, K = 5 and
varying number of measurements M and number of signals J = 5, J = 20, and J = 100.

one such algorithm, called Simultaneous Orthogonal Matching Pursuit (SOMP) [129],
which can be readily applied in our DCS framework. SOMP is a variant of OMP that
seeks to identify Ω one element at a time. (A similar simultaneous sparse approxi-
mation algorithm has been proposed using convex optimization; see [135] for details.)
We dub the DCS-tailored SOMP algorithm DCS-SOMP.

To adapt the original SOMP algorithm to our setting, we first extend it to cover
a different measurement basis Φj for each signal xj. Then, in each DCS-SOMP
iteration, we select the column index n ∈ {1, 2, . . . , N} that accounts for the greatest
amount of residual energy across all signals. As in SOMP, we orthogonalize the
remaining columns (in each measurement basis) after each step; after convergence we
obtain an expansion of the measurement vector on an orthogonalized subset of the
holographic basis vectors. To obtain the expansion coefficients in the sparse basis,
we then reverse the orthogonalization process using the QR matrix factorization. We
assume without loss of generality that Ψ = IN .

DCS-SOMP Algorithm for JSM-2

1. Initialize: Set the iteration counter ` = 1. For each signal index j ∈ {1, 2, . . . , J},
initialize the orthogonalized coefficient vectors β̂j = 0, β̂j ∈ RM ; also initialize

the set of selected indices Ω̂ = ∅. Let rj,` denote the residual of the measurement
yj remaining after the first ` iterations, and initialize rj,0 = yj.

2. Select the dictionary vector that maximizes the value of the sum of the magni-
tudes of the projections of the residual, and add its index to the set of selected
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indices

n` = arg max
n=1,2,...,N

J∑

j=1

|〈rj,`−1, φj,n〉|
‖φj,n‖2

,

Ω̂ = [Ω̂ n`].

3. Orthogonalize the selected basis vector against the orthogonalized set of pre-
viously selected dictionary vectors

γj,` = φj,n`
−

`−1∑

t=0

〈φj,n`
, γj,t〉

‖γj,t‖22
γj,t.

4. Iterate: Update the estimate of the coefficients for the selected vector and
residuals

β̂j(`) =
〈rj,`−1, γj,`〉
‖γj,`‖22

,

rj,` = rj,`−1 −
〈rj,`−1, γj,`〉
‖γj,`‖22

γj,`.

5. Check for convergence: If ‖rj,`‖2 > ε‖yj‖2 for all j, then increment ` and go
to Step 2; otherwise, continue to Step 6. The parameter ε determines the target
error power level allowed for algorithm convergence. Note that due to Step 3
the algorithm can only run for up to M iterations.

6. De-orthogonalize: Consider the relationship between Γj = [γj,1, γj,2, . . . , γj,M ]
and the Φj given by the QR factorization

Φj,Ω̂ = ΓjRj,

where Φj,Ω̂ = [φj,n1 , φj,n2 , . . . , φj,nM
] is the so-called mutilated basis.4 Since yj =

Γjβj = Φj,Ω̂xj,Ω̂ = ΓjRjxj,Ω̂, where xj,Ω̂ is the mutilated coefficient vector, we
can compute the signal estimates {x̂j} as

α̂j,Ω̂ = R−1
j β̂j,

x̂j = Ψα̂j,

where α̂j,Ω̂ is the mutilated version of the sparse coefficient vector α̂j.

4We define a mutilated basis ΦΩ as a subset of the basis vectors from Φ = [φ1, φ2, . . . , φN ]
corresponding to the indices given by the set Ω = {n1, n2, . . . , nM}, that is, ΦΩ = [φn1

, φn2
, . . . , φnM

].
This concept can be extended to vectors in the same manner.
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In practice, each sensor projects its signal xj via Φjxj to produce ĉK measurements
for some ĉ. The decoder then applies DCS-SOMP to reconstruct the J signals jointly.
We orthogonalize because as the number of iterations approaches M the norms of the
residues of an orthogonal pursuit decrease faster than for a non-orthogonal pursuit.

Thanks to the common sparsity structure among the signals, we believe (but
have not proved) that DCS-SOMP will succeed with ĉ < c(S). Empirically, we
have observed that a small number of measurements proportional to K suffices for a
moderate number of sensors J . We conjecture that K + 1 measurements per sensor
suffice as J → ∞; numerical experiments are presented in Section 5.3.3. Thus, in
practice, this efficient greedy algorithm enables an oversampling factor ĉ = (K+1)/K
that approaches 1 as J , K, and N increase.

5.3.3 Simulations for JSM-2

We now present a simulation comparing separate CS reconstruction versus joint
DCS-SOMP reconstruction for a JSM-2 signal ensemble. Figure 5.4 plots the prob-
ability of perfect reconstruction corresponding to various numbers of measurements
M as the number of sensors varies from J = 1 to 32. We fix the signal lengths at
N = 50 and the sparsity of each signal to K = 5.

With DCS-SOMP, for perfect reconstruction of all signals the average number of
measurements per signal decreases as a function of J . The trend suggests that, for
very large J , close to K measurements per signal should suffice. On the contrary,
with separate CS reconstruction, for perfect reconstruction of all signals the number
of measurements per sensor increases as a function of J . This surprise is due to the
fact that each signal will experience an independent probability p ≤ 1 of successful
reconstruction; therefore the overall probability of complete success is pJ . Conse-
quently, each sensor must compensate by making additional measurements. This
phenomenon further motivates joint reconstruction under JSM-2.

Finally, we note that we can use algorithms other than DCS-SOMP to recover
the signals under the JSM-2 model. Cotter et al. [131] have proposed additional
algorithms (such as the M-FOCUSS algorithm) that iteratively eliminate basis vectors
from the dictionary and converge to the set of sparse basis vectors over which the
signals are supported. We hope to extend such algorithms to JSM-2 in future work.

5.4 Recovery Strategies for Nonsparse Common Component
+ Sparse Innovations Model (JSM-3)

The JSM-3 signal ensemble model from Section 5.1.3 provides a particularly com-
pelling motivation for joint recovery. Under this model, no individual signal xj is
sparse, and so recovery of each signal separately would require fully N measurements
per signal. As in the other JSMs, however, the commonality among the signals makes
it possible to substantially reduce this number.
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Figure 5.4: Reconstructing a signal ensemble with common sparse supports (JSM-2). We
plot the probability of perfect reconstruction via DCS-SOMP (solid lines) and independent
CS reconstruction (dashed lines) as a function of the number of measurements per signal
M and the number of signals J . We fix the signal length to N = 50, the sparsity to K = 5,
and average over 1000 simulation runs. An oracle encoder that knows the positions of the
large signal expansion coefficients would use 5 measurements per signal.

5.4.1 Recovery via Transpose Estimation of Common Component

Successful recovery of the signal ensemble {xj} requires recovery of both the non-
sparse common component zC and the sparse innovations {zj}. To illustrate the
potential for signal recovery using far fewer than N measurements per sensor, con-
sider the following gedankenexperiment. Again, for simplicity but without loss of
generality, we assume Ψ = IN .

If zC were known, then each innovation zj could be estimated using the standard
single-signal CS machinery on the adjusted measurements

yj − ΦjzC = Φjzj.

While zC is not known in advance, it can be estimated from the measurements. In
fact, across all J sensors, a total of

∑
j Mj random projections of zC are observed

(each corrupted by a contribution from one of the zj). Since zC is not sparse, it cannot
be recovered via CS techniques, but when the number of measurements is sufficiently
large (

∑
j Mj � N), zC can be estimated using standard tools from linear algebra.

A key requirement for such a method to succeed in recovering zC is that each Φj be
different, so that their rows combine to span all of RN . In the limit (again, assuming
the sparse innovation coefficients are well-behaved), the common component zC can
be recovered while still allowing each sensor to operate at the minimum measurement
rate dictated by the {zj}. A prototype algorithm is listed below, where we assume
that each measurement matrix Φj has i.i.d. N (0, σ2

j ) entries.
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TECC Algorithm for JSM-3

1. Estimate common component: Define the matrix Φ̂ as the concatenation
of the regularized individual measurement matrices Φ̂j = 1

Mjσ2
j
Φj, that is, Φ̂ =

[Φ̂1, Φ̂2, . . . , Φ̂J ]. Calculate the estimate of the common component as ẑC =
1
J
Φ̂Ty.

2. Estimate measurements generated by innovations: Using the previous
estimate, subtract the contribution of the common part on the measurements
and generate estimates for the measurements caused by the innovations for each
signal: ŷj = yj − Φj ẑC .

3. Reconstruct innovations: Using a standard single-signal CS reconstruction
algorithm, obtain estimates of the innovations ẑj from the estimated innovation
measurements ŷj.

4. Obtain signal estimates: Estimate each signal as the sum of the common
and innovations estimates; that is, x̂j = ẑC + ẑj.

The following theorem shows that asymptotically, by using the TECC algorithm,
each sensor need only measure at the rate dictated by the sparsity Kj.

Theorem 5.3 Assume that the nonzero expansion coefficients of the sparse innova-
tions zj are i.i.d. Gaussian random variables and that their locations are uniformly
distributed on {1, 2, ..., N}. Then the following statements hold:

1. Let the measurement matrices Φj contain i.i.d. N (0, σ2
j ) entries with Mj ≥

Kj + 1. Then each signal xj can be recovered using the TECC algorithm with
probability approaching one as J →∞.

2. Let Φj be a measurement matrix with Mj ≤ Kj for some j ∈ {1, 2, ..., J}. Then
with probability one, the signal xj cannot be uniquely recovered by any algorithm
for any value of J .

Proof: See Appendix B.

For large J , the measurement rates permitted by Statement 1 are the lowest
possible for any reconstruction strategy on JSM-3 signals, even neglecting the pres-
ence of the nonsparse component. Thus, Theorem 5.3 provides a tight achievable
and converse for JSM-3 signals. The CS technique employed in Theorem 5.3 involves
combinatorial searches for estimating the innovation components. More efficient tech-
niques could also be employed (including several proposed for CS in the presence of
noise [23, 26, 29, 30, 80]). It is reasonable to expect similar behavior; as the error
in estimating the common component diminishes, these techniques should perform
similarly to their noiseless analogues (Basis Pursuit [26,29], for example).
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5.4.2 Recovery via Alternating Common and Innovation Estimation

The preceding analysis demonstrates that the number of required measurements
in JSM-3 can be substantially reduced through joint recovery. While Theorem 5.3
suggests the theoretical gains as J → ∞, practical gains can also be realized with
a moderate number of sensors. For example, suppose in the TECC algorithm that
the initial estimate ẑC is not accurate enough to enable correct identification of the
sparse innovation supports {Ωj}. In such a case, it may still be possible for a rough
approximation of the innovations {zj} to help refine the estimate ẑC . This in turn
could help to refine the estimates of the innovations. Since each component helps to
estimate the other components, we propose an iterative algorithm for JSM-3 recovery.

The Alternating Common and Innovation Estimation (ACIE) algorithm exploits
the observation that once the basis vectors comprising the innovation zj have been
identified in the index set Ωj, their effect on the measurements yj can be removed to
aid in estimating zC . Suppose that we have an estimate for these innovation basis
vectors in Ω̂j. We can then partition the measurements into two parts: the projection
into span({φj,n}n∈Ω̂j

) and the component orthogonal to that span. We build a basis

for the RMj where yj lives:
Bj = [Φj,Ω̂j

Qj],

where Φj,Ω̂j
is the mutilated holographic basis corresponding to the indices in Ω̂j, and

the Mj × (Mj − |Ω̂j|) matrix Qj = [qj,1 . . . qj,Mj−|Ω̂j |] has orthonormal columns that
span the orthogonal complement of Φj,Ω̂j

.
This construction allows us to remove the projection of the measurements into the

aforementioned span to obtain measurements caused exclusively by vectors not in Ω̂j

ỹj = Qj
Tyj, (5.6)

Φ̃j = Qj
T Φj. (5.7)

These modifications enable the sparse decomposition of the measurement, which now
lives in RMj−|Ω̂j |, to remain unchanged

ỹj =
N∑

n=1

ajφ̃j,n.

Thus, the modified measurements Ỹ =
[
ỹ1

T ỹ2
T . . . ỹJ

T
]

T and modified holo-

graphic basis Φ̃ =
[
Φ̃1

T Φ̃2
T . . . Φ̃J

T
]

T can be used to refine the estimate of the

measurements caused by the common part of the signal

z̃C = Φ̃†Ỹ , (5.8)

where A† = A
T
(AA

T
)−1 denotes the pseudoinverse of matrix A.
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In the case where the innovation support estimate is correct (Ω̂j = Ωj), the mea-
surements ỹj will describe only the common component zC . If this is true for every
signal j and the number of remaining measurements

∑
j Mj − KJ ≥ N , then zC

can be perfectly recovered via (5.8). However, it may be difficult to obtain correct
estimates for all signal supports in the first iteration of the algorithm, and so we find
it preferable to refine the estimate of the support by executing several iterations.

ACIE Algorithm for JSM-3

1. Initialize: Set Ω̂j = ∅ for each j. Set the iteration counter ` = 1.

2. Estimate common component: Update estimate z̃C according to (5.6)–
(5.8).

3. Estimate innovation supports: For each sensor j, after subtracting the
contribution z̃C from the measurements, ŷj = yj − Φj z̃C , estimate the sparse

support of each signal innovation Ω̂j.

4. Iterate: If ` < L, a preset number of iterations, then increment ` and return
to Step 2. Otherwise proceed to Step 5.

5. Estimate innovation coefficients: For each signal j, estimate the coefficients
for the indices in Ω̂j

α̂j,Ω̂j
= Φ†

j,Ω̂j
(yj − Φj z̃C),

where α̂j,Ω̂j
is a mutilated version of the innovation’s sparse coefficient vector

estimate α̂j.

6. Reconstruct signals: Compute the estimate of each signal as x̂j = z̃C + ẑj =
z̃C + Φjα̂j.

Estimation of the sparse supports in Step 3 can be accomplished using a variety of
techniques. We propose to run ` iterations of OMP; if the supports of the innovations
are known to match across signals — as in the JSM-2 scenario — then more powerful
algorithms like SOMP can be used.

5.4.3 Simulations for JSM-3

We now present simulations of JSM-3 reconstruction in the following scenario.
Consider J signals of length N = 50 containing a common white noise component
zC(n) ∼ N (0, 1) for n ∈ {1, 2, . . . , N} that, by definition, is not sparse in any fixed
basis. Each innovations component zj has sparsity K = 5 (once again in the time
domain), resulting in xj = zC + zj. The support for each innovations component is
randomly selected with uniform probability from all possible supports for K-sparse,
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length-N signals. We draw the values of the innovation coefficients from a unit-
variance Gaussian distribution.

We study two different cases. The first is an extension of JSM-1: we select the sup-
ports for the various innovations independently and then apply OMP independently
to each signal in Step 3 of the ACIE algorithm in order to estimate its innovations
component. The second case is an extension of JSM-2: we select one common support
for all of the innovations across the signals and then apply the DCS-SOMP algorithm
from Section 5.3.2 to estimate the innovations in Step 3. In both cases we set L = 10.
We test the algorithms for different numbers of signals J and calculate the probabil-
ity of correct reconstruction as a function of the (same) number of measurements per
signal M .

