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Abstract

We propose a new approach for nonadaptive dimensionality reduction of manifold-modeled
data, demonstrating that a small number of random linear projections can preserve key infor-
mation about a manifold-modeled signal. We center our analysis on the effect of a random
linear projection operator Φ : RN → RM , M < N , on a smooth well-conditioned K-dimensional
submanifold M ⊂ RN . As our main theoretical contribution, we establish a sufficient number
M of random projections to guarantee that, with high probability, all pairwise Euclidean and
geodesic distances between points on M are well-preserved under the mapping Φ.

Our results bear strong resemblance to the emerging theory of Compressed Sensing (CS), in
which sparse signals can be recovered from small numbers of random linear measurements. As
in CS, the random measurements we propose can be used to recover the original data in RN .
Moreover, like the fundamental bound in CS, our requisite M is linear in the “information level”
K and logarithmic in the ambient dimension N ; we also identify a logarithmic dependence on
the volume and conditioning of the manifold. In addition to recovering faithful approximations
to manifold-modeled signals, however, the random projections we propose can also be used to
discern key properties about the manifold. We discuss connections and contrasts with existing
techniques in manifold learning, a setting where dimensionality reducing mappings are typically
nonlinear and constructed adaptively from a set of sampled training data.

Keywords. Manifolds, dimensionality reduction, random projections, Compressed Sensing, spar-
sity, manifold learning, Johnson-Lindenstrauss lemma.
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1 Introduction

1.1 Concise models for data and information

Effective techniques for processing and understanding data and information often rely on some sort
of model that characterizes the expected behavior of the information. In many cases, the model
conveys a notion of constrained structure or conciseness to the information; considering a data
vector (or “signal”) x ∈ RN , for example, one may believe that x has “few degrees of freedom”
relative to its size N . Such constraints can arise, for example, in data associated with a physical
system that has few parameters or in digital samples of a continuous-time function collected at an
unnecessarily high sampling rate.
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The notion of conciseness is a very powerful assumption, and it suggests the potential for
developing highly accurate and efficient data processing algorithms that capture and exploit the
inherent structure of the model. Such algorithms can often be inspired (or interpreted) by taking
a geometric perspective. Letting F ⊂ RN denote the class of signals of interest under a given
model, many concise models correspond to a low-dimensional geometric structure for F , and many
algorithms for efficiently processing signals from F can be loosely characterized as attempts at
dimensionality reduction relative to the ambient dimension N .

Generally speaking, dimensionality reduction techniques aim to extract low-dimensional infor-
mation about a signal or collection of signals from some high-dimensional ambient space. Common
tasks include approximation and compression, in which the goal is to maintain a low-dimensional
representation of a signal x from which a faithful approximation to x can be recovered. For other
tasks in dimensionality reduction, however, the goal may not always be to maintain a faithful repre-
sentation of each signal. Instead, the purpose may be to preserve some critical relationships among
elements of a data set or to discover information about the structure F on which the data lives.

1.2 Low-dimensional geometry

Concise models can arise in a variety of settings and take a variety of forms; we now overview specif-
ically three of the most common model classes and discuss some of the corresponding techniques
for dimensionality reduction.

1.2.1 Linear models

Linear signal models arise in cases where a signal depends linearly on a low-dimensional set of
parameters (its degrees of freedom), and as a result, the signal class F takes the form of a K-
dimensional linear subspace of RN . Such models commonly arise in the context of bases and
representations. For example, let Ψ = {ψ1, ψ2, . . . , ψN} denote an orthonormal basis1 for RN , in
which we may represent a signal x in terms of its coefficient vector α,

x =

N∑

i=1

αiψi.

A linear model can be obtained by choosing a particular subset Ω ⊂ {1, 2, . . . , N}, #Ω = K, of
elements from the basis to represent signals

x =
∑

i∈Ω

αiψi. (1)

In such a case, the resulting signal class F = span({ψi}i∈Ω) forms a K-dimensional linear subspace
of RN ; examples include low-frequency subspaces in the Fourier domain or scaling spaces in the
wavelet domain for representing and approximating smooth signals [33].

The linear geometry of these signal classes leads to simple, linear algorithms for dimensionality
reduction. An ℓ2-nearest “linear approximation” to a signal x ∈ RN can be computed via orthogonal
projection onto the subspace F (setting αi to zero for i /∈ Ω). Also, the bestK-dimensional subspace
to approximate a class of signals in RN can be discovered using principal components analysis (PCA)
(also known as the Karhunen-Loève transform) [43].

1Although we focus on the case of an orthonormal basis for simplicity, many of the basic ideas we discuss generalize
to frames and arbitrary dictionaries in RN .
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1.2.2 Sparse models

Sparse signal models also arise in the context of bases and representations and can be viewed as
a generalization of linear models. In a sparse model, every signal from the class F can again be
represented (either exactly or approximately) using a K-term representation from some basis Ψ,
but unlike the linear case in (1), the relevant set Ω of basis elements may change from signal to
signal. A prototypical example is the wavelet representation of piecewise smooth signals; discon-
tinuities in each signal can be sparsely represented in the wavelet domain, but if the locations of
the discontinuities can vary from signal to signal, then the required set of wavelets also varies from
signal to signal.

Since few coefficients are required to represent any given signal, sparse representations lead to
efficient algorithms for dimensionality reduction; naturally these algorithms must typically adapt to
the changing locations of the significant coefficients. Best K-term “nonlinear approximations” can
be computed simply by thresholding the expansion coefficients α in the basis Ψ (letting Ω contain
the indices of the K largest coefficients and then setting αi to zero for i /∈ Ω). Transform coding
algorithms (which form the heart of many modern signal and image compression standards such
as JPEG and JPEG-2000 [40]) also build upon this basic idea.

Again, the geometry of the sparse signal class plays an important role in the signal processing.
Unlike the linear case described above, no single K-dimensional subspace suffices to represent all
K-sparse signals; instead the set of all sparse signals in the basis Ψ forms a nonlinear union of

(N
K

)

distinct K-dimensional subspaces in RN ,

ΣK := F =
⋃

Ω⊂{1,2,...,N}, #Ω=K

span({ψi}i∈Ω).

Approximation by thresholding can be interpreted as the orthogonal projection of x onto the nearest
subspace in ΣK , a simple but nonlinear technique owing to the nonlinear geometry of ΣK .

Despite the apparent need for adaptive, nonlinear methods for dimensionality reduction of sparse
signals, a radically different technique known as Compressed Sensing (CS) [12, 18] has emerged that
relies on a nonadaptive, linear method for dimensionality reduction. Like traditional approaches to
approximation and compression, the goal of CS is to maintain a low-dimensional representation of
a signal x from which a faithful approximation to x can be recovered. In CS, however, the encoder
requires no a priori knowledge of the signal structure. Only the decoder uses the model (sparsity
in the basis Ψ) to recover the signal.

The CS theory states that with high probability, every K-sparse signal x ∈ RN can be recovered
from just M = O(K log(N/K)) linear measurements y = Φx, where Φ represents an M × N
measurement (or encoding) matrix drawn randomly from an acceptable distribution [12, 18]. CS
decoding involves recovering the signal x ∈ RN from its measurements y = Φx, where y ∈ RM and
M < N in general. Although such inverse problems are generally ill-posed, CS recovery algorithms
exploit the additional assumption of sparsity in the basis Ψ to identify the correct signal x from
an uncountable number of possibilities. CS has many promising applications in signal acquisition,
compression, medical imaging, and sensor networks [3, 8, 10, 11, 22, 27, 39]; the random nature of the
operator Φ makes it a particularly intriguing universal measurement scheme for settings in which
the basis Ψ is unknown at the encoder or multi-signal settings in which distributed, collaborative
compression can be difficult to coordinate across multiple sensors.