Figure 5.5(a) shows that, for sufficiently large J , we can recover all of the signals
with significantly fewer than N measurements per signal. We note the following
behavior in the graph. First, as J grows, it becomes more difficult to perfectly
reconstruct all J signals. We believe this is inevitable, because even if zC were known
without error, then perfect ensemble recovery would require the successful execution
of J independent runs of OMP. Second, for small J , the probability of success can
decrease at high values of M . We believe this behavior is due to the fact that initial
errors in estimating zC may tend to be somewhat sparse (since ẑC roughly becomes an
average of the signals {xj}), and these sparse errors can mislead the subsequent OMP
processes. For more moderate M , it seems that the errors in estimating zC (though
greater) tend to be less sparse. We expect that a more sophisticated algorithm could
alleviate such a problem, and we note that the problem is also mitigated at higher J .

Figure 5.5(b) shows that when the sparse innovations share common supports
we see an even greater savings. As a point of reference, a traditional approach to
signal encoding would require 1600 total measurements to reconstruct these J = 32
nonsparse signals of length N = 50. Our approach requires only approximately 10
random measurements per sensor for a total of 320 measurements. In Chapter 7 we
discuss possible extensions of the DCS framework to incorporate additional models
and algorithms.

107



(a)
0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements per Signal, M

P
ro

ba
bi

lit
y 

of
 E

xa
ct

 R
ec

on
st

ru
ct

io
n

J = 8
J = 16
J = 32

(b)
0 5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements per Signal, M

P
ro

ba
bi

lit
y 

of
 E

xa
ct

 R
ec

on
st

ru
ct

io
n

J = 8
J = 16
J = 32

Figure 5.5: Reconstructing a signal ensemble with nonsparse common component and
sparse innovations (JSM-3) using ACIE. (a) Reconstruction using OMP independently on
each signal in Step 3 of the ACIE algorithm (innovations have arbitrary supports). (b) Re-
construction using DCS-SOMP jointly on all signals in Step 3 of the ACIE algorithm (in-
novations have identical supports). Signal length N = 50, sparsity K = 5. The common
structure exploited by DCS-SOMP enables dramatic savings in the number of measure-
ments. We average over 1000 simulation runs.
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Chapter 6
Random Projections of Signal Manifolds

In this chapter,1 inspired by a geometric perspective, we develop new theory and
methods for problems involving random projections for dimensionality reduction. In
particular, we consider embedding results previously applicable only to finite point
clouds (the JL lemma) or to sparse signal models (Compressed Sensing) and generalize
these results to include manifold-based signal models.

As our primary theoretical contribution (Theorem 6.2), we consider the effect of
a random projection operator on a smooth K-dimensional submanifold of RN , estab-
lishing a sufficient number M of random projections to ensure a stable embedding
of the manifold in RM . Like the fundamental bound in Compressed Sensing (CS),
our requisite M is linear in the “information level” K and logarithmic in the ambient
dimension N ; additionally we identify a logarithmic dependence on the volume and
curvature of the manifold. To establish the result, we use an effective finite “sam-
pling” of the manifold (plus its tangent spaces) to capture its relevant structure and
apply the JL lemma.

From a signal processing perspective, this result implies that small numbers of ran-
dom measurements can capture a great deal of information about manifold-modeled
signals. For example, random projections could be used to distinguish one signal from
another on the same manifold. This is reminiscent of the CS problem, in which sparse
signals can be distinguished from their random projections. This chapter takes the
first steps in exploring and formalizing these connections and introducing a frame-
work for manifold-driven CS recovery. As we demonstrate, manifold-modeled signals
can also be recovered from random projections, where the number of required mea-
surements is proportional to the manifold dimension, rather than the sparsity of the
signal.

Our embedding result also implies that signal collections living along a manifold
will have their basic neighborhood relationships preserved when projected to lower
dimensions. This has promising implications in manifold learning, and we demon-
strate that several standard techniques for learning manifold structure from sampled
data can also be applied to random projections of that data.

This chapter is organized as follows. Section 6.1 examines theoretical issues con-
cerning the embedding of signal manifolds under random projections. Section 6.2
discusses possible applications of random projections for manifold models in CS. Sec-
tion 6.3 discusses additional applications in manifold learning.

1This work is in collaboration with Richard Baraniuk [136].
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6.1 Manifold Embeddings under Random Projections

6.1.1 Inspiration — Whitney’s Embedding Theorem

The theoretical inspiration for this work follows from Whitney’s (Easy) Embed-
ding Theorem.

Theorem 6.1 [61] LetM be a compact Hausdorff Cr K-dimensional manifold, with
2 ≤ r ≤ ∞. Then there is a Cr embedding of M in R2K+1.

The proof of this theorem is highly insightful; it begins with an embedding ofM
in RN for some large N and then considers the normalized secant set of the manifold

Γ =

{
x− x′
‖x− x′‖2

: x, x′ ∈M
}
.

Roughly speaking, the secant set forms a 2K-dimensional subset of the (N − 1)-
dimensional unit sphere SN−1 (which equates with the space of projections from RN

to RN−1), and so there exists a projection from RN to RN−1 that embedsM (without
overlap). This can be repeated until reaching R2K+1. In signal processing, this secant
set has been explicitly employed in order to find the optimal projection vectors for a
given manifold (see [41,42], which also provide interesting and insightful discussions).

Our work will build upon the following useful observation: Using identical argu-
ments and assuming mild conditions on the signal manifoldM (ensuring that Γ has
zero measure in SN−1), it also follows that with high probability, a randomly chosen
projection of the manifold from RN to R2K+1 will be invertible.

6.1.2 Visualization

As an example, Figure 6.1 shows the random projection of two 1-D manifolds from
RN onto R3. In each case, distinct signals from the manifold remain separated in its
embedding in R3. However, it is also clear that the differentiability of the manifold
(related to the differentiability of the primitive function g in this example; see also
Chapter 4) will play a critical role. We specifically account for the smoothness of the
manifold in our embedding results in Section 6.1.4. (Indeed, while non-differentiable
manifolds do not meet the criteria of Theorem 6.1, we will be interested in their
projections as well. Section 6.2.5 discusses this issue in more detail.)

6.1.3 A geometric connection with Compressed Sensing

Our discussion of random projections and Whitney’s Embedding Theorem has
an immediate parallel with a basic result in CS. In particular, one may interpret
statement two of Theorem 2.1 as follows: Let ΣK be the set of all K-sparse signals
in RN . With probability one, a random mapping Φ : RN 7→ RM embeds ΣK in RM .
(Hence, no two K-sparse signals are mapped to the same point.)
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Figure 6.1: Top row: The articulated signals fθ(t) = g(t − θ) are defined via shifts
of a primitive function g, where g is (left) a Gaussian pulse or (right) a step function.
Each signal is sampled at N points, and as θ changes, the resulting signals trace out 1-D
manifolds in RN . Bottom row: Projection of manifolds from RN onto random 3-D subspace;
the color/shading represents different values of θ ∈ R.

While we have already proved this statement in Appendix A, it can also be es-
tablished using the arguments of Section 6.1.1: The signal set ΣK consists of a union
of K-dimensional hyperplanes. The secant set for ΣK turns out to be a union of 2K-
dimensional hyperplanes (which loses 1 dimension after normalization). From this, it
follows that with probability one, every length-N K-sparse signal can be recovered
from just 2K random measurements (statement two of Theorem 2.1).

This connection to sparsity-based CS suggests that random projections may in-
deed be useful for capturing information about manifold-modeled signals as well. As
discussed in Section 2.8.3, however, it is often necessary in sparsity-based CS to take
more than 2K measurements in order to ensure tractable, robust recovery of sparse
signals. The Restricted Isometry Property (RIP) gives one condition for such stabil-
ity (see Section 2.8.6). Geometrically, the RIP can be interpreted as requiring not
only that ΣK embed in RM but also that this embedding be “stable” in the sense
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that K-sparse signals well separated in RN remain well separated in RM . For similar
reasons, we will desire such stability in embeddings of signal manifolds.

6.1.4 Stable embeddings

The following result establishes a sufficient number of random projections to en-
sure a stable embedding of a well-conditioned manifold. (Recall the terminology given
in Sections 2.1.3 and 2.2.)

Theorem 6.2 Let M be a compact K-dimensional submanifold of RN having con-
dition number 1/τ , volume V , and geodesic covering regularity R. Fix 0 < ε < 1 and
0 < ρ < 1. Let Φ be a random orthoprojector from RN to RM with

M = O

(
K log(NV Rτ−1ε−1) log(1/ρ)

ε2

)
. (6.1)

If M ≤ N , then with probability at least 1 − ρ the following statement holds: For
every pair of points x, y ∈M,

(1− ε)
√
M

N
≤ ‖Φx− Φy‖2
‖x− y‖2

≤ (1 + ε)

√
M

N
. (6.2)

Proof: See Appendix C.

Theorem 6.2 concerns the preservation of pairwise ambient distances on the man-
ifold; this can be immediately extended to geodesic distances as well.

Corollary 6.1 Let M and Φ be as in Theorem 6.2. Assuming (6.2) holds for all
pairs of points on M, then for every pair of points x, y ∈M,

(1− ε)
√
M

N
≤ dΦM(Φx,Φy)

dM(x, y)
≤ (1 + ε)

√
M

N
, (6.3)

where dΦM(Φx,Φy) denotes the geodesic distance between the projected points on the
image of M.

Proof: See Appendix D.

Before proceeding, we offer some brief remarks on these results.

1. Like the fundamental bound in Compressed Sensing, the requisite number of
random projections M to ensure a stable embedding of the manifold is linear
in the “information level” K and logarithmic in the ambient dimension N ;
additionally we identify a logarithmic dependence on the volume and curvature
of the manifold.
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2. The factor
√

M
N

is easily removed from (6.2) and (6.3) by simple rescaling of Φ.

3. The proof of Theorem 6.2 in fact establishes the bound (6.1) up to actual
constants; see (C.10) for the complete result.

4. The ln(1/ρ) factor in the numerator of (6.1) and (C.10) can be immediately
sharpened to

ln(1/ρ)

ln
(

19002KKK/2N3K/2RV
ε3KτK

)

to dramatically reduce the dependence on the failure probability ρ. (This follows
simply from Lemma 2.5 and a more careful accounting in Section C.3 of the
proof.)

5. The constant 200 appearing in (C.10) can likely be improved by increasing C1

and using a more careful analysis in Section C.6.

6. One may also consider extending our results to allow Φ to be a random M ×
N matrix with i.i.d. N (0, σ2) entries, where σ2 = 1/N . In order to adapt
the proof, one would need to account for the fact that Φ may no longer be
nonexpanding; however with high probability the norm ‖Φ‖2 can be bounded
by a small constant.

6.2 Applications in Compressed Sensing

We argued in Section 6.1 that certain signal manifolds will have stable embeddings
under random projections to low-dimensional spaces, and we drew parallels with
the well-conditioned embedding of ΣK that occurs in the typical CS setting. These
parallels suggest that it may indeed be possible to extend the CS theory and methods
to include manifold-based signal models.

To be specific, let us consider a length-N signal x that, rather than being K-
sparse, we assume lives on or near some known K-dimensional manifold M ⊂ RN .
From a collection of measurements y = Φx, where Φ is a random M ×N matrix, we
would like to recover x. As with sparsity-driven CS, there are certain basic questions
we must ask:

• How can x be recovered from y?

• How many measurements M are required?

• How stable is the recovery, and how accurately can x be recovered?

In this section, we provide preliminary theoretical insights into these issues and
present a series of promising numerical experiments.
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6.2.1 Methods for signal recovery

To discuss methods for recovering x from y = Φx based on a manifold model
M⊂ RN , we distinguish between the following two cases.

Case 1: x ∈M
In the first case, we assume that x lives precisely on the manifoldM in RN . As-

suming that Φ embedsM into RM , then, y will live precisely on the image ΦM ofM
in RM , and there will exist a unique x̂ = x onM that can explain the measurements.
The recovery problem then reduces to that of estimating the position of a signal on a
manifold (in RM). For differentiable manifolds, methods for solving this problem were
discussed in Section 2.5.3. (Even ifM is not explicitly parametric, local parametriza-
tions could be created for M in RN that will translate to local parmaterizations for
ΦM in RM .) We defer the topic of recovery for non-differentiable manifolds, however,
to Section 6.2.5.

Case 2: x 6∈ M
A potentially more interesting scenario arises when the manifold is only an ap-

proximation for the signal class. Examples include edges that are not entirely straight
or manifold-based signals corrupted by noise. In this second case, x may not live pre-
cisely on the manifoldM in RN , and so its projection y may not live precisely on ΦM
in RM . We propose the following optimization problem as a method for estimating
x:

x̂ = arg min
x′∈M

‖y − Φx′‖2 . (6.4)

For differentiable manifolds, this problem may again be solved using the methods
discussed in Section 2.5.3. Other recovery programs may also be considered, though
one advantage of (6.4) is that x̂ itself will belong to the manifoldM.

6.2.2 Measurements

To answer the question of how many CS measurements we must take for a manifold-
modeled signal, we again consider the two cases of Section 6.2.1. In the first case,
when the signal obeys the manifold model precisely, then a unique, correct solution
will exist as long as Φ embeds M in RM . Though this may be guaranteed with as
few as 2K+1 measurements, it could also be the case that such an embedding would
be very poorly conditioned. Intuitively, if two far-away points x, x′ ∈ M were to be
mapped onto nearby points in RM , then a recovery algorithm would need to take spe-
cial care in resolving signals living near x or x′. As indicated in Theorem 6.2, however,
additional measurements will ensure a well-conditioned embedding ofM. While the
theorem provides a useful insight into the interaction of various manifold parameters
(dimension, volume, curvature, etc.), we also defer in this section to empirical results
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for determining the number of required measurements, as (i) the constants derived
for (6.1) are possibly still too loose, and (ii) it may not be known whether a partic-
ular signal manifold meets the assumptions of Theorem 6.2 or with what parameters
(though this is an important topic for future work).

In the second case, when the signal may only approximately obey the manifold
model, we would like our recovery algorithm (6.4) to provide a robust estimate. This
robustness will again naturally relate to the quality of the embedding of M in RM .
Intuitively, if two far-away points x, x′ ∈ M were to be mapped onto nearby points,
then accurate recovery of any signals falling between x and x′ would be difficult.
Section 6.2.3 makes this notion more precise and proposes specific bounds for stable
recovery of manifold-modeled signals.

6.2.3 Stable recovery

Let x∗ be the “nearest neighbor” to x onM, i.e.,

x∗ = arg min
x′∈M

‖x− x′‖2 , (6.5)

supposing that this point is uniquely defined. To consider this recovery successful, we
would like to guarantee that ‖x− x̂‖2 is not much larger than ‖x− x∗‖2. As discussed
above, this type of stable, robust recovery will depend on a well-conditioned embed-
ding of M. To make this more precise, we consider both deterministic (instance-
optimal) and probabilistic bounds for signal recovery.

A deterministic bound

To state a deterministic, instance-optimal bound on signal recovery we use the
following measure for the quality of the embedding ofM [41, 42]

κ := inf
x,x′∈M; x 6=x′

‖Φx− Φx′‖2
‖x− x′‖2

.

We have the following theorem.

Theorem 6.3 Suppose x ∈ RN and that Φ is an orthoprojector from RN to RM . Let
x̂ be the estimation recovered from the projection y = Φx (according to (6.4)), and let
x∗ be the optimal estimate of x (according to (6.5)). Then

‖x− x̂‖2
‖x− x∗‖2

≤

√
4

κ2
− 3 + 2

√
1

κ2
− 1.

Proof: See Appendix E.
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As κ → 1, the bound on the right reduces simply to 1, and as κ→ 0, the bound
grows as 2/κ. Supposing that a sufficient number (6.1) of random measurement are
taken for a signal manifold, Theorem 6.2 indicates that with high probability, we can
expect

κ > (1− ε)
√
M

N
.

Supposing this holds, Theorem 6.3 then gives a deterministic bound on recovery for
any x ∈ RN . We stress that this is a worst case bound, however, and as we discuss
below, the accuracy is often significantly better.

We mention also that the algorithms introduced in [41,42] aim specifically to find
projection directions that maximize the quantity κ. However these lack the universal
applicability of random projections.

Finally, it is worth noting that Theorem 6.3 can be used to derive an `2 instance-
optimal bound for sparsity-driven CS recovery, by noting that the RIP of order 2K
implies that all distinct K-sparse signals remain well-separated in RM and gives
a corresponding lower bound on the κ for the embedding of ΣK . However, this
instance-optimal bound would also be quite weak, as it is impossible to derive strong
`2 instance-optimal bounds for CS [137].

A probabilistic bound

Our bound in Theorem 6.3 applies uniformly to any signal in RN . However, a much
sharper bound can be obtained by relaxing the instance-optimal requirement. Such a
guarantee comes again from the JL lemma. Assuming that the random orthoprojector
Φ is statistically independent of the signal x, then we may recall Section C.3 of the
proof of Theorem 6.2 and consider the embedding of the set {x} ∪B under Φ. With
high probability,2 each pairwise distance in this set will have compaction isometry
ε1. Hence, the distance from x to each anchor point will be well-preserved, and
since every manifold point is no more than T from an anchor point, then (assuming
‖x− x∗‖2 is sufficiently larger than T ) the distance from x to every point on M
will be well-preserved. This guarantees a satisfactory recovery x̂ in the approximate
nearest neighbor problem. (By examining, for example, the tangent spaces, this can
all be made more precise and extended to consider the case where ‖x− x∗‖2 is small.)

6.2.4 Basic examples

In order to illustrate the basic principles in action, we now consider a few examples
involving random projections of parametrized manifolds.

2By the addition of an extra point to the embedding, there is a nominal increase in the required
number of measurements. This increase becomes much more relevant in the case where a large
number of signals x would need to be embedded well with respect to the manifold.
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(a) (b) (c)

Figure 6.2: (a) Original image for our experiment, containing a Gaussian bump paramet-
rized by its position and width. (b) Initial guess for parameter estimation. (c) Error image
between original and initial guess. From just 14 random measurements we can recover the
unknown parameters of such an image with very high accuracy and with high probability.

Gaussian bumps

Our first experiment involves a smooth image appearance manifold (IAM) in which
each image contains a smooth Gaussian bump. For a given N -pixel image xθ, the
parameter θ describes both the position (2-D) and width (1-D) of the bump; see
Figure 6.2(a) for one such image. (Because the bump is smooth, the IAM will be
smooth as well.) We fix the amplitude of each bump equal to 1.

We consider the problem of estimating, from a collection of measurements y =
Φxθ, the unknown parameter θ. Our test image xθ is shown in Figure 6.2(a); we
choose N = 64×64 = 4096. To estimate the unknown parameter, we use 5 iterations
of Newton’s method, ignoring the second derivative term as discussed in Section 4.5.2.
Our starting guess for this iterative algorithm is shown in Figure 6.2(b). (We chose
this guess manually, but it could also be obtained, for example, by using a grid search
in RM .) Figure 6.2(c) shows the relative error between the true image and the initial
guess. For various values of M , we run 1000 trials over different realizations of the
random Gaussian M ×N matrix Φ.

We see in this experiment that the 3-D parameter θ can be recovered with very
high accuracy using very few measurements. When M = 7 (= 2 · 3 + 1), we recover
θ to very high accuracy (image MSE of 10−8 or less) in 86% of the trials. Increasing
the probability of accurate recovery to 99% requires just M = 14 measurements, and
surprisingly, with only M = 3 we still see accurate recovery in 12% of the trials. It
appears that this smooth manifold is very well-behaved under random projections.

Chirps

Our second experiment concerns another smooth (but more challenging) manifold.
We consider 1-D, length-N linear chirp signals, for which a 2-D parameter θ describes
the starting and ending frequencies. Our test signal of length N = 256 is shown
in Figure 6.3(a) and has starting and ending frequencies of 5.134Hz and 25.795Hz,
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Figure 6.3: (a) Original signal for our experiment, containing a linear chirp parametrized
by its starting and ending frequencies. (b) Initial guess for parameter estimation. (c) Error
signal between original and initial guess.

respectively. To estimate the unknown parameters from random measurements, we
use 10 iterations of the modified Newton’s method in RM ; our initial guess is shown in
Figure 6.3(b) and has starting and ending frequencies of 7Hz and 23Hz, respectively.
Figure 6.3(c) shows the relative error between the true signal and the starting guess.

When M = 5 (= 2 · 2 + 1), we recover θ to very high accuracy (image MSE of
10−8 or less) in 55% of the trials. Increasing the probability of accurate recovery to
99% requires roughly M = 30 measurements.

Across additional trials (including much higher N), we have observed that the
successful recovery of chirp parameters is highly dependent on an accurate starting
guess. Without an accurate initial guess, convergence is rare even with large M .
Given an accurate initial guess, however, we often see recovery within the range of
M described above. We attribute this sensitivity to the large area of this particular
manifold. Indeed, just fixing the starting and ending frequencies to be equal (so that
each signal is just a sinusoid, parametrized by its frequency), the manifold will visit
all N unit vectors of the Fourier basis (each of which is orthogonal to the others). So,
while smooth, this manifold does present a challenging case for parameter estimation.

Edges

We now consider a simple image processing task: given random projections of an
N -pixel image segment x, recover an approximation to the local edge structure. As
a model for this local edge structure, we adopt the 2-D wedgelet manifold. (Recall
from Chapter 3 that a wedgelet is a piecewise constant function defined on a dyadic
square block, where a straight edge separates the two constant regions; it can be
parametrized by the slope and offset of the edge.) Unlike our experiments above, this
manifold is non-differentiable, and so we cannot apply Newton’s method. Instead, we
sample this manifold to obtain a finite collection of wedgelets, project each wedgelet
to RM using Φ, and search for the closest match to our measurements y = Φx.
(In Section 6.2.5 we discuss a Multiscale Newton method that could be applied in
non-differentiable cases like this.)

As a first experiment (Figure 6.4), we examine a perfect edge originating on the
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Figure 6.4: Estimating image edge structure from a 256-pixel block. (a) original 16× 16
block. (b) manifold-based recovery from 5 random projections. (c) traditional CS recovery
from 7 random projections using OMP [91]. (d) OMP recovery from 50 random projections.
Perfect OMP recovery requires 70 or more random projections.

wedgelet manifold (but one that is not precisely among our discretized samples).
We let N = 16 × 16 = 256 and take M = 5 (= 2 · 2 + 1) random projections.
Although the sampling grid for the manifold search does not contain Φx precisely,
we see in Figure 6.4(b) that a very close approximation is recovered. In contrast,
using traditional CS techniques to recover x from its random projections (seeking a
sparse reconstruction using 2-D Haar wavelets) requires an order of magnitude more
measurements.

As a second experiment (Figure 6.5) we analyze the robustness of the recovery
process. For this we consider a 256 × 256 portion of the Peppers test image. We
break the image into squares of size 16 × 16, measure each one using 10 random
projections, and then search the projected wedgelet samples to fit a wedgelet on
each block. (We also include the mean and energy of each block as 2 additional
“measurements,” which we use to estimate the 2 grayscale values for each wedgelet.)
We see from the figure that the recovery is fairly robust and accurately recovers most
of the prominent edge structure. The recovery is also fast, taking less than one second
for the entire image. For point of comparison we include the best-possible wedgelet
approximation, which would require all 256 numbers per block to recover. In spite of
the relatively small κ generated by the random projections (approximately 0.05 when
computed using the sampled wedgelet grid), the worst case distortion (as measured
by ‖x− x̂‖2/‖x− x∗‖2 in Theorem 6.3) is approximately 3. For reference, we also
include the CS-based recovery from an equivalent number, (10 + 2) · 256 = 3072, of
global random projections. Though slightly better in terms of mean-square error, this
approximation fails to prominently represent the edge structure (it also takes several
minutes to compute using our software). We stress again, though, that the main
purpose of this example is to illustrate the robustness of recovery on natural image
segments, some of which are not well-modeled using wedgelets (and so we should not
expect high quality wedgelet estimates in every block of the image).
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Figure 6.5: (a) Original 256 × 256 Peppers image. (b) Wedgelet estimation on 16 × 16
pixel tiles, using 10 random projections (plus the mean and energy) on each tile, for a total
of (10 + 2) · 256 = 3072 measurements. (c) Best-possible wedgelet estimation, which would
require all 2562 = 65536 pixel values. (d) Traditional CS-based recovery (from 3072 global
random projections) using greedy pursuit to find a sparse approximation in the projected
wavelet (D8) basis.

6.2.5 Non-differentiable manifolds

As discussed in Chapter 4, many interesting signal manifolds are not differentiable.
In our setting, this presents a challenge, as Theorem 6.2 does not give any insight
into the required number of random projections for a stable embedding, and we can
no longer apply Newton’s method for parameter estimation. (As shown in Figure 6.1,
the projection of a non-differentiable manifold in RN typically yields another non-
differentiable manifold in RM .) To address this challenge, we can again rely on
the multiscale insight developed in Chapter 4: each non-differentiable IAM can be
approximated using a sequence of differentiable manifolds that correspond to various
scales of regularization of the original image. To get an approximate understanding
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of the behavior of a non-differentiable manifold under random projections, one could
study the behavior of its smooth approximations under random projections.

Unfortunately, to solve the parameter estimation problem we cannot immediately
apply the Multiscale Newton algorithm to the random measurements y = Φxθ. Let-
ting gs denote the regularization kernel at scale s, the problem is that the Multiscale
Newton algorithm demands computing (xθ ∗ gs), which would live on a differentiable
manifold, but the hypothetical measurements Φ(xθ ∗ gs) of such a signal cannot be
computed from the given measurements y = Φxθ.

We propose instead a method for modifying the measurement matrix Φ in advance
to accommodate non-differentiable manifolds. Our suggestion is based on the fact
that, for a given measurement vector φi, one can show that

〈φi, xθ ∗ gs〉 = 〈φi ∗ gs, xθ〉 .

Thus, by regularizing the measurement vectors {φi}, the resulting image of the man-
ifold in RM will be differentiable. To accommodate the Multiscale Newton method,
we propose specifically to (i) generate a random Φ, and (ii) partition the rows of
Φ into groups, regularizing each group by a kernel gs from a sequence of scales
{s0, s1, . . . , sL}. The Multiscale Newton method can then be performed on the regu-
larized random measurements by taking these scales {s0, s1, . . . , sL} in turn.

A similar sequence of randomized, multiscale measurement vectors were proposed
in [29] in which the vectors at each scale are chosen as a random linear combination of
wavelets at that scale, and the resulting measurements can be used to reconstruct the
wavelet transform of a signal scale-by-scale. A similar measurement process would be
appropriate for our purposes, preferably by choosing random functions drawn from a
coarse-to-fine succession of scaling spaces (rather than difference spaces). Addition-
ally, one may consider using noiselets [138] as measurement vectors. Noiselets are
deterministic functions designed to appear “noise-like” when expanded in the wavelet
domain and can be generated using a simple recursive formula. At each scale j, the
noiselet functions give a basis for the Haar scaling space Vj (the space of functions
that are constant over every dyadic square at scale j). For a multiscale measurement
system, one could simply choose a subset of these vectors at each scale.

At a very high level, we can get a rough idea of the number of measurements
required at each scale of the algorithm. Supposing we square the scale between suc-
cessive iterations, the curvature of the regularized manifolds grows quadratically, and
Theorem 6.2 then suggests that finer scales scales require more measurements. How-
ever, if we assume quadratic accuracy of the estimates, then the region of uncertainty
(in which we are refining our estimate) shrinks. Its volume will shrink quadratically,
which will tend to counteract the effect of the increased curvature. A more thorough
analysis is required to understand these effects more precisely; in the following demon-
stration, we choose a conservative sequence of scales but take a constant number of
measurements at each scale.

As an experiment, we now consider the non-differentiable IAM consisting of para-
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Figure 6.6: (a) Original image for our experiment, containing an ellipse parametrized by
its position, rotation, and major and minor axes. (b) Initial guess for parameter estimation.
(c) Error image between original and initial guess.

Figure 6.7: Random measurement vectors at a sequence of scales s =
1/4, 1/8, 1/16, 1/32, 1/128.

metrized ellipse images, where the 5-D parameter θ describes the translation, rotation,
and major and minor axes of the ellipse. Our test image with N = 128×128 = 16384
is shown in Figure 6.6(a); our initial guess for estimation is shown in Figure 6.6(b);
and the relative initial error is shown in Figure 6.6(c).

In each trial, we consider multiscale random measurement vectors (regularized
Gaussian noise) taken at a sequence of 5 scales s = 1/4, 1/8, 1/16, 1/32, 1/128. Fig-
ure 6.7 shows one random basis function drawn from each such scale. We take an
equal number of random measurements at each scale, and to perform each Newton
step we use all measurements taken up to and including the current scale.

Choosing M = 6 random measurements per scale (for a total of 30 random mea-
surements), we can recover the ellipse parameters with high accuracy (image MSE of
10−5 or less) in 57% of trials. With M = 10 measurements per scale (50 total), this
probability increases to 89%, and with M = 20 measurements per scale (100 total),
we see high accuracy recovery in 99% of trials.

Using noiselets for our measurement vectors (see Figure 6.8 for example noiselet
functions) we see similar performance. Choosing M = 6 random noiselets3 per scale
(30 total), we see high accuracy recovery in 13% of trials, but this probability increases

3Each noiselet is a complex-valued function; we take M/2 per scale, yielding M real
measurements.
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Figure 6.8: Real components of noiselet measurement vectors at scales j = 2, 3, 4, 5, 7.

to 59% with M = 10 random noiselets per scale (50 total) and to 99% with M = 22
random noiselets per scale (110 total).