Nonlinear geometry plays a critical role in developing and understanding the CS theory. For
example, CS recovery is possible because Φ embeds the sparse signal set ΣK in RM (no two
sparse signals in RN are mapped to the same point in RM ); such an embedding is ensured with
probability one if Φ has i.i.d. Gaussian entries and M ≥ 2K [3]. Stable recovery of sparse signals
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(via efficient algorithms), however, requires a more “stable” embedding (where sparse signals remain
well-separated in RM ). One way of characterizing this stability is known as the Restricted Isometry
Property (RIP) [9, 10, 12]; we say Φ has RIP of order K if for every x ∈ ΣK ,

(1 − ǫ)

√
M

N
≤ ‖Φx‖2

‖x‖2

≤ (1 + ǫ)

√
M

N
.

(Observe that the RIP of order 2K ensures that distinct K-sparse signals remain well-separated in
RM .) A random orthoprojector2 from RN to RM can be shown to meet the RIP of order K (with
respect to any fixed sparsity basis Ψ) with high probability if M = O(K log(N/K)). Hence, the cost
for stability is a modest logarithmic “excess” dimensionality factor with respect to the sparsity level
K. Various other geometric arguments surrounding CS have also been made involving n-widths of
ℓp balls and the properties of randomly projected polytopes [11, 12, 17–21, 25, 35, 38].

In a recent paper [2], we have identified a fundamental connection between CS and the Johnson-
Lindenstrauss (JL) lemma [1, 16], which concerns the stable embedding of a finite point cloud under
a random dimensionality-reducing projection.

Lemma 1.1 [Johnson-Lindenstrauss] Let Q be a finite collection of points in RN . Fix 0 < ǫ < 1
and β > 0. Let Φ be a random orthoprojector from RN to RM with

M ≥
(

4 + 2β

ǫ2/2 − ǫ3/3

)
ln(#Q).

If M ≤ N , then, with probability exceeding 1 − (#Q)−β, the following statement holds: For every
x, y ∈ Q,

(1 − ǫ)

√
M

N
≤ ‖Φx− Φy‖2

‖x− y‖2

≤ (1 + ǫ)

√
M

N
.

At first glance there are several apparent differences between CS (which deals with embedding an
uncountable point set and correctly identifying a signal from its projections) and the JL lemma
(which deals only with embedding a finite number of points and makes no mention of signal re-
covery). However, for the purpose of ensuring a stable CS embedding, ΣK (because of its limited
complexity) can be characterized in terms of a finite number point samples. By applying the JL
lemma only to these points we can deduce the RIP for all of the remaining points on ΣK , which
in turn permits stable CS signal recovery. The required number M of random projections matches
the known asymptotics for the previous RIP theory.

1.2.3 Manifold models

Manifold signal models generalize the notion of concise signal structure beyond the framework
of bases and representations. These models arise in more broad cases where (i) a K-dimensional
parameter θ can be identified that carries the relevant information about a signal and (ii) the signal
xθ ∈ RN changes as a continuous (typically nonlinear) function of these parameters. In general,
this dependence may not be neatly reflected in a sparse set of transform coefficients. Some simple
explicit examples include:

2By an orthoprojector, we mean an orthogonal projection from RN to RM that can be expressed as an M × N
matrix Φ with orthonormal rows. A random orthoprojector may be constructed, for example, by running the Gram-
Schmidt process on M random length-N vectors having i.i.d. Gaussian entries (assuming the vectors are linearly
independent). We note also that other formulations of the CS problem pertain to random M × N matrices Φ with
Gaussian entries, or to matrices renormalized by

√
N/M to ensure that ‖Φx‖

2
≈ (1 ± ǫ) ‖x‖

2
. However, we find it

useful in this paper to work with random orthoprojectors and the resulting “compaction” by
√

M/N .
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• time delay of a 1-D signal (parametrized by 1 variable for translation);

• amplitude, phase, and frequency of a pure sinusoid (3 parameters);

• starting and ending time and frequency of a linear radar chirp (4 parameters);

• local signal parameters such as the configuration of a straight edge in a small image segment
(2 parameters: slope and offset);

• global parameters affecting signal generation such as the position of a camera or microphone
recording a scene or the relative placement of objects/speakers in a scene; and

• parameters governing the output of some articulated physical system [23, 26, 46].

In these and many other cases, the geometry of the signal class forms a nonlinear K-dimensional
submanifold of RN ,

F = {xθ : θ ∈ Θ},
where Θ is the K-dimensional parameter space.3 (Note the dimension K can be interpreted as
an “information level” of the signal, analogous to the sparsity level in Section 1.2.2 that we also
denote by K.) Low-dimensional manifolds have also been proposed as approximate models for
nonparametric signal classes such as images of human faces or handwritten digits [7, 28, 43].

Most algorithms for dimensionality reduction of manifold-modeled signals involve “learning”
the manifold structure from a collection of data points, typically by constructing nonlinear map-
pings from RN to RM for some M < N (ideally M = K) that are adapted to the training data
and intended to preserve some characteristic property of the manifold. Example algorithms include
ISOMAP [41], Hessian Eigenmaps (HLLE) [24], and Maximum Variance Unfolding (MVU) [47],
which attempt to learn isometric embeddings of the manifold (preserving pairwise geodesic dis-
tances); Locally Linear Embedding (LLE) [37], which attempts to preserve local linear neighbor-
hood structures among the embedded points; Local Tangent Space Alignment (LTSA) [48], which
attempts to preserve local coordinates in each tangent space; and a method for charting a mani-
fold [5] that attempts to preserve local neighborhood structures. These algorithms can be useful
for learning the dimension and parametrizations of manifolds, for sorting data, for visualization
and navigation through the data, and as preprocessing to make further analysis more tractable;
common demonstrations include analysis of face images and classification of handwritten digits.
A related technique, the Whitney Reduction Network [6, 7], uses a training data set to adaptively
construct a linear mapping from RN to RM that attempts to preserve ambient pairwise distances
on the manifold; this is particularly useful for processing the output of dynamical systems hav-
ing low-dimensional attractors. Additional algorithms have also been proposed for characterizing
manifolds from sampled data without constructing an explicit embedding in RM [13, 15, 34] and
for constructing functions on the point samples in RN that reflect the intrinsic structure of the
manifold [4, 14]. Naturally, the burden of storing the sampled data points and implementing any
of these manifold learning algorithms increases with the native dimension N of the data.

1.3 Contributions: Universal dimensionality reduction for manifold models via

random projections

In this paper, we propose a new approach for nonadaptive, universal dimensionality reduction
of manifold-modeled data, demonstrating that small numbers of random linear projections can

3In general, Θ itself can be a K-dimensional manifold and need not be a subset of RK . We refer the reader to [36]
for an excellent overview of several manifolds with relevance to signal processing, including the rotation group SO(3),
which can be used for representing orientations of objects in 3-D space.
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preserve key information about manifold-modeled signals. As we discuss, these projections can in
turn be used either to recover faithful approximations to manifold-modeled signals or to discern
key properties about the manifold.

We center our analysis on the effect of a random linear projection operator Φ : RN → RM on a
smooth well-conditioned K-dimensional submanifold M ⊂ RN . Our main theoretical contribution
(Theorem 3.1) is an RIP/JL-like result that ensures a stable embedding of the manifold in RM .
In particular, we establish a sufficient number M of random projections to guarantee that, with
high probability, all pairwise distances between points on M are well-preserved under the mapping
Φ. Like the fundamental bound in CS, our requisite M is linear in the “information level” K and
logarithmic in the ambient dimension N ; additionally we identify a logarithmic dependence on the
volume and conditioning of the manifold. Although the manifold itself consists of an uncountable
number of points, we again exploit its low-dimensional structure to specify an effective sampling
of points drawn from the manifold (plus its tangent spaces), employ the JL lemma to ensure these
points are well embedded, and generalize the result to the remaining points on the manifold.