In terms of the number of random measurements required for parameter esti-
mation, it does appear that there is a moderate price to be paid in the case of
non-differentiable manifolds. We note, however, that in our ellipse experiments the
recovery does seem relatively stable, and that with sufficient measurements, the al-
gorithm rarely diverges far from the true parameters.

6.2.6 Advanced models for signal recovery

In our examples thus far, we have considered the case where a single manifold
model is used to describe the signal x. Many manifolds, however, are intended as
models for local signal structure, and for a given signal x there may in fact be multiple,
local manifold models appropriate for describing the different parts of the signal. As
an example, we may again consider wedgelets, which are appropriate for modeling
locally straight edges in images. For an entire image, a tiling of wedgelets is much more
appropriate as a model than a single wedgelet. In our CS experiment in Figure 6.5,
we used a wedgelet tiling to recover the image, but our random measurements were
partitioned to have supports localized on each wedgelet. In general, we cannot expect
to have such a partitioning of the measurements, and in fact all of the measurement
vectors may be global, each being supported over the entire signal. As a proof of
concept in this section, we present two methods for joint parameter estimation across
multiple manifolds in the case where the CS measurements have global support. As
an illustration, we continue to focus on recovering wedgelet tilings.

At first glance, the problem of recovering the parameters for a given wedgelet
appears difficult when the measurement vectors have significantly larger support.
Writing y = Φx, where x now represents the entire image, the influence of a particular
wedgelet block will be restricted to relatively few columns of Φ, and the rest of an
image will have a large influence on the measurements y. Indeed, if one were to
estimate the image block-by-block, fitting a wedgelet to each block as if y were a noisy
measurement of that block alone, such estimates would be quite poor. Figure 6.9(a),
for example, shows a 128×128 test image from which we take M = 640 global random
measurements, and Figure 6.9(d) shows the block-by-block estimates using 16 × 16
wedgelets. (For simplicity in this section we use a nearest neighbor grid search to
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Figure 6.9: (a) Original 128×128 image for our experiment. (b) Wavelet thresholding with
640 largest Haar wavelet coefficients, PSNR 18.1dB. (c) Oracle wedgelet approximation to
image using wedgelets of size 16×16 pixels, PSNR 19.9dB. (d) Wedgelet estimate recovered
from M = 640 global random projections after 1 iteration, PSNR 7.1dB. (e) Estimate after
5 iterations, PSNR 13.6dB. (f) Estimate after 10 iterations, PSNR 19.1dB.

obtain wedgelet estimates in RM .)
The above experiment implies that local recovery will not suffice for parameter

estimation across multiple manifolds. However, we can propose a very simple but
effective algorithm for joint parameter estimation. The algorithm we propose is sim-
ply to use the local estimates (shown in Figure 6.9(d)) as an initial guess for the
wedgelet on each block, then perform block-by-block estimates again on the residual
measurements (subtracting off the best guess from each other block). Figure 6.9(e)
and Figure 6.9(f) show the result of this successive estimation procedure after 5 and
10 iterations, respectively. After 10 iterations, the recovered wedgelet estimates ap-
proach the quality of oracle estimates for each block (Figure 6.9(c)), which would
require all 128×128 pixel values. Instead, our estimates are based on only 640 global
random projections, an average of 10 measurements per wedgelet block. For point of
comparison, we show in Figure 6.9(b) the best 640-term representation from the 2-D
Haar wavelet dictionary; our wedgelet estimates outperform even this upper bound
on the performance of sparsity-based CS recovery.

This is encouraging news — we have proposed a simple iterative refinement algo-
rithm that can distill local signal information from the global measurements y. While
promising, this technique also has its limitations. Consider for example the 128×128
test image in Figure 6.10(a). For this image we take M = 384 global random mea-
surements, and in Figure 6.10(c) we show the collection of 8 × 8 wedgelet estimates
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Figure 6.10: (a) Original 128 × 128 image for our experiment. (b) Oracle wedgelet ap-
proximation to image using wedgelets of size 8× 8 pixels, PSNR 26.9dB. (c) 8× 8 wedgelet
estimates from M = 384 global random measurements using single-scale iterative algorithm,
PSNR 4.1dB. (d) Successive wedgelet estimates from top-down multiscale estimation algo-
rithm. From left to right: wedgelets of size 128× 128, 64× 64, 32× 32, 16× 16, and 8× 8;
final PSNR 26.5dB.

returned after 10 iterations of the above algorithm. In this experiment we have an
average of only 1.5 measurements per wedgelet block, and the resulting estimates are
quite poor.

Ideally we would like to use wedgelets as more than a local model for signal struc-
ture. While each wedgelet is designed to capture edge structure on a single block, as
we discussed in Chapter 3, these blocks are related in space and in scale. A multiscale
wedgelet model would capture both of these effects and encourage more accurate
signal recovery. As a first attempt to access the multiscale structure, we propose a
top-down, coarse-to-fine wedgelet estimation algorithm, where at each scale we use
the single-scale iterative algorithm described above, but the starting guess for each
scale it obtained from the previous (coarser) scale. Returning to our experiment us-
ing M = 384 global random measurements, Figure 6.10(d) shows our sequence of
estimates for wedgelet block sizes 128 × 128, 64 × 64, 32 × 32, 16 × 16, and finally
8×8. Thanks to the multiscale model, the quality of our ultimate wedgelet estimates
on 8 × 8 blocks is comparable to the best-possible oracle wedgelet estimates (shown
in Figure 6.10(b)).

6.3 Applications in Manifold Learning

Theorem 6.2 implies that, in some sense, the structure of a manifold is well pre-
served when it is mapped under a random projection to a low-dimensional space.
In Section 6.2, we discussed possible applications of this fact in CS, where we wish
to recover information about a single signal based on its random measurements. In
this section, we consider instead possible applications involving collections of multiple
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signals.

6.3.1 Manifold learning in RM

We recall from Section 2.7.1 that the basic problem of manifold learning is to
discover some information about a manifold based on a collection of data sampled
from that manifold. In standard problems, this data is presented in RN (the natural
ambient signal space).

For several reasons it may be desirable to reduce the dimension N . First of all, the
process of acquiring and storing a large number of manifold samples may be difficult
when the dimension N is large. Second, the computational complexity of manifold
learning algorithms (e.g., when computing pairwise distances and nearest neighbor
graphs) will depend directly on N as well.

Fortunately, Theorem 6.2 and Corollary 6.1 imply that many of the properties
of a manifold M one may wish to discover from sampled data in RN are approxi-
mately preserved on its image ΦM under a random projection to RM . Among these
properties, we have

• ambient and geodesic distances between pairs of points;

• dimension of the manifold;

• topology, local neighborhoods, and local angles;

• lengths and curvature of paths on the manifold; and

• volume of the manifold.

(Some of these follow directly from Theorem 6.2 and Corollary 6.1; others depend on
the near-isometry of the projected tangent spaces as discussed in Section C.4.)

These are some of the basic properties sought by the manifold learning algorithms
listed in Section 2.7.1 (ISOMAP, LLE, HLLE, MVU, etc.), and and so it appears
that we should be able to apply such algorithms to random projections of the original
data and get an approximation to the true answer. (While this does involve an initial
projection of the data to RM , we recall from Section 2.8.4 that certain hardware
systems are under development for CS that do not require first sampling and storing
the data in RN .)

While we have not conducted a rigorous analysis of the sensitivity of such algo-
rithms to “noise” in the data (as each of the above properties is slightly perturbed
during the projection to RM), we present in the following section a simple experiment
as a proof of concept.
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Figure 6.11: (a) Model for disk. We generate 1000 samples, each of size N = 64 × 64 =
4096. (b) θ0 and θ1 values for original data in RN .

(a) (b)

(c) (d)

Figure 6.12: 2-D embeddings learned from the data in R4096 (see Figure 6.11).
(a) ISOMAP, (b) HLLE, (c) Laplacian Eigenmaps, (d) LLE.

6.3.2 Experiments

To test the performance of several of the manifold learning algorithms on projected
data, we consider the problem of learning an isometric embedding of a parametrized
image manifold. We generate 1000 images of a translated disk (see Figure 6.11(a)),
each of size N = 64× 64 = 4096. The parameter θ = (θ0, θ1) describes the center of
each disk; we choose 1000 random values as shown in Figure 6.11(b). In each such
plot, the color/shading of the left and right images represent the true values for θ0

and θ1 respectively. (We show these colors for the purpose of interpreting the results;
the true values of θ0 and θ1 are not provided to the manifold learning algorithms.)

Figure 6.12 shows the 2-D embeddings learned by the ISOMAP [44], HLLE [45],
Laplacian Eigenmaps [53], and LLE [47] algorithms when presented with the 1000
samples in R4096. Each of these algorithms approximately recovers the true underlying
parametrization of the data; the rotations of the square relative to Figure 6.11(b) are
irrelevant.
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Figure 6.13: 2-D embeddings learned from random projections of the data from R4096

to RM (see Figure 6.11). (a) ISOMAP (M = 15), (b) HLLE (M = 20), (c) Laplacian
Eigenmaps (M = 15), (d) LLE (M = 200).

For various values of M , we then construct a random M ×N Gaussian matrix Φ
and rerun the algorithms on the projections of the 1000 data points in RM . Figure 6.13
shows the 2-D embeddings learned by the same algorithms when presented with the
samples in RM . For each algorithm, we show the value of M at which a reasonable
embedding is recovered. We see that all algorithms again return an approximation
to the true underlying parametrization of the data. With regard to the number of
measurements M , the ISOMAP, HLLE, and Laplacian Eigenmaps algorithms appear
to be the most stable in this experiment (M ≈ 15 to 20). In contrast, the LLE
algorithm requires a much greater number of measurements M ≈ 200 but at a level
still significantly below the ambient dimension N = 4096.
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Chapter 7
Conclusions

Many real-world signals have a structure that can be summarized in a “concise”
manner relative to the size N of the signal. Efficient processing of such signals relies
on representations and algorithms that can access this concise structure. As we have
seen, concise models often imply a K-dimensional geometric structure to the signal
class within the ambient space RN , whereK � N , and the geometry of this class itself
often holds the clue for developing new and more efficient techniques that operate at
the “information level” K of the signal.

Our contributions in this thesis have included: new models for low-dimensional
signal structure, including local parametric models for piecewise smooth signals and
joint sparsity models for signal collections; new multiscale representations for piece-
wise smooth signals designed to accommodate efficient processing; and new dimen-
sionality reduction algorithms for problems in approximation, compression, parameter
estimation, manifold learning, and Compressed Sensing (CS). There are many possi-
ble future directions for this research.

7.1 Models and Representations

7.1.1 Approximation and compression

We demonstrated in Chapter 3 that surflets provide an effective parametric repre-
sentation for local discontinuities in piecewise constant signals. Because surflets (like
wavelets) are organized on dyadic hypercubes, we were able to easily combine the two
representations for approximation and compression of piecewise smooth signals (using
surfprints — the projections of surflet atoms onto wavelet subspaces). Moreover, an
efficient bottom-up tree-pruning algorithm can be used to find the best combination
of surfprints and wavelets.

As we discuss in [102], this “plug-and-play” encoding strategy is a generalization
of the SFQ algorithm for natural image coding [11]. Given this framework, there
is no particular reason our representations must be limited simply to surfprints and
wavelets, however. In fact, any local phenomenon amenable to concise modeling and
representation would be a candidate for a new type of “print” that could be added
to the mix.

As an example, consider the generalization of wedgelets (in which an edge sep-
arates two constant-valued regions) to “barlets” (in which a bar of variable width
crosses through a constant-valued region). Barlets can be viewed as a superset of
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Figure 7.1: (a) Original Cameraman image, from which a square segment is extracted that
contains a bar-like feature (see white box near center of image). (b) Image segment extracted
from Cameraman. (c) Coded wedgelet approximation using 7 wedgelets and requiring
approximately 80 bits. (d) Coded approximation using a single barlet and requiring only
22 bits.

the wedgelet dictionary (or the beamlet dictionary [139, 140]) and are designed to
more concisely represent image regions such as the one shown in Figure 7.1(b). As
an example, in Figure 7.1(c), we show an approximation to the image segment coded
using a local tiling of wedgelets. A total of 7 wedgelets were used to represent the
bar, requiring approximately 80 bits to jointly encode using a top-down predictive
scheme. In contrast, Figure 7.1(d) shows a simple barlet representation of the same
image segment that uses only a single barlet and requires only 22 bits to encode.
(Compared with wedgelets, barlets are a more specific parametric model for local
signal structure; additional experiments would be required to determine the actual
value of this additional parameter in terms of rate-distortion performance, and the re-
sult would likely be largely image-dependent.) Because they are organized on dyadic
squares, we can immediately imagine the translation of barlets to the wavelet domain,
yielding “barprints” to be evaluated among the coding options at each node. Other
representations, such as local DCT patches (as used in JPEG coding [141]) could also
be considered as candidate primitive representations for additional types of prints.

One primary drawback for such a plug-and-play encoding scheme is the increased
computational complexity required to evaluate each coding option at every node. An
additional drawback, however, is in the additional bitrate required to distinguish at
each node from all of the possible representations. Moreover, given this distinction
it may be difficult to code the local region at the proper conditional entropy (given
that the other dictionaries do not yield efficient representations).
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7.1.2 Joint sparsity models

In Chapter 5, we took the first steps towards extending the theory and practice of
Compressed Sensing (CS) to multi-signal, distributed settings. Our three simple joint
sparsity models (JSMs) for signal ensembles were chosen to capture the essence of real
physical scenarios, illustrate the basic analysis and algorithmic techniques, and indi-
cate the significant gains to be realized from joint recovery. To better understand the
specific nuances of sensor network problems, additional models should be considered.
In particular, one important extension would generalize the JSMs from strictly sparse
signals to compressible signals, in which the transform coefficients decay (recall Sec-
tion 2.4.2). In JSM-2, for example, we can extend the notion of simultaneous sparsity
for `p-sparse signals whose sorted coefficients obey roughly the same ordering. This
condition could perhaps be enforced as an `p constraint on the composite signal

{
J∑

j=1

|xj(1)|,
J∑

j=1

|xj(2)|, . . . ,
J∑

j=1

|xj(N)|
}
.

Other open theoretical questions concern the sensitivity of DCS recovery to noise and
quantization, though preliminary experiments on real-world data have been encour-
aging [142].

7.1.3 Compressed Sensing

In Chapter 6 we demonstrated that signals obeying manifold models can be re-
covered from small numbers of random projections. In conjunction with the standard
results in CS, this suggests that many types of concise signal models may yield signal
classes well-preserved under projections to low dimensions.

In CS, the process of recovering a signal from its random measurements depends
critically on the model. As discussed in Section 2.8.3, given a set of measurements
y = Φx of a signal x, there are an infinite number of possibilities for the true signal.
To distinguish from among these possibilities, one must choose a model (such as
sparsity in some dictionary Ψ or nearness to some manifold M). As we have seen
in both sparsity-driven CS and manifold-driven CS, the quality of the reconstructed
signal will be comparable to the efficiency of the model in representing the signal.