Our results suggest that, in contrast with most techniques in manifold learning, the essen-
tial information in many manifold-modeled signals can be captured via a dimensionality reducing
mapping that is both linear and nonadaptive, requiring no training on sampled data and only rudi-
mentary knowledge of M itself. Additionally, our results suggest that, for processing large volumes
of data concentrated on manifolds, the number of requisite dimensions for a structure-preserving
mapping should derive from the properties of the manifold itself, rather than the number of data
points (in contrast to the JL lemma). As we discuss, these facts have promising implications in
both (i) CS recovery, which can be extended beyond sparse signals to include manifold-modeled
signals, and (ii) manifold learning, in which the computational and/or storage requirements can be
lessened by identifying key manifold characteristics from lower-dimensional data.

The remainder of this paper is organized as follows. In Section 2, we set our notation and explain
our regularity assumptions on the manifold. We state and prove our main results in Section 3. We
then conclude in Section 4 by discussing possible applications of these results in CS and manifold
learning.

2 Preliminaries

2.1 Notation

Let dM(x, y) denote the geodesic distance between two points x and y on a K-dimensional manifold
M. Let Tanx denote the K-dimensional tangent space to M at the point x ∈ M. (We use the
convention that Tanx is shifted to have origin 0, rather than x.)

2.2 Condition number

To give ourselves a firm footing for analysis, we must assume a certain regularity of the manifold.
For this purpose, we adopt the condition number defined recently by Niyogi et al. [34].

Definition 2.1 [34] Let M be a compact Riemannian submanifold of RN . The condition number
is defined as 1/τ , where τ is the largest number having the following property: The open normal
bundle about M of radius r is embedded in RN for all r < τ .

The embedding described above of the open normal bundle of radius r is a tubular neighborhood
of M in RN : Tubr = {x + η ∈ RN : x ∈ M, η ∈ Tan⊥

x , ‖η‖2 < r}, where Tan⊥
x denotes the set
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of vectors normal to Tanx. Intuitively, supposing that r < τ , this tubular neighborhood does not
intersect itself. More precisely, every p ∈ Tubr corresponds to a unique x ∈ M. (See also [34] for
a discussion relating the condition number to the medial axis transform.)

The condition number 1/τ thus controls both local properties of the manifold (such as curvature)
and global properties (such as self-avoidance). The precise properties of the manifold that we require
can each be derived as a consequence of the condition number. We list these explicitly below.

Lemma 2.1 [34] (Curvature) Suppose M has condition number 1/τ . Let p, q ∈ M be two distinct
points on M, and let γ(t) denote a unit speed parameterization of the geodesic path joining p and
q. Then the curvature of γ is bounded by 1/τ .

Lemma 2.2 [34] (Twisting of tangent spaces) Suppose M has condition number 1/τ . Let p, q ∈ M
be two distinct points on M with geodesic distance given by dM(p, q). Let θ be the angle between
the tangent spaces Tanp and Tanq defined by cos(θ) = minu∈Tanp maxv∈Tanq |〈u, v〉|. Then cos(θ) >
1 − 1

τ dM(p, q).

Lemma 2.3 [34] (Self-avoidance) Suppose M has condition number 1/τ . Let p, q ∈ M be two
points such that ‖p− q‖2 = d. Then for all d ≤ τ/2, the geodesic distance dM(p, q) is bounded by
dM(p, q) ≤ τ − τ

√
1 − 2d/τ .

From Lemma 2.3 we have an immediate corollary.

Corollary 2.1 Suppose M has condition number 1/τ . Let p, q ∈ M be two points such that

‖p− q‖2 = d. If d ≤ τ/2, then d ≥ dM(p, q) − (dM(p,q))2

2τ .

2.3 Covering regularity

We also introduce a notion of “geodesic covering regularity” for a manifold.

Definition 2.2 Let M be a compact Riemannian submanifold of RN . Given T > 0, the geodesic
covering number G(T ) of M is defined as the smallest number such that there exists a set A of
points on M, #A = G(T ), so that for all x ∈ M,

min
a∈A

dM(x, a) ≤ T.

Definition 2.3 Let M be a compact K-dimensional Riemannian submanifold of RN having volume
V . We say that M has geodesic covering regularity R for resolutions T ≤ T0 if

G(T ) ≤ RKV KK/2

TK
(2)

for all 0 < T ≤ T0.

The bound described in (2) reflects a natural scaling relationship as balls of radius T are used
to cover a K-dimensional surface; indeed the geodesic covering regularity of the manifold is closely
related to its more traditional ambient-distance covering number C(T ). In fact, for a manifold with
condition number 1/τ , we can make this connection explicit. Lemma 2.3 implies that for small d,
dM(p, q) ≤ τ−τ

√
1 − 2d/τ ≤ τ(1−(1−2d/τ)) = 2d. This implies that G(T ) ≤ C(T/2) for small T .

Lemmata 5.2 and 5.3 of [34] then provide a means to bound C(T/2), using the bounded curvature
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of the manifold to ensure that any ball centered on the manifold captures a certain amount of its
volume. In particular it follows that

G(T ) ≤ C(T/2) ≤ V

cos(arcsin( T
8τ ))Kvol(BK

T/4)
≤ V · Γ(K/2 + 1)

(1 − ( T
8τ )2)K/2πK/2(T/4)K

≤ 3KV KK/2

TK

for T sufficiently small (e.g., T < τ). Although we point out this connection between the geodesic
covering regularity and the condition number, for future reference and flexibility we prefer to specify
these as distinct properties in our main result below. For notational brevity in the remainder of
this paper, we neglect the minor implicit dependence of the geodesic covering regularity R on the
maximum resolution T0.

3 Main Results

3.1 Theory

The following result establishes a sufficient number of random projections to ensure a satisfactory
embedding of a well-conditioned manifold.

Theorem 3.1 Let M be a compact K-dimensional Riemannian submanifold of RN having condi-
tion number 1/τ , volume V , and geodesic covering regularity R. Fix 0 < ǫ < 1 and 0 < ρ < 1. Let
Φ be a random orthoprojector from RN to RM with

M = O

(
K log(NV Rτ−1ǫ−1) log(1/ρ)

ǫ2

)
. (3)

If M ≤ N , then with probability at least 1 − ρ the following statement holds: For every pair of
points x, y ∈ M,

(1 − ǫ)

√
M

N
≤ ‖Φx− Φy‖2

‖x− y‖2

≤ (1 + ǫ)

√
M

N
. (4)

Proof: See Section 3.2.

Theorem 3.1 concerns the preservation of pairwise ambient distances on the manifold; this can
be immediately extended to geodesic distances as well.

Corollary 3.1 Let M and Φ be as in Theorem 3.1. Assuming (4) holds for all pairs of points on
M, then for every pair of points x, y ∈ M,

(1 − ǫ)

√
M

N
≤ dΦM(Φx,Φy)

dM(x, y)
≤ (1 + ǫ)

√
M

N
, (5)

where dΦM(Φx,Φy) denotes the geodesic distance between the projected points on the image of M.

Proof: See Section 3.3.

Sections 3.2 and 3.3 present proofs of Theorem 3.1 and Corollary 3.1, respectively, and Sec-
tion 3.4 follows with some brief remarks.
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3.2 Proof of Theorem 3.1

A quick sketch of the proof is as follows. After a few preliminary notes in Section 3.2.1, we first
specify in Section 3.2.2 a high-resolution sampling of points on the manifold. At each of these points
we consider the tangent space to the manifold and specify a sampling of points drawn from this
space as well. We then employ the JL lemma to ensure an embedding with satisfactory preservation
of all pairwise distances between these points.

Based on the preservation of these pairwise distances, in Section 3.2.3 we then ensure isometry
for all tangents to the sampled points and then (using the bounded twisting of tangent spaces)
ensure isometry for all tangents at all points on the manifold.

Finally, in Section 3.2.4, we establish pairwise distance preservation between all points on the
manifold. For nearby points, our results rely on the tangent space isometries and the bounded
curvature of the manifold. For distant points, we essentially rely on the original pairwise distance
preservation between the sample points (plus their nearby tangent points). We conclude the proof
in Section 3.2.5.

3.2.1 Preliminaries

Consider an orthoprojector Φ : RN → RM . For shorthand, we say a point x ∈ RN has “isometry
constant ǫ” if the following condition is met:

(1 − ǫ)
√
M/N ‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ǫ)

√
M/N ‖x‖2 .

We say a set has isometry constant ǫ if the above condition is met for every point in the set. We
say a point x ∈ RN has “squared isometry constant ǫ” if the following condition is met:

(1 − ǫ)(M/N) ‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + ǫ)(M/N) ‖x‖2
2 .

These notions are very similar — an isometry constant of ǫ implies a squared isometry constant of
3ǫ, and a squared isometry constant of ǫ implies an isometry constant of ǫ.

We also note that Φ is a nonexpanding operator (by which we mean that ‖Φ‖2 ≤ 1, i.e.,
‖Φx‖2 ≤ ‖x‖2 for all x ∈ RN ).

We will also find the following inequalities useful throughout:

1

1 − s
≤ (1 + 2s), 0 ≤ s ≤ 1/2, (6)

and
1

1 + s
≥ (1 − s), s ≥ 0. (7)

3.2.2 Sampling the manifold

We begin by specifying a high-resolution (but finite) sampling of points on and near the manifold
and examining the behavior of these points under the mapping Φ. Our construction will rely on
the following variables, to which we will assign specific values in Section 3.2.5: T > 0 and δ > 0
control the resolution of the sampling, while ǫ1 ≥ 2δ affects the embedding of the points.

First, let A be a minimal set of points on the manifold such that, for every x ∈ M,

min
a∈A

dM(x, a) ≤ T. (8)

We call A the set of anchor points. From (2) we have that #A ≤ RKV KK/2

T K .

9



Second, let B be a set of points on and near the manifold constructed as follows. For each
anchor point a ∈ A we consider the tangent space Tana to M at a. We construct a covering of
points Q1(a) ⊂ Tana such that ‖q‖2 ≤ 1 for all q ∈ Q1(a) and such that for every u ∈ Tana with
‖u‖2 ≤ 1,

min
q∈Q1(a)

‖u− q‖2 ≤ δ.

This can be accomplished with #Q1(a) ≤ (3/δ)K (see e.g. Chapter 13 of [32]). We then define the
renormalized set

Q2(a) = {Tq : q ∈ Q1(a)}
and note that ‖q‖2 ≤ T for all q ∈ Q2(a) and that for every u ∈ Tana with ‖u‖2 ≤ T ,

min
q∈Q2(a)

‖u− q‖2 ≤ Tδ. (9)

We now define the set
B =

⋃

a∈A

{a} ∪ (a+Q2(a)),

where a+Q2(a) denotes the set of tangents anchored at the point a (rather than at 0).
Now let β = − ln(ρ), set

M ≥
(

4 + 2β

ǫ21/2 − ǫ31/3

)
ln(#B), (10)

and let Φ be as specified in Theorem 3.1. According to Lemma 1.1 (Johnson-Lindenstrauss), with
probability exceeding 1 − (#B)−β > 1 − ρ, the following statement holds: For all u, v ∈ B, the
difference vector (u− v) has isometry constant ǫ1. We assume this to hold and must now extend it
to show (4) for every x, y ∈ M.

3.2.3 Isometry constants of tangent planes

To proceed, we must first examine the behavior of tangents to the manifold under the mapping Φ.
We immediately have that for every a ∈ A, every q ∈ Q2(a) has isometry constant ǫ1, and because
Φ is linear, every q ∈ Q1(a) also has isometry constant ǫ1. Following the derivation in Lemma 5.1
of [2] (and recalling that we assume δ ≤ ǫ1/2), we have that for all a ∈ A, the tangent space Tana

has isometry constant
ǫ2 := 2ǫ1,

where := denotes equality by definition. That is, for every a ∈ A, every u ∈ Tana has isometry
constant ǫ2.

Using the bounded twisting of tangent spaces (Lemma 2.2), we can then generalize this isometry
result from the anchored tangent spaces to arbitrary tangent spaces on the manifold.

Lemma 3.1 Let Φ be as specified in Section 3.2.2, and suppose T/τ < 1/4. Then for every x ∈ M,
every u ∈ Tanx has isometry constant

ǫ3 := ǫ2 +

√
3TN

τM
.

Proof: See Appendix A.
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3.2.4 Differences between points on the manifold

We are now ready to consider the behavior of difference vectors connecting two points on the
manifold. We divide our analysis into two cases: (i) for points nearby in terms of geodesic distance,
we rely on the bounded curvature of geodesic paths on M (Lemma 2.1) and on the tangent space
isometry constants (Lemma 3.1), and (ii) for points well-separated in terms of geodesic distance,
we rely on the fact that such points are also well-separated in ambient distance (Lemma 2.3) and
on the isometry constants of pairwise distances between points in the set B (Section 3.2.2). In
the following lemmata, we use C1T as a demarcation between “nearby” and “distant” geodesic
distance; we assign a specific value for C1 in Section 3.2.5.

Lemma 3.2 Let Φ be as specified in Section 3.2.2, let C1 > 0, and suppose C1T/τ < 1/2. Let x1

and x2 be two points on M separated by geodesic distance dM(x1, x2) ≤ C1T . Then the difference
vector x1 − x2 has isometry constant

ǫ4 := ǫ3 + C1T
√
N/M/τ + 2C1T/τ + 2ǫ3C1T/τ + 2C2

1T
2
√
N/M/τ2.

Proof: See Appendix B.

Lemma 3.3 Let Φ be as specified in Section 3.2.2, and suppose C1 ≥ 10, T ≤ τ/C1, and δ ≤ 1/4.
Let x1 and x2 be two points on M separated by geodesic distance dM(x1, x2) > C1T . Then the
difference vector x1 − x2 has isometry constant

ǫ6 := 12ǫ5 +
48ǫ5T

τ
+

2T

τ
+

8T 2

τ2
+

2T
√
N/M

τ
+

8T 2
√
N/M

τ2

where
ǫ5 := ǫ1 + 4δ + 4δǫ1 + 2δ

√
N/M + 8δ2

√
N/M.

Proof: See Appendix C.

3.2.5 Synthesis

Finally, we specify values for C1, ǫ1, T , and δ that will ensure an isometry constant of ǫ for all
pairwise distances on the manifold. Thus far, we have established the following isometry constants.
For nearby points (Lemma 3.2) we have isometry constant

ǫ4 = ǫ3 +
C1T

τ

√
N

M
+

2C1T

τ
+

2ǫ3C1T

τ
+

2C2
1T

2

τ2

√
N

M

= 2ǫ1 +
4ǫ1C1T

τ
+

√
3TN

τM
+
C1T

τ

√
N

M
+

2C1T

τ
+

2C1T

τ

√
3TN

τM
+

2C2
1T

2

τ2

√
N

M
.
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For distant points (Lemma 3.3) we have isometry constant

ǫ6 = 12ǫ5 +
48ǫ5T

τ
+

2T

τ
+

8T 2

τ2
+

2T

τ

√
N

M
+

8T 2

τ2

√
N

M

= 12ǫ1 + 48δ + 48δǫ1 + 24δ
√
N/M + 96δ2

√
N/M

+
48ǫ1T

τ
+

192δT

τ
+

192δǫ1T

τ
+

96δT

τ

√
N

M
+

384δ2T

τ

√
N

M

+
2T

τ
+

8T 2

τ2
+

2T

τ

√
N

M
+

8T 2

τ2

√
N

M
.

We must ensure that both ǫ4 ≤ ǫ and ǫ6 ≤ ǫ.
We first set C1 = 10. For constants C2, C3, and C4 (which we will soon specify), we let

ǫ1 = C2ǫ, T =
C3ǫ

2τ

N
, and δ =

C4ǫ√
N
.