As a general rule, better signal models should lead to better CS recovery. The
models adapted to date for CS recovery (sparsity or manifolds), while effective, only
represent a basic portion of the total understanding of signal modeling. Signals are not
only sparse, but their transform coefficients are often have dependencies. Manifolds
often work best as local models for signal regions; the parameters between multiple
manifold approximations are often related in space and in scale; and entirely differ-
ent manifold models could be appropriate for different signal regions. Ultimately,
it appears that these more sophisticated models will be key to improving CS recon-
struction algorithms. The challenge, of course, will be developing algorithms that
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can account for these more sophisticated models in distinguishing among all possible
candidates for x. For sparsity-driven CS we have proposed one coarse-to-fine recon-
struction scheme in the wavelet domain [93]. For manifold-driven CS we proposed
in Section 6.2.6 two techniques for joint recovery of multiple manifold parameters.
We believe that much more effective techniques can be developed, leveraging more
sophisticated sparse and manifold-based models and perhaps even combining the two,
for example, for simultaneous surfprint/wavelet estimation.

7.2 Algorithms

7.2.1 Parameter estimation

In Chapter 4 we presented a Multiscale Newton algorithm for parameter estima-
tion. In addition to the convergence analysis mentioned in Section 4.5.2, a number of
issues remain open regarding implementations of this algorithm. For instance, with
noisy images the multiscale tangent projections will reach a point of diminishing re-
turns where finer scales will not benefit; we must develop a stopping criterion for
such cases. Additional issues revolve around efficient implementation. We believe
that a sampling of the tangent planes needed for the projections can be precomputed
and stored using the multiscale representation of [63]. Moreover, since many of the
computations are local (as evidenced by the support of the tangent basis images in
Figure 4.2), we expect that the image projection computations can be implemented
in the wavelet domain. This would also lead to a fast method for obtaining the initial
guess θ(0) with the required accuracy.

7.2.2 Distributed Compressed Sensing

Another possible area of future work would be to reduce the computational com-
plexity of reconstruction algorithms for DCS. In some applications, the linear program
associated with some DCS decoders (in JSM-1 and JSM-3) could prove too computa-
tionally intense. As we saw in JSM-2, efficient iterative and greedy algorithms could
come to the rescue, but these need to be extended to the multi-signal case.

7.3 Future Applications in Multi-Signal Processing

In this thesis, we have examined two main problems involving processing multiple
signals: DCS and manifold learning. As new capabilities continue to emerge for data
acquisition, storage, and communication, and as demand continues to increase for
immersive multimedia, medical imaging, remote sensing, and signals intelligence, the
importance of effective techniques for multi-signal processing will only continue to
grow.

As with single-signal case, the first step in developing efficient algorithms for multi-
signal processing is an accurate model for the signals of interest. Ideally, this model
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should capture the joint structure among the signals in addition to their individual
structure. Our JSMs, for example, were intended to capture both types of structure
using the notion of sparsity. We can also imagine, however, many settings in which
multiple signals may be acquired under very similar conditions (differing only in a
few parameters controlling the acquisition of the signals). Some possible examples
include:

• frames of a video sequence, differing only in the timestamp,

• radiographic slices from a computed tomographic (CT) scan or cryo-electron
microscopy (cryo-EM) image, differing only in the relative position with respect
to the subject, or

• images from a surveillance or entertainment camera network, differing only in
the position of each camera.

In each of the above cases we have some common phenomenon X that represents the
fundamental information of interest (such as the motion of an object in the video or
the true 3-D structure of a molecule being imaged), and we collect information via
signals that depending both on X and on the parameters θ of the acquisition process.
From these signals we may wish to conclude information about X.

If we fix X in the above scenario, then it follows that as θ changes, the various
signals will represent samples of some manifold MX (e.g., in RN). We argued in
Section 6.3, however, that the structure of a manifold will be well-preserved under
random projection to a lower-dimensional space. This suggests that it may be possible
to generalize DCS far beyond our JSMs to incorporate a wide variety of manifold-
based models. In our above settings, this would involve collecting small number M
of random projections from each viewpoint, rather than the size-N signal itself. De-
pending on the problem, this could significantly reduce the storage or communication
demands.

The real challenge in such a generalization of DCS would be developing meth-
ods for recovering information about X based on random projections of samples
fromMX . While we believe that developing successful methods will likely be highly
problem-dependent, we present here one final experiment to as a basic demonstration
of feasibility.

Our setting for this experiment involves 1-D signals. We let X ∈ RN denote a
signal that we wish to learn. Figure 7.2(a) plots two different X with N = 32. Instead
of X, we observe random projections of shifts of X. That is, θ represents the amount
of shift andMX ⊂ R32 represents all circular shifts of X (including noninteger shifts
so that the manifold is continuous). From samples of ΦMX in RM we wish to recover
X. In a sense, this is a manifold recovery problem — there exist an infinite number
of candidate manifolds M ⊂ RN that would project to the same image ΦMX . We
must use the constraints of our acquisition system as a model and seek a manifold
M⊂ RN on which each signal is a shift of every other signal.
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(a)

(b)

(c)

Figure 7.2: (a) Original length-32 1-D signal X for our experiment. (b) Reconstruction
using 20 random projections to R3 of various known delays of X. (c) Reconstruction using
20 random projections to R10 of various unknown delays of X.

We begin with the case where each sample is labeled with its shift parameter
θ. In this case, we can successfully “lift” the manifold from RM back to RN using
an iterative estimation procedure. We construct an orthonormal basis Ψ in RN and
estimate the expansion coefficients for X iteratively in order to maximize agreement
with the observed data. The results of this algorithm are shown in Figure 7.2(b).
Using just M = 3 random projections from just 20 labeled samples we recover a
highly accurate approximation to X.

The unlabeled case is more difficult, but it is possible to estimate the unknown shift
parameters θ as well. We begin by computing geodesic distances among the sampled
points in RM and use the relative spacing as initial guesses for θ. We then alternate
between the above iterative algorithm and refining our estimates for the θ. The
results of are shown in Figure 7.2(c). In this case, we require about M = 10 random
projections from each of 20 unlabeled samples to recover a good approximation to X.
(The shift with respect to X of the step function is irrelevant.)
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This simple experiment demonstrates that manifold recovery from random pro-
jections is indeed possible by enforcing the physical constraints dictated by the data
collection process. In future work we will examine more relevant (and complicated)
scenarios, particularly applications involving image processing and 3-D scene recon-
struction.
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Appendix A
Proof of Theorem 2.1

We first prove Statement 2, followed by Statements 1 and 3.
Statement 2 (Achievable, M ≥ K + 1): Since Ψ is an orthonormal basis, it

follows that entries of the M×N matrix ΦΨ will be i.i.d. Gaussian. Thus without loss
of generality, we assume Ψ to be the identity, Ψ = IN , and so y = Φα. We concentrate
on the “most difficult” case where M = K + 1; other cases follow similarly.

Let Ω be the index set corresponding to the nonzero entries of α; we have |Ω| = K.
Also let ΦΩ be the M ×K mutilated matrix obtained by selecting the columns of Φ
corresponding to the indices Ω. The measurement y is then a linear combination of the
K columns of ΦΩ. With probability one, the columns of ΦΩ are linearly independent.
Thus, ΦΩ will have rank K and can be used to recover the K nonzero entries of α.

The coefficient vector α can be uniquely determined if no other index set Ω̂ can
be used to explain the measurements y. Let Ω̂ 6= Ω be a different set of K indices
(possibly with up to K − 1 indices in common with Ω). We will show that (with
probability one) y is not in the column span of ΦΩ̂, where the column span of the
matrix A is defined as the vector space spanned by the columns of A and denoted by
colspan(A).

First, we note that with probability one, the columns of ΦΩ̂ are linearly inde-
pendent and so ΦΩ̂ will have rank K. Now we examine the concatenation of these
matrices

[
ΦΩ ΦΩ̂

]
. The matrix

[
ΦΩ ΦΩ̂

]
cannot have rank K unless colspan(ΦΩ) =

colspan(ΦΩ̂), a situation that occurs with probability zero. Since these matrices have
M = K + 1 rows, it follows that

[
ΦΩ ΦΩ̂

]
will have rank K + 1; hence the column

span is RK+1.
Since the combined column span of ΦΩ and ΦΩ̂ is RK+1 and since each matrix

has rank K, it follows that colspan(ΦΩ) ∩ colspan(ΦΩ̂) is a (K − 1)-dimensional
linear subspace of RK+1. (Each matrix contributes one additional dimension to the
column span.) This intersection is the set of measurements in the column span of

ΦΩ that could be confused with signals generated from the vectors Ω̂. Based on
its dimensionality, this set has measure zero in the column span of ΦΩ; hence the
probability that α can be recovered using Ω̂ is zero. Since the number of sets of K
indices is finite, the probability that there exists Ω̂ 6= Ω that enables recovery of α is
zero.

Statement 1 (Achievable, M ≥ 2K): We first note that, if K ≥ N/2, then
with probability one, the matrix Φ has rank N , and there is a unique (correct)
reconstruction. Thus we assume that K < N/2. The proof of Statement 1 follows
similarly to the proof of Statement 2. The key fact is that with probability one,
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all subsets of up to 2K columns drawn from Φ are linearly independent. Assuming
this holds, then for two index sets Ω 6= Ω̂ such that |Ω| = |Ω̂| = K, colspan(ΦΩ) ∩
colspan(ΦΩ̂) has dimension equal to the number of indices common to both Ω and Ω̂.
A signal projects to this common space only if its coefficients are nonzero on exactly
these (fewer than K) common indices; since ‖α‖0 = K, this does not occur. Thus
every K-sparse signal projects to a unique point in RM .

Statement 3 (Converse, M ≤ K): If M < K, then there is insufficient infor-
mation in the vector y to recover the K nonzero coefficients of α; thus we assume
M = K. In this case, there is a single explanation for the measurements only if there
is a single set Ω of K linearly independent columns and the nonzero indices of α are
the elements of Ω. Aside from this pathological case, the rank of subsets ΦΩ̂ will
generally be less than K (which would prevent robust recovery of signals supported

on Ω̂) or will be equal to K (which would give ambiguous solutions among all such

sets Ω̂). �
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Appendix B
Proof of Theorem 5.3

Statement 2 follows trivially from Theorem 2.1 (simply assume that zC is known a
priori). The proof of Statement 1 has two parts. First we argue that limJ→∞ ẑC = zC .
Second we show that this implies vanishing probability of error in recovering each
innovation zj.
Part 1: We can write our estimate as

ẑC =
1

J
Φ̂Ty =

1

J
Φ̂T Φx =

1

J

J∑

j=1

1

Mjσ2
j

Φj
T Φjxj

=
1

J

J∑

j=1

1

Mjσ2
j

Mj∑

m=1

(φR
j,m)TφR

j,mxi,

where Φ is a diagonal concatenation of the Φj’s as defined in (5.2), and φR
j,m denotes

the m-th row of Φj, that is, the m-th measurement vector for node j. Since the
elements of each Φj are Gaussians with variance σ2

j , the product (φR
j,m)TφR

j,m has the
property

E[(φR
j,m)TφR

j,m] = σ2
j IN .

It follows that

E[(φR
j,m)TφR

j,mxj] = σ2
jE[xj] = σ2

jE[zC + zj] = σ2
j zC

and, similarly, that

E


 1

Mjσ2
j

Mj∑

m=1

(φR
j,m)TφR

j,mxj


 = zC .

Thus, ẑC is a sample mean of J independent random variables with mean zC . From
the LLN, we conclude that

lim
J→∞

ẑC = zC .

Part 2: Consider recovery of the innovation zj from the adjusted measurement vector
ŷj = yj−Φj ẑC . As a recovery scheme, we consider a combinatorial search over all K-
sparse index sets drawn from {1, 2, . . . , N}. For each such index set Ω′, we compute
the distance from ŷ to the column span of Φj,Ω′ , denoted by d(ŷ, colspan(Φj,Ω′)), where
Φj,Ω′ is the matrix obtained by sampling the columns Ω′ from Φj. (This distance can
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be measured using the pseudoinverse of Φj,Ω′ .)
For the correct index set Ω, we know that d(ŷj, colspan(Φj,Ω)) → 0 as J →

∞. For any other index set Ω′, we know from the proof of Theorem 2.1 that
d(ŷj, colspan(Φj,Ω′)) > 0. Let

ζ , min
Ω′ 6=Ω

d(ŷj, colspan(Φi,Ω′)).

With probability one, ζ > 0. Thus for sufficiently large J , we will have

d(ŷj, colspan(Φj,Ω)) < ζ/2,

and so the correct index set Ω can be correctly identified. �
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Appendix C
Proof of Theorem 6.2

A quick sketch of the proof is as follows. We first specify a high-resolution sampling
of points on the manifold. At each of these points we consider the tangent space to
the manifold and specify a sampling of points drawn from this space as well. We then
employ the JL lemma to ensure an embedding with satisfactory preservation of all
pairwise distances between these points.

Based on the preservation of these pairwise distances, we then ensure isometry for
all tangents to the sampled points and then (using the bounded twisting of tangent
spaces) ensure isometry for all tangents at all points on the manifold. From this (and
using the bounded curvature) we ensure pairwise distance preservation between all
nearby points on the manifold.

Finally we establish pairwise distance preservation between distant points on the
manifold essentially by using the original pairwise distance preservation between the
sample points (plus their nearby tangent points).

C.1 Preliminaries

For shorthand, we say a point x ∈ RN has “compaction isometry ε” if the following
condition is met:

(1− ε)
√
M/N ‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)

√
M/N ‖x‖2 .

We say a set has compaction isometry ε if the above condition is met for every point in
the set. We say a point x ∈ RN has “squared compaction isometry ε” if the following
condition is met:

(1− ε)(M/N) ‖x‖22 ≤ ‖Φx‖
2
2 ≤ (1 + ε)(M/N) ‖x‖22 .

These notions are very similar — compaction isometry ε implies squared compaction
isometry 3ε, and squared compaction isometry ε implies compaction isometry ε.

We also note that Φ is a nonexpanding operator (by which we mean that ‖Φ‖2 ≤ 1,
i.e., ‖Φx‖2 ≤ ‖x‖2 for all x ∈ RN).

We will also find the following inequalities useful throughout:

1

1− s ≤ (1 + 2s), 0 ≤ s ≤ 1/2, (C.1)
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and
1

1 + s
≥ (1− s), s ≥ 0. (C.2)

C.2 Sampling the Manifold

Fix T > 0. (We later choose a value for T in Section C.7.) Let A be a minimal
set of points on the manifold such that, for every x ∈M,

min
a∈A

dM(x, a) ≤ T. (C.3)

We call A the set of anchor points. From (2.1) we have that #A ≤ RV KK/2

T K .

C.3 Tangent Planes at the Anchor Points

Fix δ > 0 and ε1 ≥ 2δ. (We later choose values for δ and ε1 in Section C.7.) For
each anchor point a ∈ A we consider the tangent space Tana toM at a. We construct
a covering of points Q1(a) ⊂ Tana such that ‖q‖2 ≤ 1 for all q ∈ Q1(a) and such that
for every u ∈ Tana with ‖u‖2 ≤ 1,

min
q∈Q1(a)

‖u− q‖2 ≤ δ.