Plugging in to the above and using the fact that ǫ < 1, we have

ǫ4 = 2C2ǫ+
40C2C3ǫ

3

N
+

√
3C3ǫ2

M
+

10C3ǫ
2

N

√
N

M
+

20C3ǫ
2

N

+
20C3ǫ

2

N

√
3C3ǫ2

M
+

200C2
3 ǫ

4

N2

√
N

M

≤ ǫ(2C2 + 40C2C3 +
√

3C3 + 30C3 + 20
√

3C3

√
C3 + 200C2

3 )

and

ǫ6 = 12C2ǫ+
48C4ǫ√
N

+
48C2C4ǫ

2

√
N

+
24C4ǫ√
M

+
96C2

4 ǫ
2

√
NM

+
48C2C3ǫ

3

N
+

192C3C4ǫ
3

N
√
N

+
192C2C3C4ǫ

4

N
√
N

+
96C3C4ǫ

3

N
√
M

+
384C3C

2
4ǫ

4

N
√
NM

+
2C3ǫ

2

N
+

8C2
3 ǫ

4

N2
+

2C3ǫ
2

√
NM

+
8C2

3 ǫ
4

N
√
NM

≤ ǫ(12C2 + 48C4 + 48C2C4 + 24C4 + 96C2
4 + 48C2C3 + 192C3C4

+192C2C3C4 + 96C3C4 + 384C3C
2
4 + 2C3 + 8C2

3 + 2C3 + 8C2
3 ).

We now must set the constants C2, C3, and C4 to ensure that ǫ4 ≤ ǫ and ǫ6 ≤ ǫ. Due to the role of
ǫ1 in determining our ultimate bound on M , we wish to be most aggressive in setting the constant
C2. To ensure ǫ6 ≤ ǫ, we must set C2 < 1/12; we choose C2 = 1/13. For the remaining constants
we may choose C3 = 1/3100 and C4 = 1/1033 and confirm that both ǫ4 ≤ ǫ and ǫ6 ≤ ǫ. One
may also verify that, by using these constants, all of our assumptions in Section 3.2.2, Lemma 3.1,
Lemma 3.2, and Lemma 3.3 are met (in particular, that ǫ1 ≥ 2δ, T/τ < 1/4, C1T/τ < 1/2, C1 ≥ 10,
T ≤ τ/C1, and δ ≤ 1/4).

We can now determine the size of the set B, which according to (10) will dictate the required
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number of measurements M . We have

#B ≤
∑

a∈A

(1 + #Q2(a)) =
∑

a∈A

(1 + #Q1(a))

≤
(
RKV KK/2

TK

)

(1 + (3/δ)K )

≤
(
RKV KK/2

TK

)

1 +

(
3 · 1033

√
N

ǫ

)K




≤
(
RKV KK/23100KNK

ǫ2KτK

)(
(3 · 1033 + 1)KNK/2

ǫK

)
.

Plugging in to (10), we require

M ≥
(

4 + 2β

ǫ21/2 − ǫ31/3

)
ln(#B)

≥
(

4 − 2 ln(ρ)

ǫ2/338 − ǫ3/6591

)
ln

(
31002KKK/2N3K/2RKV

ǫ3KτK

)
. (11)

This completes the proof of Theorem 3.1. �

3.3 Proof of Corollary 3.1

The corollary follows simply from the fact that length of a smooth curve on the manifold can be
written as a limit sum of ambient distances between points on that curve and the observation
that (4) can be applied to each of these distances.

So if we let x, y ∈ M, define µ = dM(x, y), and let γ denote the unit speed geodesic path joining
x and y on M in RN , then the length of the image of γ along ΦM in RM will be bounded above
by (1 + ǫ)

√
M/Nµ. Hence, dΦM(Φx,Φy) ≤ (1 + ǫ)

√
M/NdM(x, y).

Similarly, if we let x, y ∈ M, define µΦ = dΦM(Φx,Φy), and let γΦ denote the unit speed
geodesic path joining Φx and Φy on the image of M in RM , then the length of the preimage of γΦ

is bounded above by 1
1−ǫ

√
N/MµΦ. Hence,

dM(x, y) ≤ 1

1 − ǫ

√
N/MµΦ,

which implies that
dΦM(Φx,Φy) ≥ (1 − ǫ)

√
M/NdM(x, y).

�

3.4 Remarks

We offer some brief remarks on these results.

1. Like the fundamental bound in Compressed Sensing, the requisite number of random projec-
tions M to ensure a stable embedding of the manifold is linear in the “information level” K
and logarithmic in the ambient dimension N ; additionally we identify a logarithmic depen-
dence on the volume and conditioning of the manifold. (An open question is whether the
dependence on N could be removed entirely; we conjecture that this could not be accom-
plished without additional assumptions on the manifold such as bounds on third derivatives.)
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2. The proof of Theorem 3.1 in fact establishes the bound (3) up to actual constants; see (11)
for the complete result.

3. The ln(1/ρ) factor in the numerator of (3) and (11) can be immediately sharpened to

ln(1/ρ)

ln
(

31002KKK/2N3K/2RKV
ǫ3KτK

)

to dramatically reduce the dependence on the failure probability ρ. (This follows simply from
Lemma 1.1 and a more careful accounting in Section 3.2.2 of the proof.)

4. The constant 338 appearing in (11) can likely be improved by increasing C1 and by sharpening
Lemma 3.3.

5. Our results can also be extended to include other random distributions for Φ, such as the case
where Φ is a random M ×N matrix with i.i.d. N (0, σ2) entries, where σ2 = 1/N . (See [2] for
other possibilities.) In order to adapt the proof, one must account for the fact that Φ may no
longer be nonexpanding; however with high probability the norm ‖Φ‖2 can be bounded by a
small constant.

6. During final preparation of this manuscript, we became aware of another recent paper [30]
concerning embeddings of low-dimensional signal sets by random projections. While the
signal classes considered in that paper are slightly more general, the conditions required on
distance preservation are slightly weaker (yet suitable, e.g., for solving approximate nearest
neighbor problems). It appears that our assumption of bounded curvature may be critical for
establishing simultaneous uniform bounds over all pairwise distances.

4 Stylized Applications

We conclude with a brief discussion of possible applications of these results in signal acquisition
and processing.

4.1 Compressed Sensing for Manifolds

First, we consider a generalization of Compressed Sensing (CS) that takes advantage of the stable
embedding of the manifold into RM . In the traditional CS problem, recovery of a signal x ∈ RN from
its measurement y = Φx ∈ RM (where M < N) is possible thanks to a model that characterizes
where in RN the signal x might be expected to reside. In particular, this model comes as an
assumption of sparsity in the dictionary Ψ, and the sparsity level K dictates the requisite number
of measurements M to ensure stable recovery of sparse signals x. As we discussed in Section 1.2.2,
recovery of sparse signals is possible because the signal set ΣK has a stable embedding under Φ.

We have also established in this paper, however, that a signal manifold M can be stably
embedded under a random projection from RN to RM for some M . This suggests that signals
obeying manifold models can also be recovered from CS measurements, simply by replacing the
traditional CS model of sparsity with a manifold model for x. Moreover, the requisite number
M of measurements should depend only on the properties of the manifold M on which the signal
x is hypothesized to live, and not on the sparsity level of x in any particular dictionary Ψ. To
make this more concrete, suppose that x lives exactly on a compact submanifold M ⊂ RN with a
particular dimension and condition number. Theorem 3.1 then suggests a sufficient number M of
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measurements so that (with high probability),4 the operator Φ embeds M into RM . This implies
also that x will be uniquely identifiable from its projection y = Φx.

Beyond simple invertibility, however, Theorem 3.1 also indicates a certain “stability” to the
embedding of M in RM (specifically, in the preservation of ambient distances). This stability can
be useful for guaranteeing approximate recovery of signals that live near the manifold M, rather
than exactly on it. In particular, suppose x /∈ M, and let x∗ be the “nearest neighbor” to x on M,
i.e.,

x∗ = arg min
x′∈M

∥∥x− x′
∥∥

2
, (12)

supposing that this point is uniquely defined. Let x̂ be the “approximate nearest neighbor” as
estimated in the projected space RM , i.e.,

x̂ = arg min
x′∈M

∥∥Φx− Φx′
∥∥

2
. (13)

This point x̂ could be thought of as a “recovered” CS approximation to x. To consider this
recovery successful, we would like to guarantee that ‖x− x̂‖2 is not much larger than ‖x− x∗‖2.
Such a guarantee comes again from the JL lemma. Assuming that the random orthoprojector Φ is
statistically independent of the signal x, then we may recall Section 3.2.2 of the proof and consider
the embedding of the set {x} ∪ B under Φ. With high probability,5 each pairwise distance in this
set will have isometry constant ǫ1. Hence, the distance from x to each anchor point will be well-
preserved, and since every manifold point is no more than distance T from an anchor point, then
(assuming ‖x− x∗‖2 is sufficiently larger than T ) the distance from x to every point on M will
be well-preserved. This guarantees a satisfactory recovery x̂ in the approximate nearest neighbor
problem. (By examining, for example, the tangent spaces, this can all be made more precise and
extended to consider the case where ‖x− x∗‖2 is small.)

The question remains of how a recovery program such as (13) can be efficiently solved. Unfor-
tunately it is difficult to provide a single general-purpose algorithm, as certain nuances (such as
topology) of the individual manifold can cause problem-specific challenges. (This is true even when
solving (12) with the full data x ∈ RN .) However, given a suitable initial guess for the solution x̂
to (13), local navigation of the manifold, driven for example by an iterative Newton’s method [46]
to minimize ‖Φx− Φx′‖2, could be used to converge to the true solution. An initial guess for x̂
could be obtained, for example, by solving (13) using only a coarse sampling of points from ΦM
or by employing prior information discovered through other means. Such prior information is not
unreasonable in multi-signal settings or when recovering a single signal in a multiscale fashion [22].
In general, because many key properties of the manifold are preserved, one would expect the chal-
lenge of solving (13) in the measurement space RM to roughly reflect the difficulty of solving (12)
in the initial ambient space RN .

We refer the reader to [44, 45] for additional discussion of recovery algorithms in more specific
contexts such as image processing. These papers also include a series of simple but promising
experiments that support manifold-based CS on a more empirical level. Additional research and
experiments are ongoing, including an investigation into the relationship between the condition
number and certain signal properties such as differentiability [46].

4Whitney’s Embedding Theorem [29] actually suggests for certain K-dimensional manifolds that the number of
measurements need be no larger than 2K +1 to ensure an embedding. However, as it offers no guarantee of stability,
the practical recovery of a signal on the manifold could be complicated. Interestingly, the number 2K also arises in
CS as the number of random measurements required to embed the set of all K-sparse signals (but again with no
guarantee on the conditioning of the recovery problem); see [3].

5By the addition of an extra point to the embedding, there is a nominal increase in the required number of
measurements. This increase becomes much more relevant in the case where a large number of signals x would need
to be embedded well with respect to the manifold.
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4.2 Manifold learning

Recall from Section 1.2.3 that the basic problem of manifold learning is to discover some information
about a manifold based on a collection of data sampled from that manifold. In standard problems,
this data is presented in RN (the natural ambient signal space). For several reasons it may be
desirable to reduce the data dimension N . First of all, the process of acquiring and storing a large
number of manifold samples may be difficult when the dimension N is large. Second, the dimension
N can also impose a significant computational burden on manifold learning algorithms.

Fortunately, Theorem 3.1 and Corollary 3.1 imply that many of the properties of a manifold
M one may wish to discover from sampled data in RN are approximately preserved in its image
ΦM under a random projection to RM . Among the properties accurately approximated are:6

• ambient and geodesic distances between pairs of points;

• dimension of the manifold;

• topology, local neighborhoods, and local angles;

• lengths and curvature of paths on the manifold; and

• volume of the manifold.

These are some of the basic properties sought by the manifold learning algorithms such as those
listed in Section 1.2.3, and so one can simply apply such algorithms to random projections of the
original data and get an approximation to the true answer. The quality of the approximation could
be weighed against the potential savings in data acquisition, storage, and computation.

To give a simple example, the first step of the canonical ISOMAP algorithm [41] computes
pairwise Euclidean distances between some or all of the training points Q. Superficially, this
step requires O(N(#Q)2) arithmetic operations, though the actual distances are required only
for the k nearest neighbors of each point, which potentially lowers the computational burden as
far as O(Nk(#Q)). (From these Euclidean distances, geodesic distances are estimated and then
used in constructing the embedding. Hence the complexity of all subsequent steps depends only
on #Q and not on N .) However, Theorem 3.1 (and Corollary 3.1) suggest that each Euclidean
(geodesic) distance can be accurately estimated in the projected space, which further reduces the
computational burden of the first step of ISOMAP to O(Mk(#Q)). Moreover, the requisite number
of dimensions M depends only on the properties of the manifold and not the number of training
points #Q (in contrast to the JL lemma).

Of course, to properly measure the true computational savings of manifold learning in RM in-
stead of RN , one would need to account for the complexity7 of applying the operator Φ. If the data
is initially provided in RN , then the future computational savings may not always warrant the cost
of applying Φ. However, in some cases the reduced storage requirement could justify the compu-
tational burden. Moreover, to support the developing CS theory, physical “analog-to-information”
hardware devices [31, 42] and imaging systems [39] have been proposed that directly acquire ran-
dom projections of signals into RM without first sampling the signals in RN ; this eliminates the
computational burden of applying the operator Φ. Our results suggest that such devices could

6Some of these follow directly from Theorem 3.1 and Corollary 3.1; others depend on the near-isometry of the
projected tangent spaces as discussed in Section 3.2.3. The actual quality of approximation will depend on the
property being preserved, and some properties (such as path curvature) may require additional assumptions (such as
bounded third derivatives) to yield the sharpest bounds.

7The computational complexity of applying an arbitrary M × N operator Φ is O(MN) per data point, though
this complexity can be reduced through a careful, pseudorandom design of Φ [42].
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be a useful and efficient means for acquiring and storing manifold-modeled data while preserving
the relevant structural features within the data. Again, we refer the reader to [44] for promising
preliminary experiments.
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A Proof of Lemma 3.1

Let x be an arbitrary point on the manifold and let a be its nearest anchor point (in geodesic
distance), recalling from (8) that dM(x, a) ≤ T . Let v ∈ Tanx with ‖v‖2 = 1. From Lemma 2.2 it
follows that there exists u ∈ Tana such that ‖u‖2 = 1 and cos(angle(u, v)) > 1 − T/τ .

Because ‖u‖2 = ‖v‖2 = 1, it follows that ‖u− v‖2 ≤ angle(u, v). Define θ := angle(u, v); our
bound above specifies that cos(θ) > 1 − T/τ . Using a Taylor expansion we have that cos(θ) <
1 − θ2/2 + θ4/24 = 1 − (θ2/2)(1 − θ2/12), and because we assume T/τ < 1/4, then θ < 2, which
implies cos(θ) < 1 − θ2/3. Combining, we have 1 − θ2/3 > cos(θ) > 1 − T/τ , which implies that
T/τ > θ2/3, and so ‖u− v‖2 ≤ θ <

√
3T/τ .

Since u ∈ Tana with a ∈ A, we recall that u has isometry constant ǫ2. We aim to determine
the isometry constant for v. Using the triangle inequality and the fact that Φ is nonexpanding,
we have ‖Φv‖2 ≤ ‖Φu‖2 + ‖Φ(u− v)‖2 ≤ (1 + ǫ2)

√
M/N +

√
3T/τ . Similarly, ‖Φv‖2 ≥ ‖Φu‖2 −

‖Φ(u− v)‖2 ≥ (1− ǫ2)
√
M/N −

√
3T/τ . Since ‖v‖2 = 1, this implies that v has isometry constant

ǫ3 := ǫ2 +

√
3TN

τM
.