This can be accomplished with #Q1(a) ≤ (3/δ)K (see e.g. Chapter 13 of [143]). We
then define the renormalized set

Q2(a) = {Tq : q ∈ Q1(a)}

and note that ‖q‖2 ≤ T for all q ∈ Q2(a) and that for every u ∈ Tana with ‖u‖2 ≤ T ,

min
q∈Q2(a)

‖u− q‖2 ≤ Tδ. (C.4)

We now define the set

B =
⋃

a∈A

{a} ∪ (a+Q2(a)),

where a+Q2(a) denotes the set of tangents anchored at the point a (rather than at
0).

Now let β = − ln(ρ), set

M ≥
(

4 + 2β

ε21/2− ε31/3

)
ln(#B), (C.5)

and let Φ be as specified in Theorem 6.2. According to Lemma 2.5 (Johnson-
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Lindenstrauss), with probability exceeding 1− (#B)−β > 1− ρ, the following state-
ment holds: For all u, v ∈ B, the difference vector (u − v) has compaction isometry
ε1. We assume this to hold and must now extend it to show (6.2) for every x, y ∈M.

We immediately have that for every a ∈ A, every q ∈ Q2(a) has compaction
isometry ε1, and because Φ is linear, every q ∈ Q1(a) also has compaction isometry
ε1.

Following the derivation in Lemma 5.1 of [95] (and recalling that we assume δ ≤
ε1/2), we have that for all a ∈ A, the tangent space Tana has compaction isometry

ε2 := 2ε1.

That is, for every a ∈ A, every u ∈ Tana has compaction isometry ε2.

C.4 Tangent Planes at Arbitrary Points on the Manifold

Suppose T/τ < 1/4. Let x be an arbitrary point on the manifold and let a be its
nearest anchor point (in geodesic distance), recalling from (C.3) that dM(x, a) ≤ T .
Let v ∈ Tanx with ‖v‖2 = 1. From Lemma 2.2 it follows that there exists u ∈ Tana

such that ‖u‖2 = 1 and cos(angle(u, v)) > 1− T/τ .
Because ‖u‖2 = ‖v‖2 = 1, it follows that ‖u− v‖2 ≤ angle(u, v). Define θ :=

angle(u, v); our bound above specifies that cos(θ) > 1−T/τ . Using a Taylor expansion
we have that cos(θ) < 1 − θ2/2 + θ4/24 = 1 − θ2/2(1 − θ2/12), and because we
assume T/τ < 1/4, then θ < 2, which implies cos(θ) < 1 − θ2/3. Combining,
we have 1 − θ2/3 > cos(θ) > 1 − T/τ , which implies that T/τ > θ2/3, and so
‖u− v‖2 ≤ θ <

√
3T/τ .

Since u ∈ Tana with a ∈ A, we recall that u has compaction isometry ε2. We aim
to determine the compaction isometry for v. Using the triangle inequality and the fact
that Φ is nonexpanding, we have ‖Φv‖2 ≤ ‖Φu‖2 + ‖Φ(u− v)‖2 ≤ (1 + ε2)

√
M/N +√

3T/τ . Similarly, ‖Φv‖2 ≥ ‖Φu‖2−‖Φ(u− v)‖2 ≥ (1− ε2)
√
M/N −

√
3T/τ . Since

‖v‖2 = 1, this implies that v has compaction isometry

ε3 := ε2 +

√
3TN

τM
.

Because the choices of x and v were arbitrary, it follows that all tangents to the
manifold have compaction isometry ε3.

C.5 Differences Between Nearby Points on the Manifold

Let C1 > 0. (We later choose a value for C1 in Section C.7.) Suppose C1T/τ <
1/2. Let x and y be two points on the manifold separated by geodesic distance
µ := dM(x, y) ≤ C1T . Let γ(t) denote a unit speed parametrization of the geodesic
path connecting x and y, with γ(0) = x and γ(µ) = y.
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Lemma 2.1 implies that the curvature of γ is bounded by 1/τ . From Taylor’s
theorem we then have that

γ(µ)− γ(0) = µγ′(0) +R1 (C.6)

where γ′(0) denotes the tangent to the curve γ at 0, and where the norm of the
remainder obeys ‖R1‖2 ≤ µ2/τ . Using the triangle inequality and the fact that
‖γ′(0)‖2 = 1, we have that

(1− µ/τ)µ ≤ ‖γ(µ)− γ(0)‖2 ≤ (1 + µ/τ)µ, (C.7)

and combining (C.6) with the compaction isometry ε3 of γ′(0) and the fact that Φ is
nonexpanding we have

(1− (ε3 + µ
√

N/M/τ))µ
√

M/N ≤ ‖Φγ(µ)− Φγ(0)‖2 ≤ (1 + (ε3 + µ
√

N/M/τ))µ
√

M/N.
(C.8)

Combining (C.7) and (C.8), the ratio

‖Φγ(µ)− Φγ(0)‖2
‖γ(µ)− γ(0)‖2

≤ (1 + ε3 + µ
√
N/M/τ)µ

√
M/N

(1− µ/τ)µ

=
(1 + ε3 + µ

√
N/M/τ)

(1− µ/τ)
√
M/N

≤ (1 + ε3 + C1T
√
N/M/τ)

(1− C1T/τ)

√
M/N

≤ (1 + ε3 + C1T
√
N/M/τ)(1 + 2C1T/τ)

√
M/N

= (1 + ε3 + C1T
√
N/M/τ + 2C1T/τ

+2ε3C1T/τ + 2C2
1T

2
√
N/M/τ 2)

√
M/N.

In the fourth step above we have employed (C.1) and the fact that C1T/τ < 1/2.
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Similarly, the ratio

‖Φγ(µ)− Φγ(0)‖2
‖γ(µ)− γ(0)‖2

≥ (1− ε3 − µ
√
N/M/τ)µ

√
M/N

(1 + µ/τ)µ

=
(1− ε3 − µ

√
N/M/τ)

(1 + µ/τ)

√
M/N

≥ (1− ε3 − C1T
√
N/M/τ)

(1 + C1T/τ)

√
M/N

≥ (1− ε3 − C1T
√
N/M/τ)(1− C1T/τ)

√
M/N

= (1− ε3 − C1T
√
N/M/τ − C1T/τ

+ε3C1T/τ + C2
1T

2
√
N/M/τ 2)

√
M/N

≥ (1− ε3 − C1T
√
N/M/τ − C1T/τ)

√
M/N.

Here the fourth step uses (C.2). Of the bounds we have now derived, the upper bound
is the looser of the two, and so it follows that the difference vector γ(µ)−γ(0) = y−x
has compaction isometry

ε4 := ε3 + C1T
√
N/M/τ + 2C1T/τ + 2ε3C1T/τ + 2C2

1T
2
√
N/M/τ 2.

This compaction isometry ε4 will hold for any two points on the manifold separated
by geodesic distance ≤ C1T .

C.6 Differences Between Distant Points on the Manifold

Suppose C1 ≥ 10, T ≤ τ/C1, and δ ≤ 1/4. Let x1 and x2 be two points on the
manifold separated by geodesic distance dM(x1, x2) > C1T . Let a1 and a2 be the
nearest (in terms of geodesic distance) anchor points to x1 and x2, respectively.

We consider the geodesic path from a1 to x1 and let u1 ∈ Tana1 denote the tangent
to this path at a1. (For convenience we scale u1 to have norm ‖u1‖2 = T .) Similarly,
we let u2 ∈ Tana2 denote the tangent at the start of the geodesic path from a2 to x2

(choosing ‖u2‖2 = T ).
We recall from (C.4) that there exists q1 ∈ Q2(a1) such that ‖u1 − q1‖2 ≤ Tδ

and there exists q2 ∈ Q2(a2) such that ‖u2 − q2‖2 ≤ Tδ. Additionally, the points
a1 + q1 and a2 + q2 belong to the set B, and so the difference (a1 + q1)− (a2 + q2) has
compaction isometry ε1.

Recalling the assumption that T ≤ τ/C1, we consider the ambient distance be-
tween x1 and x2. We have either that ‖x1 − x2‖2 > τ/2 ≥ C1T/2 or that ‖x1 − x2‖2 ≤
τ/2, which by Corollary 2.1 would then imply that ‖x1 − x2‖2 ≥ dM(x1, x2) −

144



(dM(x1,x2))2

2τ
with dM(x1, x2) > C1T by assumption and

dM(x1, x2) ≤ τ − τ
√

1− 2 ‖x1 − x2‖2 /τ
≤ τ(1− (1− 2 ‖x1 − x2‖2 /τ)) = 2 ‖x1 − x2‖2 ≤ τ

by Lemma 2.3. In this range C1T < dM(x1, x2) ≤ τ , it follows that ‖x1 − x2‖2 ≥
dM(x1, x2)− (dM(x1,x2))2

2τ
> C1T/2. Since we assume C1 ≥ 10, then ‖x1 − x2‖2 > 5T .

Using the triangle inequality, ‖a1 − a2‖2 > 3T and ‖(a1 + q1)− (a2 + q2)‖2 > T .
Now we consider the compaction isometry of (a1 + u1) − (a2 + u2). Using the

triangle inequality and the fact that Φ is nonexpanding, we have

‖Φ(a1 + u1)− Φ(a2 + u2)‖2
‖(a1 + u1)− (a2 + u2)‖2

≤ ‖Φ(a1 + q1)− Φ(a2 + q2)‖2 + 2Tδ

‖(a1 + q1)− (a2 + q2)‖2 − 2Tδ

≤ (1 + ε1) ‖(a1 + q1)− (a2 + q2)‖2
√
M/N + 2Tδ

‖(a1 + q1)− (a2 + q2)‖2 − 2Tδ

=
(1 + ε1)

√
M/N + 2Tδ/ ‖(a1 + q1)− (a2 + q2)‖2

1− 2Tδ/ ‖(a1 + q1)− (a2 + q2)‖2

<
(1 + ε1)

√
M/N + 2δ

1− 2δ

≤ ((1 + ε1)
√
M/N + 2δ)(1 + 4δ)

= (1 + ε1)
√
M/N + 2δ + (1 + ε1)4δ

√
M/N + 8δ2

= (1 + ε1 + 4δ + 4δε1

+2δ
√
N/M + 8δ2

√
N/M)

√
M/N.
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The fifth step above uses (C.1) and assumes δ ≤ 1/4. Similarly,

‖Φ(a1 + u1)− Φ(a2 + u2)‖2
‖(a1 + u1)− (a2 + u2)‖2

≥ ‖Φ(a1 + q1)− Φ(a2 + q2)‖2 − 2Tδ

‖(a1 + q1)− (a2 + q2)‖2 + 2Tδ

≥ (1− ε1) ‖(a1 + q1)− (a2 + q2)‖2
√
M/N − 2Tδ

‖(a1 + q1)− (a2 + q2)‖2 + 2Tδ

=
(1− ε1)

√
M/N − 2Tδ/ ‖(a1 + q1)− (a2 + q2)‖2

1 + 2Tδ/ ‖(a1 + q1)− (a2 + q2)‖2

>
(1− ε1)

√
M/N − 2δ

1 + 2δ

≥ ((1− ε1)
√
M/N − 2δ)(1− 2δ)

= (1− ε1)
√
M/N − 2δ − (1− ε1)2δ

√
M/N + 4δ2

= (1− ε1 − 2δ + 2δε1

−2δ
√
N/M + 4δ2

√
N/M)

√
M/N

> (1− ε1 − 2δ − 2δ
√
N/M)

√
M/N.

Here the fifth step uses (C.2). Of the bounds we have now derived, the upper bound is
the looser of the two, and so the difference vector (a1 +u1)− (a2 +u2) has compaction
isometry

ε5 := ε1 + 4δ + 4δε1 + 2δ
√
N/M + 8δ2

√
N/M.

Using very similar arguments one can show that the difference vectors a1 − (a2 + u2)
and (a1 + u1)− a2 also have compaction isometry ε5.

Define bi = ai +ui, µi = dM(ai, xi), and ci = ai +(µi/T )ui for i = 1, 2. The points
ci represent traversals of length µi along the tangent path rather than the geodesic
path from ai to xi; they can also be expressed as the linear combination

ci = (1− µi/T )ai + (µi/T )bi, i = 1, 2. (C.9)

We have established above that all pairwise differences of vectors from the set
{a1, a2, b1, b2} have compaction isometry ε5. As we recall from Section C.1, this implies
squared compaction isometry 3ε5 for each of these difference vectors. We now use this
fact to establish a similar bound for the difference c1 − c2. First, we can express the
distance ‖c1 − c2‖22 in terms of the distances between the ai’s and bi’s. Define

dcross = (µ1/T )(µ2/T ) ‖b1 − b2‖22 + (1− µ1/T )(µ2/T ) ‖a1 − b2‖22
+(µ1/T )(1− µ2/T ) ‖b1 − a2‖22 + (1− µ1/T )(1− µ2/T ) ‖a1 − a2‖22

and

dlocal = (µ1/T )(1− µ1/T ) ‖a1 − b1‖22 + (µ2/T )(1− µ2/T ) ‖a2 − b2‖22 .
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Then we can use (C.9) to show that

‖c1 − c2‖22 = dcross − dlocal.

Noting that ‖a1 − b1‖22 = ‖a2 − b2‖22 = T 2, we have that dlocal ≤ T 2/2. Because
‖x1 − x2‖2 > 5T , a1 and b1 are at least distance T from each of a2 and b2, which
implies that dcross > T 2 ≥ 2dlocal. We will use this fact below. We can also express

Φci = (1− τi/T )Φai + (τi/T )Φbi, i = 1, 2,

define

d̂cross = (µ1/T )(µ2/T ) ‖Φb1 − Φb2‖22 + (1− µ1/T )(µ2/T ) ‖Φa1 − Φb2‖22
+(µ1/T )(1− µ2/T ) ‖Φb1 − Φa2‖22 + (1− µ1/T )(1− µ2/T ) ‖Φa1 − Φa2‖22

and

d̂local = (µ1/T )(1− µ1/T ) ‖Φa1 − Φb1‖22 + (µ2/T )(1− µ2/T ) ‖Φa2 − Φb2‖22 ,

and establish that
‖Φc1 − Φc2‖22 = d̂cross − d̂local.

Using the squared compaction isometry of all pairwise differences of a1, a2, b1, and b2,
we have that

‖Φc1 − Φc2‖22 = d̂cross − d̂local

≤ (1 + 3ε5)(M/N)dcross − (1− 3ε5)(M/N)dlocal

=

(
1 + 3ε5 + 6ε5

(
dlocal

dcross − dlocal

))
(M/N)(dcross − dlocal)

< (1 + 9ε5)(M/N) ‖c1 − c2‖22 .

For the last inequality we used the fact that dcross > 2dlocal. Similarly, we have that

‖Φc1 − Φc2‖22 > (1− 9ε5)(M/N) ‖c1 − c2‖22 .

Combining, these imply squared compaction isometry 9ε5 for the vector c1−c2, which
also implies compaction isometry 9ε5 for c1 − c2.