Because the choices of x and v were arbitrary, it follows that all tangents to the manifold have
isometry constant ǫ3. �

B Proof of Lemma 3.2

Define µ := dM(x1, x2) ≤ C1T . Let γ(t) denote a unit speed parameterization of the geodesic path
connecting x1 and x2, with γ(0) = x1 and γ(µ) = x2. From Lemma 2.1 we have that the curvature
of γ is bounded by 1/τ . From Taylor’s theorem we then have that

γ(µ) − γ(0) = µγ′(0) +R1 (14)

where γ′(0) denotes the tangent to the curve γ at 0, and where the norm of the remainder obeys
‖R1‖2 ≤ µ2/τ . Using the triangle inequality and the fact that ‖γ′(0)‖2 = 1, we have that
‖γ(µ) − γ(0)‖2 ≥ (1 − µ/τ)µ, and comparing Euclidean and geodesic distances we know that
‖γ(µ) − γ(0)‖2 ≤ dM(x1, x2) = µ. Combining (14) with the isometry constant ǫ3 of γ′(0) and the
fact that Φ is nonexpanding we also have

(1 − (ǫ3 + µ
√
N/M/τ))µ

√
M/N ≤ ‖Φγ(µ) − Φγ(0)‖2 ≤ (1 + (ǫ3 + µ

√
N/M/τ))µ

√
M/N.
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Combining the above bounds, the ratio

‖Φγ(µ) − Φγ(0)‖2

‖γ(µ) − γ(0)‖2

≤ (1 + ǫ3 + µ
√
N/M/τ)µ

√
M/N

(1 − µ/τ)µ

≤ (1 + ǫ3 + C1T
√
N/M/τ)

(1 − C1T/τ)

√
M/N

≤ (1 + ǫ3 + C1T
√
N/M/τ + 2C1T/τ + 2ǫ3C1T/τ + 2C2

1T
2
√
N/M/τ2)

√
M

N
.

In the third step above we have employed (6) and the fact that C1T/τ < 1/2. Similarly, the ratio

‖Φγ(µ) − Φγ(0)‖2

‖γ(µ) − γ(0)‖2

≥ (1 − ǫ3 − µ
√
N/M/τ)µ

√
M/N

µ

≥ (1 − ǫ3 − C1T
√
N/M/τ)

√
M/N.

Of the bounds we have now derived, the upper bound is the looser of the two, and so it follows
that the difference vector γ(µ) − γ(0) = x2 − x1 has isometry constant

ǫ4 := ǫ3 + C1T
√
N/M/τ + 2C1T/τ + 2ǫ3C1T/τ + 2C2

1T
2
√
N/M/τ2.

This isometry constant ǫ4 will hold for any two points on the manifold separated by geodesic
distance ≤ C1T . �

C Proof of Lemma 3.3

Let a1 and a2 be the nearest (in terms of geodesic distance) anchor points to x1 and x2, respectively.
We consider the geodesic path from a1 to x1 and let u1 ∈ Tana1

denote the tangent to this path
at a1. (For convenience we scale u1 to have norm ‖u1‖2 = T .) Similarly, we let u2 ∈ Tana2

denote
the tangent at the start of the geodesic path from a2 to x2 (choosing ‖u2‖2 = T ).

We recall from (9) that there exists q1 ∈ Q2(a1) such that ‖u1 − q1‖2 ≤ Tδ and there exists
q2 ∈ Q2(a2) such that ‖u2 − q2‖2 ≤ Tδ. Additionally, the points a1 + q1 and a2 + q2 belong to the
set B, and so the difference (a1 + q1) − (a2 + q2) has isometry constant ǫ1.

Recalling the assumption that T ≤ τ/C1, we consider the ambient distance between x1 and x2.
We have either that ‖x1 − x2‖2 > τ/2 ≥ C1T/2 or that ‖x1 − x2‖2 ≤ τ/2, which by Corollary 2.1

would then imply that ‖x1 − x2‖2 ≥ dM(x1, x2)− (dM(x1,x2))2

2τ with dM(x1, x2) > C1T by assumption

and dM(x1, x2) ≤ τ−τ
√

1 − 2 ‖x1 − x2‖2 /τ ≤ τ by Lemma 2.3. In this range C1T < dM(x1, x2) ≤
τ , it follows that ‖x1 − x2‖2 ≥ dM(x1, x2) − (dM(x1,x2))2

2τ > C1T/2. Since we assume C1 ≥ 10, then
‖x1 − x2‖2 > 5T . Using the triangle inequality, ‖a1 − a2‖2 > 3T and ‖(a1 + q1) − (a2 + q2)‖2 > T .

Now we consider the isometry constant of (a1 + u1) − (a2 + u2). Using the triangle inequality
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and the fact that Φ is nonexpanding, we have

‖Φ(a1 + u1) − Φ(a2 + u2)‖2

‖(a1 + u1) − (a2 + u2)‖2

≤ ‖Φ(a1 + q1) − Φ(a2 + q2)‖2 + 2Tδ

‖(a1 + q1) − (a2 + q2)‖2 − 2Tδ

≤ (1 + ǫ1) ‖(a1 + q1) − (a2 + q2)‖2

√
M/N + 2Tδ

‖(a1 + q1) − (a2 + q2)‖2 − 2Tδ

=
(1 + ǫ1)

√
M/N + 2Tδ/ ‖(a1 + q1) − (a2 + q2)‖2

1 − 2Tδ/ ‖(a1 + q1) − (a2 + q2)‖2

<
(1 + ǫ1)

√
M/N + 2δ

1 − 2δ

≤ (1 + ǫ1 + 4δ + 4δǫ1 + 2δ
√
N/M + 8δ2

√
N/M )

√
M/N.

The fifth step above uses (6) and assumes δ ≤ 1/4. Similarly,

‖Φ(a1 + u1) − Φ(a2 + u2)‖2

‖(a1 + u1) − (a2 + u2)‖2

≥ ‖Φ(a1 + q1) − Φ(a2 + q2)‖2 − 2Tδ

‖(a1 + q1) − (a2 + q2)‖2 + 2Tδ

≥ (1 − ǫ1) ‖(a1 + q1) − (a2 + q2)‖2

√
M/N − 2Tδ

‖(a1 + q1) − (a2 + q2)‖2 + 2Tδ

=
(1 − ǫ1)

√
M/N − 2Tδ/ ‖(a1 + q1) − (a2 + q2)‖2

1 + 2Tδ/ ‖(a1 + q1) − (a2 + q2)‖2

>
(1 − ǫ1)

√
M/N − 2δ

1 + 2δ

≥ (1 − ǫ1 − 2δ + 2δǫ1 − 2δ
√
N/M + 4δ2

√
N/M )

√
M/N

> (1 − ǫ1 − 2δ − 2δ
√
N/M)

√
M/N.

Here the fifth step uses (7). Of the bounds we have now derived, the upper bound is the looser of
the two, and so the difference vector (a1 + u1) − (a2 + u2) has isometry constant

ǫ5 := ǫ1 + 4δ + 4δǫ1 + 2δ
√
N/M + 8δ2

√
N/M.

Using very similar arguments one can show that the difference vectors a1−(a2+u2) and (a1+u1)−a2

also have isometry constant ǫ5.
Define bi = ai +ui, µi = dM(ai, xi), and ci = ai + (µi/T )ui for i = 1, 2. The points ci represent

traversals of length µi along the tangent path rather than the geodesic path from ai to xi; they can
also be expressed as the linear combination

ci = (1 − µi/T )ai + (µi/T )bi, i = 1, 2. (15)

At this point we have established isometry constants for all pairwise differences between vectors
in the set {a1, a2, b1, b2}. We now use these to establish a similar bound for the difference c1 − c2.
First, we can express the distance ‖c1 − c2‖2

2 in terms of the distances between the ai’s and bi’s.
Define

dcross = (µ1/T )(µ2/T ) ‖b1 − b2‖2
2 + (1 − µ1/T )(µ2/T ) ‖a1 − b2‖2

2

+(µ1/T )(1 − µ2/T ) ‖b1 − a2‖2
2 + (1 − µ1/T )(1 − µ2/T ) ‖a1 − a2‖2

2
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and

dlocal = (µ1/T )(1 − µ1/T ) ‖a1 − b1‖2
2 + (µ2/T )(1 − µ2/T ) ‖a2 − b2‖2

2 .