Finally, we are ready to compute the compaction isometry for the vector x1 − x2.
Using Taylor’s theorem anchored at the points ai, we have ‖xi − ci‖2 ≤ µ2

i /τ ≤
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T 2/τ, i = 1, 2. Using the triangle inequality we also have that ‖c1 − c2‖2 > T . Thus

‖Φx1 − Φx2‖2
‖x1 − x2‖2

≤ (1 + 9ε5)
√
M/N ‖c1 − c2‖2 + 2T 2/τ

‖c1 − c2‖2 − 2T 2/τ

=


1 +

9ε5 + 2T 2/(τ ‖c1 − c2‖2) + 2T 2
√

M
N
/(τ ‖c1 − c2‖2)

1− 2T 2/(τ ‖c1 − c2‖2)



√
M

N

≤
(

1 +
9ε5 + 2T/τ + 2T

√
N/M/τ

1− 2T/τ

)√
M

N
.

Similarly,

‖Φx1 − Φx2‖2
‖x1 − x2‖2

≥ (1− 9ε5)
√
M/N ‖c1 − c2‖2 − 2T 2/τ

‖c1 − c2‖2 + 2T 2/τ

=


1−

9ε5 + 2T 2/(τ ‖c1 − c2‖2) + 2T 2
√

M
N
/(τ ‖c1 − c2‖2)

1 + 2T 2/(τ ‖c1 − c2‖2)



√
M

N

≥
(
1− (9ε5 + 2T/τ + 2T

√
N/M/τ)

)√
M/N.

Considering both bounds, we have

9ε5 + 2T/τ + 2T
√
N/M/τ ≤ 9ε5 + 2T/τ + 2T

√
N/M/τ

1− 2T/τ

≤ (9ε5 + 2T/τ + 2T
√
N/M/τ)(1 + 4T/τ).

(For the second inequality, we use the assumption that T/τ < 1/4.) Hence, x1 − x2

has compaction isometry

ε6 := 9ε5 +
36ε5T

τ
+

2T

τ
+

8T 2

τ 2
+

2T
√
N/M

τ
+

8T 2
√
N/M

τ 2
.

C.7 Synthesis

Let 0 < ε < 1 be the desired compaction isometry for all pairwise distances on the
manifold. In the preceding sections, we have established the following compaction
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isometries. For nearby points we have compaction isometry

ε4 = ε3 +
C1T

τ

√
N

M
+

2C1T

τ
+

2ε3C1T

τ
+

2C2
1T

2

τ 2

√
N

M

= ε2 +

√
3TN

τM
+
C1T

τ

√
N

M
+

2C1T

τ

+2

(
ε2 +

√
3TN

τM

)(
C1T

τ

)
+

2C2
1T

2

τ 2

√
N

M

= 2ε1 +

√
3TN

τM
+
C1T

τ

√
N

M
+

2C1T

τ

+2

(
2ε1 +

√
3TN

τM

)(
C1T

τ

)
+

2C2
1T

2

τ 2

√
N

M

= 2ε1 +
4ε1C1T

τ
+

√
3TN

τM
+
C1T

τ

√
N

M

+
2C1T

τ
+

2C1T

τ

√
3TN

τM
+

2C2
1T

2

τ 2

√
N

M
.

For distant points we have compaction isometry

ε6 = 9ε5 +
36ε5T

τ
+

2T

τ
+

8T 2

τ 2
+

2T

τ

√
N

M
+

8T 2

τ 2

√
N

M

= 9(ε1 + 4δ + 4δε1 + 2δ
√
N/M + 8δ2

√
N/M)

+
36(ε1 + 4δ + 4δε1 + 2δ

√
N/M + 8δ2

√
N/M)T

τ

+
2T

τ
+

8T 2

τ 2
+

2T

τ

√
N

M
+

8T 2

τ 2

√
N

M

= 9ε1 + 36δ + 36δε1 + 18δ
√
N/M + 72δ2

√
N/M

+
36ε1T

τ
+

144δT

τ
+

144δε1T

τ
+

72δT

τ

√
N

M
+

288δ2T

τ

√
N

M

+
2T

τ
+

8T 2

τ 2
+

2T

τ

√
N

M
+

8T 2

τ 2

√
N

M
.

We will now choose values for C1, ε1, T , and δ that will ensure compaction isometry
ε for all pairwise distances on the manifold. We first set C1 = 10. For constants C2,
C3, and C4 (which we will soon specify), we let

ε1 = C2ε, T =
C3ε

2τ

N
, and δ =

C4ε√
N
.
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Plugging in to the above and using the fact that ε < 1, we have

ε4 ≤ 2ε1 +
4ε1C1T

τ
+

√
3TN

τM
+
C1T

τ

√
N

M

+
2C1T

τ
+

2C1T

τ

√
3TN

τM
+

2C2
1T

2

τ 2

√
N

M

= 2C2ε+
40C2C3ε

3

N
+

√
3C3ε2

M
+

10C3ε
2

N

√
N

M

+
20C3ε

2

N
+

20C3ε
2

N

√
3C3ε2

M
+

200C2
3ε

4

N2

√
N

M

≤ ε(2C2 + 40C2C3 +
√

3C3 + 30C3 + 20
√

3C3

√
C3 + 200C2

3)

and

ε6 ≤ 9ε1 + 36δ + 36δε1 + 18δ
√
N/M + 72δ2

√
N/M

+
36ε1T

τ
+

144δT

τ
+

144δε1T

τ
+

72δT

τ

√
N

M
+

288δ2T

τ

√
N

M

+
2T

τ
+

8T 2

τ 2
+

2T

τ

√
N

M
+

8T 2

τ 2

√
N

M

= 9C2ε+
36C4ε√
N

+
36C2C4ε

2

√
N

+
18C4ε√
M

+
72C2

4ε
2

√
NM

+
36C2C3ε

3

N
+

144C3C4ε
3

N
√
N

+
144C2C3C4ε

4

N
√
N

+
72C3C4ε

3

N
√
M

+
288C3C

2
4ε

4

N
√
NM

+
2C3ε

2

N
+

8C2
3ε

4

N2
+

2C3ε
2

√
NM

+
8C2

3ε
4

N
√
NM

≤ ε(9C2 + 36C4 + 36C2C4 + 18C4 + 72C2
4 + 36C2C3 + 144C3C4

+144C2C3C4 + 72C3C4 + 288C3C
2
4 + 2C3 + 8C2

3 + 2C3 + 8C2
3).

We now must set the constants C2, C3, and C4 to ensure that ε4 ≤ ε and ε6 ≤ ε. Due to
the role of ε1 in determining our ultimate bound on M , we wish to be most aggressive
in setting the constant C2. To ensure ε6 ≤ ε, we must set C2 < 1/9; for neatness
we choose C2 = 1/10. For the remaining constants we may choose C3 = 1/1900 and
C4 = 1/633 and confirm that both ε4 ≤ ε and ε6 ≤ ε. One may also verify that,
by using these constants, all of our assumptions at the beginning of each section are
met (in particular, that ε1 ≥ 2δ, T/τ < 1/4, C1T/τ < 1/2, C1 ≥ 10, T ≤ τ/C1, and
δ ≤ 1/4).

To determine the requisite number of random projections, we must determine the
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size of the set B. We have

#B ≤
∑

a∈A

(1 + #Q2(a)) =
∑

a∈A

(1 + #Q1(a))

≤
(
RVKK/2

TK

)
(1 + (3/δ)K)

≤
(
RVKK/2

TK

)
1 +

(
3 · 633

√
N

ε

)K



≤
(
RVKK/21900KNK

ε2KτK

)(
(3 · 633 + 1)KNK/2

εK

)
.

Plugging in to (C.5), we require

M ≥
(

4 + 2β

ε21/2− ε31/3

)
ln(#B)

≥
(

4− 2 ln(ρ)

ε2/200− ε3/3000

)
ln

(
19002KKK/2N3K/2RV

ε3KτK

)
. (C.10)

This completes the proof of Theorem 6.2. �

151



Appendix D
Proof of Corollary 6.1

The corollary follows simply from the fact that length of a smooth curve on the
manifold can be written as a limit sum of ambient distances between points on that
curve and the observation that (6.2) can be applied to each of these distances.

So if we let x, y ∈ M, define µ = dM(x, y), and let γ denote the unit speed
geodesic path joining x and y on M in RN , then the length of the image of γ along
ΦM in RM will be bounded above by (1 + ε)

√
M/Nµ. Hence, dΦM(Φx,Φy) ≤

(1 + ε)
√
M/NdM(x, y).

Similarly, if we let x, y ∈M, define µΦ = dΦM(Φx,Φy), and let γΦ denote the unit
speed geodesic path joining Φx and Φy on the image ofM in RM , then the length of
the preimage of γΦ is bounded above by 1

1−ε

√
N/MµΦ. Hence,

dM(x, y) ≤ 1

1− ε
√
N/MµΦ,

which implies that dΦM(Φx,Φy) ≥ (1− ε)
√
M/NdM(x, y). �
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Appendix E
Proof of Theorem 6.3

Fix 0 < α ≤ 1. We consider two points in wa, wb ∈ RN whose distance is
compacted by a factor α under Φ, i.e.,

‖Φwa − Φwb‖2
‖wa − wb‖2

= α,

and supposing that x is closer to wa, i.e.,

‖x− wa‖2 ≤ ‖x− wb‖2 ,

but Φx is closer to Φwb, i.e.,

‖Φx− Φwb‖2 ≤ ‖Φx− Φwa‖2 ,

we seek the maximum value that

‖x− wb‖2
‖x− wa‖2

may take. In other words, we wish to bound the worst possible “mistake” (according
to our error criterion) between two candidate points whose distance is compacted by
the factor α. Note that all norms in this proof are `2-norms.

We have the optimization problem

max
x,wa,wb∈RN

‖x− wb‖2
‖x− wa‖2

s.t. ‖x− wa‖2 ≤ ‖x− wb‖2 ,

‖Φx− Φwb‖2 ≤ ‖Φx− Φwa‖2 ,
‖Φwa − Φwb‖2
‖wa − wb‖2

= α.

The constraints and objective function are invariant to adding a constant to all three
variables or to a constant rescaling of all three. Hence, without loss of generality, we
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set wa = 0 and ‖x‖2 = 1. This leaves

max
x,wb∈RN

‖x− wb‖2 s.t. ‖x‖2 = 1,

‖x− wb‖2 ≥ ‖x‖2 ,
‖Φx− Φwb‖2 ≤ ‖Φx‖2 ,
‖Φwb‖2
‖wb‖2

= α.

We may safely ignore the second constraint (because of its relation to the objective
function), and we may also square the objective function (to be later undone). We now
consider the projection operator and its orthogonal complement separately, noting
that ‖w‖22 = ‖Φw‖22 + ‖(I − Φ)w‖22. This leads to

max
x,wb∈RN

‖Φx− Φwb‖22 + ‖(I − Φ)x− (I − Φ)wb‖22

subject to

‖Φx‖22 + ‖(I − Φ)x‖22 = 1,

‖Φx− Φwb‖22 ≤ ‖Φx‖
2
2 ,

‖Φwb‖22
‖Φwb‖22 + ‖(I − Φ)wb‖22

= α2.

We note that the Φ and (I−Φ) components of each vector may be optimized separately
(subject to the listed constraints), again because they are orthogonal components.
Now, rewriting the last constraint,

max
x,wb∈RN

‖Φx− Φwb‖22 + ‖(I − Φ)x− (I − Φ)wb‖22

subject to

‖Φx‖22 + ‖(I − Φ)x‖22 = 1,

‖Φx− Φwb‖22 ≤ ‖Φx‖
2
2 ,

‖(I − Φ)wb‖22 = ‖Φwb‖22
(

1

α2
− 1

)
.

Define β to be the value of ‖(I − Φ)wb‖2 taken for the optimal solution wb. We note
that the constraints refer to the norm of the vector (I − Φ)wb but not its direction.
To maximize the objective function, then, (I − Φ)wb must be parallel (but with the
opposite sign) to (I − Φ)x. Equivalently, it must follow that

(I − Φ)wb = −β · (I − Φ)x

‖(I − Φ)x‖2
. (E.1)
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We now consider the second term in the objective function. From (E.1), it follows
that

‖(I − Φ)x− (I − Φ)wb‖22 =

∥∥∥∥(I − Φ)x

(
1 +

β

‖(I − Φ)x‖2

)∥∥∥∥
2

2

= ‖(I − Φ)x‖22 ·
(

1 +
β

‖(I − Φ)x‖2

)2

. (E.2)

The third constraint also demands that

β2 = ‖Φwb‖22
(

1

α2
− 1

)
.

Substituting into (E.2), we have

‖(I − Φ)x− (I − Φ)wb‖22 = ‖(I − Φ)x‖22 ·
(

1 + 2
β

‖(I − Φ)x‖2
+

β2

‖(I − Φ)x‖22

)

= ‖(I − Φ)x‖22 + 2 ‖(I − Φ)x‖2 ‖Φwb‖2
√

1

α2
− 1

+ ‖Φwb‖22
(

1

α2
− 1

)
.

This is an increasing function of ‖Φwb‖2, and so we seek the maximum value that
‖Φwb‖2 may take subject to the constraints. From the second constraint we see that
‖Φx− Φwb‖22 ≤ ‖Φx‖

2
2; thus, ‖Φwb‖2 is maximized by letting Φwb = 2Φx. With such

a choice of Φwb we then have

‖Φx− Φwb‖22 = ‖Φx‖22
We note that this choice of Φwb also maximizes the first term of the objective function
subject to the constraints.

We may now rewrite the optimization problem, in light of the above restrictions:

max
Φx,(I−Φ)x

‖Φx‖22 + ‖(I − Φ)x‖22 + 4 ‖Φx‖2 ‖(I − Φ)x‖2
√

1

α2
− 1 + 4 ‖Φx‖22

(
1

α2
− 1

)

s.t. ‖Φx‖22 + ‖(I − Φ)x‖22 = 1.

We now seek to bound the maximum value that the objective function may take. We
note that the single constraint implies that

‖Φx‖2 ‖(I − Φ)x‖2 ≤
1

2
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and that ‖Φx‖2 ≤ 1 (but because these cannot be simultaneously met with equality,
our bound will not be tight). It follows that

‖Φx‖22 + ‖(I − Φ)x‖22 + 4 ‖Φx‖2 ‖(I − Φ)x‖2
√

1

α2
− 1 + 4 ‖Φx‖22

(
1

α2
− 1

)

≤ 1 + 2

√
1

α2
− 1 + 4

(
1

α2
− 1

)

=
4

α2
− 3 + 2

√
1

α2
− 1.

(Although this bound is not tight, we note that

‖Φx‖22 + ‖(I − Φ)x‖22 + 4 ‖Φx‖2 ‖(I − Φ)x‖2
√

1

α2
− 1 + 4 ‖Φx‖22

(
1

α2
− 1

)
=

4

α2
− 3

is achievable by taking ‖Φx‖2 = 1 above. This is the interesting case where x falls
entirely in the projection subspace.)

Returning to the original optimization problem (for which we must now take a
square root), this implies that

‖x− wb‖2
‖x− wa‖2

≤

√
4

α2
− 3 + 2

√
1

α2
− 1

for any observation x that could be mistakenly paired with wb instead of wa (under
a projection that compacts the distance ‖wa − wb‖2 by α). Considering all pairs of
candidate points in the problem at hand, this bound is maximized by taking α = κ.

�
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[64] J. Kovačević and A. Chebira, “Life beyond bases: The advent of frames,” 2006,
Preprint.

[65] N. Kingsbury, “Image processing with complex wavelets,” Phil. Trans. R. Soc.
Lond. A, vol. 357, Sept. 1999.

[66] N. Kingsbury, “Complex wavelets for shift invariant analysis and filtering of
signals,” Appl. Comp. Harm. Anal., vol. 10, pp. 234–253, 2001.

[67] I. W. Selesnick, “The design of approximate Hilbert transform pairs of wavelet
bases,” IEEE Trans. Signal Processing, vol. 50, no. 5, May 2002.

161



[68] F. C. A. Fernandes, R. L. C. van Spaendonck, and C. S. Burrus, “A new
framework for complex wavelet transforms,” IEEE Trans. Signal Processing,
July 2003.

[69] R. van Spaendonck, T. Blu, R. Baraniuk, and M. Vetterli, “Orthogonal Hilbert
transform filter banks and wavelets,” in Proc. Int. Conf. Acoustics, Speech,
Signal Processing (ICASSP), 2003.

[70] M. T. Orchard and H. Ates, “Equiripple design of real and complex filter
banks,” Tech. Rep., Rice University, 2003.

[71] F. C. A. Fernandes, M. B. Wakin, and R. G. Baraniuk, “Non-Redundant,
Linear-Phase, Semi-Orthogonal, Directional Complex Wavelets,” in Proc.
Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Montreal, Quebec,
Canada, May 2004.

[72] M. N. Do and M. Vetterli, “Contourlets: A directional multiresolution image
representation,” in Proc. IEEE Int. Conf. Image Proc. (ICIP), Rochester, New
York, Oct. 2002.

[73] M. N. Do and M. Vetterli, “The contourlet transform: An efficient directional
multiresolution image representation,” IEEE Trans. Image Processing, 2005,
To appear.

[74] N. Mehrseresht and D. Taubman, “An efficient content-adaptive motion com-
pensated 3D-DWT with enhanced spatial and temporal scalability,” 2004,
Preprint.

[75] I. W. Selesnick and K. L. Li, “Video denoising using 2d and 3d dual-tree
complex wavelet transforms,” in Proc. SPIE Wavelet Applications Signal Image
Processing X.

[76] R. G. Baraniuk and D. L. Jones, “Shear madness: New orthogonal bases and
frames using chirp functions,” IEEE Trans. Signal Proc., vol. 41, no. 12, pp.
3543–3549, 1993.

[77] D. L. Donoho, “Unconditional bases are optimal bases for data compression
and for statistical estimation,” Appl. Comput. Harmon. Anal., vol. 1, no. 1, pp.
100–115, Dec. 1993.

[78] R. A. DeVore, “Lecture notes on Compressed Sensing,” Rice University ELEC
631 Course Notes, Spring 2006.

[79] A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, “Tree approximation
and optimal encoding,” Appl. Comput. Harmon. Anal., vol. 11, pp. 192–226,
2001.

162



[80] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pur-
suit,” SIAM J. on Sci. Comp., vol. 20, no. 1, pp. 33–61, 1998.

[81] D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its Applica-
tions, John Wiley and Sons, New York, 1988.

[82] B. Olshausen and D. Field, “Sparse coding with an overcomplete basis set: A
strategy employed by V1?,” Vision Res., vol. 37, pp. 311–3325, 1997.

[83] D. Marr, Vision, W. H. Freeman and Company, San Francisco, 1982.

[84] E. Le Pennec and S. Mallat, “Sparse geometric image representations with
bandelets,” IEEE Trans. Image Processing, vol. 14, no. 4, pp. 423–438, April
2005.

[85] F. Arandiga, A. Cohen, M. Doblas, R. Donat, and B. Matei, “Sparse represen-
tations of images by edge adapted nonlinear multiscale transforms,” in Proc.
IEEE Int. Conf. Image Proc. (ICIP), Barcelona, Spain, Sept. 2003.

[86] Let it Wave, www.letitwave.fr.

[87] W. B Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into
a Hilbert space,” in Proc. Conf. Modern Analysis and Probability, 1984, pp.
189–206.

[88] D. Achlioptas, “Database-friendly random projections,” in Proc. Symp. Prin-
ciples of Database Systems, 2001.

[89] S. Dasgupta and A. Gupta, “An elementary proof of the Johnson-Lindenstrauss
lemma,” Tech. Rep. TR-99-006, Berkeley, CA, 1999.

[90] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing
the curse of dimenstionality,” in Proc. Symp. Theory of Computing, 1998, pp.
604–613.

[91] J. Tropp and A. C. Gilbert, “Signal recovery from partial information via
orthogonal matching pursuit,” Apr. 2005, Preprint.

[92] R. Venkataramani and Y. Bresler, “Further results on spectrum blind sampling
of 2D signals,” in Proc. IEEE Int. Conf. Image Proc. (ICIP), Chicago, Oct.
1998, vol. 2.

[93] M. F. Duarte, M. B. Wakin, and R. G. Baraniuk, “Fast reconstruction of
piecewise smooth signals from random projections,” in Proc. SPARS05, Rennes,
France, Nov. 2005.

163



[94] C. La and M. N. Do, “Signal reconstruction using sparse tree representation,”
in Proc. Wavelets XI at SPIE Optics and Photonics, San Diego, August 2005,
SPIE.

[95] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “The Johnson-
Lindenstrauss lemma meets Compressed Sensing,” 2006, Preprint.

[96] M. Lustig, D. L. Donoho, and J. M. Pauly, “Rapid MR imaging with Com-
pressed Sensing and randomly under-sampled 3DFT trajectories,” in Proc. 14th
Ann. Mtg. ISMRM, May 2006.

[97] M. F. Duarte, M. A. Davenport, M. B. Wakin, and R. G. Baraniuk, “Sparse
signal detection from incoherent projections,” in Proc. Int. Conf. Acoustics,
Speech, Signal Processing (ICASSP), May 2006.

[98] J. A. Tropp, M. B. Wakin, M. F. Duarte, D. Baron, and R. G. Baraniuk,
“Random filters for compressive sampling and reconstruction,” in Proc. Int.
Conf. Acoustics, Speech, Signal Processing (ICASSP), May 2006.

[99] B. Kashin, “The widths of certain finite dimensional sets and classes of smooth
functions,” Izvestia, , no. 41, pp. 334–351, 1977.

[100] A. Garnaev and E. D. Gluskin, “The widths of Euclidean balls,” Doklady An.
SSSR., vol. 277, pp. 1048–1052, 1984.

[101] V. Chandrasekaran, M. B. Wakin, D. Baron, and R. Baraniuk, “Representa-
tion and compression of multi-dimensional piecewise functions using surflets,”
submitted to IEEE Trans. Inf. Theory, 2006.

[102] M. B. Wakin, J. K. Romberg, H. Choi, and R. G. Baraniuk, “Wavelet-domain
approximation and compression of piecewise smooth images,” IEEE Trans.
Image Processing, vol. 15, no. 5, pp. 1071–1087, May 2006.

[103] D. L. Donoho, “Wedgelets: Nearly-minimax estimation of edges,” Annals of
Stat., vol. 27, pp. 859–897, 1999.

[104] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies, “Data compression
and harmonic analysis,” IEEE Trans. Information Theory, vol. 44, no. 6, pp.
2435–2476, 1998.

[105] M. N. Do, P. L. Dragotti, R. Shukla, and M. Vetterli, “On the compression of
two-dimensional piecewise smooth functions,” in Proc. IEEE Int. Conf. Image
Proc. (ICIP), Thessaloniki, Greece, Oct. 2001.

[106] V. Chandrasekaran, M. Wakin, D. Baron, and R. Baraniuk, “Compressing
Piecewise Smooth Multidimensional Functions Using Surflets: Rate-Distortion
Analysis,” Tech. Rep., Rice University ECE Department, Houston, TX, March
2004.

164



[107] J. Romberg, M. Wakin, and R. Baraniuk, “Multiscale geometric image pro-
cessing,” in Proc. SPIE Visual Comm. and Image Proc., Lugano, Switzerland,
July 2003.

[108] J. K. Romberg, M. B. Wakin, and R. G. Baraniuk, “Multiscale wedgelet image
analysis: Fast decompositions and modeling,” in Proc. IEEE Int. Conf. Image
Proc. (ICIP), Rochester, New York, 2002.

[109] M. Holschneider, Wavelets: An Analysis Tool, Clarendon Press, Oxford, 1995.

[110] B. D. Lucas and T. Kanade, “An iterative image registration technique with
an application to stereo vision,” in Proc. 7th Int’l Joint Conf. on Artificial
Intelligence, Vancouver, 1981, pp. 674–679.

[111] L. Quam, “Hierarchical warp stereo,” in Proc. DARPA Image Understanding
Workshop, September 1984, pp. 149–155.

[112] W. Enkelmann, “Investigations of multigrid algorithms for the estimation of
optical flow fields in image sequences,” Comp. Vision, Graphics, and Image
Processing, vol. 43, pp. 150–177, 1988.

[113] M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP:
Graphical Models and Image Processing, vol. 53, no. 3, pp. 231–239, May 1991.

[114] E. P. Simoncelli, “Coarse-to-fine estimation of visual motion,” in Proc. Work-
shop Image Multidimensional Signal Proc., Cannes, France, September 1993,
pp. 128–129.

[115] E. P. Simoncelli, “Bayesian multi-scale differential optical flow,” in Handbook
of Computer Vision and Applications, B. Jähne, H. Haussecker, and P. Geissler,
Eds., vol. 2, chapter 14, pp. 397–422. Academic Press, San Diego, April 1999.

[116] P. N. Belhumeur and G. D. Hager, “Tracking in 3D: Image variability decom-
position for recovering object pose and illumination,” Pattern Analysis and
Applications, vol. 2, pp. 82–91, 1999.

[117] C. Davis and W.M. Kahan, “The rotation of eigenvectors by a perturbation,
III,” SIAM J. Numer. Anal., vol. 7, no. 1, pp. 1–46, 1970.

[118] Gilbert W. Stewart and Ji guang Sun, Matrix Perturbation Theory, Academic
Press, Boston, 1990.

[119] W. T. Freeman, “Exploiting the generic viewpoint assumption,” Int. J. Com-
puter Vision, vol. 20, no. 3, 1996.

[120] Y. Keller and A. Averbach, “Fast motion estimation using bidirectional gradient
methods,” IEEE Trans. Image Processing, vol. 13, no. 8, pp. 1042–1054, August
2004.

165



[121] D. Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham, and R. G. Baraniuk,
“Distributed compressed sensing,” 2005, Preprint.

[122] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the physical
world with pervasive networks,” IEEE Pervasive Computing, vol. 1, no. 1, pp.
59–69, 2002.

[123] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Comm.
ACM, vol. 43, no. 5, pp. 51–58, 2000.

[124] H. Luo and G. Pottie, “Routing explicit side information for data compression
in wireless sensor networks,” in Proc. Int. Conf. on Distirbuted Computing in
Sensor Systems (DCOSS), Marina Del Rey, CA, June 2005.

[125] M. Gastpar, P. L. Dragotti, and M. Vetterli, “The distributed Karhunen-Loeve
transform,” IEEE Trans. Inform. Theory, Nov. 2004, Submitted.

[126] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,”
IEEE Trans. Inform. Theory, vol. 19, pp. 471–480, July 1973.

[127] S. Pradhan and K. Ramchandran, “Distributed source coding using syndromes
(DISCUS): Design and construction,” IEEE Trans. Inform. Theory, vol. 49,
pp. 626–643, Mar. 2003.

[128] Z. Xiong, A. Liveris, and S. Cheng, “Distributed source coding for sensor
networks,” IEEE Signal Processing Mag., vol. 21, pp. 80–94, Sept. 2004.

[129] J. Tropp, A. C. Gilbert, and M. J. Strauss, “Simulataneous sparse approxima-
tion via greedy pursuit,” in Proc. Int. Conf. Acoustics, Speech, Signal Processing
(ICASSP), Mar. 2005.

[130] V. N. Temlyakov, “A remark on simultaneous sparse approximation,” East J.
Approx., vol. 100, pp. 17–25, 2004.

[131] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions
to linear inverse problems with multiple measurement vectors,” IEEE Trans.
Signal Processing, vol. 51, pp. 2477–2488, July 2005.

[132] R. Puri and K. Ramchandran, “PRISM: A new robust video coding architecture
based on distributed compression principles,” in Proc. 40th Allerton Conf.
Communication, Control, and Computing, Monticello, IL, Oct. 2002.

[133] R. Wagner, R. G. Baraniuk, and R. D. Nowak, “Distributed image compression
for sensor networks using correspondence analysis and super-resolution,” in
Proc. Data Compression Conf., Mar. 2000.

166



[134] S. Sarvotham, M. B. Wakin, D. Baron, M. F. Duarte, and R. G. Bara-
niuk, “Analysis of the DCS one-stage greedy algoritm for common sparse sup-
ports,” Tech. Rep., Rice University ECE Department, Oct. 2005, available at
http://cmc.rice.edu/docs/docinfo.aspx?doc=Sar2005Nov9Analysisof.

[135] J. Tropp, “Algorithms for simultaneous sparse approximation. Part II: Convex
relaxation,” EURASIP J. App. Signal Processing, 2005, To appear.

[136] M. B. Wakin and R. G. Baraniuk, “Random projections of signal manifolds,”
in Proc. Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), May 2006.

[137] A. Cohen, W. Dahmen, and R. DeVore, “Compressed sensing and best k-term
approximation,” 2006, Preprint.

[138] R. Coifman, F. Geshwind, and Y. Meyer, “Noiselets,” Appl. Comput. Harmon.
Anal., vol. 10, pp. 27–44, 2001.

[139] D. L. Donoho and X. Huo, “Beamlet pyramids: A new form of multiresolution
analysis, suited for extracting lines, curves, and objects from very noisy image
data,” in Proc. SPIE, July 2000, vol. 4119.

[140] D. L. Donoho and X. Huo, “Beamlets and multiscale image analysis,” Multiscale
and Multiresolution Methods, Ed. T.J. Barth, T. Chan, and R. Haimes, Springer
Lec. Notes Comp. Sci. and Eng., 20, pp. 149–196, 2002.

[141] W. Pennebaker and J. Mitchell, “JPEG: Still image data compression stan-
dard,” Van Nostrand Reinhold, 1993.

[142] M. F. Duarte, M. B. Wakin, D. Baron, and R. G. Baraniuk, “Universal dis-
tributed sensing via random projections,” in Proc. Int. Workshop Inf. Process-
ing in Sensor Networks (IPSN ’06), 2006.

[143] G. G. Lorentz, M. von Golitschek, and Yu. Makovoz, Constructive approxima-
tion: Advanced problems, vol. 304, Springer Grundlehren, Berlin, 1996.

167