Then we can use (15) to show that

‖c1 − c2‖2
2 = dcross − dlocal.

Noting that ‖a1 − b1‖2
2 = ‖a2 − b2‖2

2 = T 2, we have that dlocal ≤ T 2/2. Because ‖x1 − x2‖2 > 5T ,
a1 and b1 are at least distance T from each of a2 and b2, which implies that dcross > T 2 ≥ 2dlocal.
We will use this fact below. We can also express

Φci = (1 − τi/T )Φai + (τi/T )Φbi, i = 1, 2,

define

d̂cross = (µ1/T )(µ2/T ) ‖Φb1 − Φb2‖2
2 + (1 − µ1/T )(µ2/T ) ‖Φa1 − Φb2‖2

2

+(µ1/T )(1 − µ2/T ) ‖Φb1 − Φa2‖2
2 + (1 − µ1/T )(1 − µ2/T ) ‖Φa1 − Φa2‖2

2 , and

d̂local = (µ1/T )(1 − µ1/T ) ‖Φa1 − Φb1‖2
2 + (µ2/T )(1 − µ2/T ) ‖Φa2 − Φb2‖2

2 ,

and establish that
‖Φc1 − Φc2‖2

2 = d̂cross − d̂local.

We will now employ the known isometry constants between pairwise differences of {a1, a2, b1, b2}.
For (b1−b2), (a1−b2), and (b1−a2), we have derived isometry constant ǫ5 above. From Section 3.2.2
we have isometry constant ǫ1 for the difference (a1−a2). Because ǫ1 ≤ ǫ5, we may assume isometry
constant ǫ5 for each of these four difference vectors, which (from Section 3.2.1) implies squared
isometry constant 3ǫ5 for each. We also have from Section 3.2.3 that (a1 − b1) and (a2 − b2) have
isometry constant ǫ2 = 2ǫ1 ≤ 2ǫ5, and so we may assume squared isometry constant 6ǫ5 for each of
these two difference vectors. Based on these squared isometry constants, it follows that

‖Φc1 − Φc2‖2
2 = d̂cross − d̂local

≤ (1 + 3ǫ5)(M/N)dcross − (1 − 6ǫ5)(M/N)dlocal

=

(
1 + 3ǫ5 + 9ǫ5

(
dlocal

dcross − dlocal

))
(M/N)(dcross − dlocal)

< (1 + 12ǫ5)(M/N) ‖c1 − c2‖2
2 .

For the last inequality we used the fact that dcross > 2dlocal. Similarly, we have that

‖Φc1 − Φc2‖2
2 > (1 − 12ǫ5)(M/N) ‖c1 − c2‖2

2 .

Combining, these imply squared isometry constant 12ǫ5 for the vector c1 − c2, which also implies
isometry constant 12ǫ5 for c1 − c2.

Finally, we are ready to compute the isometry constant for the vector x1 − x2. Using Taylor’s
theorem anchored at the points ai, we have ‖xi − ci‖2 ≤ µ2

i /τ ≤ T 2/τ, i = 1, 2. Using the triangle
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inequality we also have that ‖c1 − c2‖2 > T . Thus

‖Φx1 − Φx2‖2

‖x1 − x2‖2

≤ (1 + 12ǫ5)
√
M/N ‖c1 − c2‖2 + 2T 2/τ

‖c1 − c2‖2 − 2T 2/τ

=

(
1 +

12ǫ5 + 2T 2/(τ ‖c1 − c2‖2) + 2T 2
√
N/M/(τ ‖c1 − c2‖2)

1 − 2T 2/(τ ‖c1 − c2‖2)

)
√
M/N

≤
(

1 +
12ǫ5 + 2T/τ + 2T

√
N/M/τ

1 − 2T/τ

)
√
M/N.

Similarly,

‖Φx1 − Φx2‖2

‖x1 − x2‖2

≥ (1 − 12ǫ5)
√
M/N ‖c1 − c2‖2 − 2T 2/τ

‖c1 − c2‖2 + 2T 2/τ

=

(
1 − 12ǫ5 + 2T 2/(τ ‖c1 − c2‖2) + 2T 2

√
N/M/(τ ‖c1 − c2‖2)

1 + 2T 2/(τ ‖c1 − c2‖2)

)
√
M/N

≥
(
1 − (12ǫ5 + 2T/τ + 2T

√
N/M/τ)

)√
M/N.

Considering both bounds, we have

12ǫ5 + 2T/τ + 2T
√
N/M/τ ≤ 12ǫ5 + 2T/τ + 2T

√
N/M/τ

1 − 2T/τ

≤ (12ǫ5 + 2T/τ + 2T
√
N/M/τ)(1 + 4T/τ).

(For the second inequality, we use the assumption that T/τ < 1/4.) Hence, x1 − x2 has isometry
constant

ǫ6 := 12ǫ5 +
48ǫ5T

τ
+

2T

τ
+

8T 2

τ2
+

2T
√
N/M

τ
+

8T 2
√
N/M

τ2
.

�

References

[1] D. Achlioptas. Database-friendly random projections. In Proc. Symp. on Principles of Database
Systems (PODS ’01), pages 274–281. ACM Press, 2001.

[2] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted
isometry property for random matrices. Constr. Approx., 2007. To appear.

[3] D. Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham, and R. G. Baraniuk. Distributed
compressed sensing. 2005. Preprint.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data repre-
sentation. Neural Comput., 15(6):1373–1396, June 2003.

[5] M. Brand. Charting a manifold. In Advances in Neural Information Processing Systems
(NIPS), volume 15, pages 985–992. MIT Press, 2003.

[6] D. S. Broomhead and M. Kirby. A new approach for dimensionality reduction: Theory and
algorithms. SIAM J. Applied Math., 60(6):2114–2142, 2000.

21



[7] D. S. Broomhead and M. J. Kirby. The Whitney Reduction Network: A method for computing
autoassociative graphs. Neural Comput., 13(11):2595–2616, November 2001.

[8] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509,
February 2006.

[9] E. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Comm. Pure Appl. Math., 59(8):1207–1223, August 2006.

[10] E. Candès and T. Tao. Decoding via linear programming. IEEE Trans. Inform. Theory,
51(12):4203–4215, December 2005.

[11] E. Candès and T. Tao. The Dantzig selector: Statistical estimation when p is much larger
than n. Ann. Statist., 2006. To appear.

[12] E. Candès and T. Tao. Near optimal signal recovery from random projections: Universal
encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425, December 2006.

[13] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas. Persistence barcodes for shapes. In
Proc. Symp. on Geometry processing (SGP ’04), pages 124–135. ACM Press, 2004.

[14] R. R. Coifman and M. Maggioni. Diffusion wavelets. Appl. Comput. Harmon. Anal., 21(1):53–
94, June 2006.

[15] J. A. Costa and A. O. Hero. Geodesic entropic graphs for dimension and entropy estimation
in manifold learning. IEEE Trans. Signal Processing, 52(8):2210–2221, August 2004.

[16] S. Dasgupta and A. Gupta. An elementary proof of the Johnson-Lindenstrauss lemma. Tech-
nical Report TR-99-006, Berkeley, CA, 1999.

[17] D. Donoho. Neighborly polytopes and sparse solution of underdetermined linear equations.
Technical Report 2005-04, Stanford University Department of Statistics, 2005.

[18] D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4), April 2006.

[19] D. Donoho. For most large underdetermined systems of linear equations, the minimal L1-norm
solution is also the sparsest solution. Comm. Pure Appl. Math., 59(6), June 2006.

[20] D. Donoho. High-dimensional centrally symmetric polytopes with neighborliness proportional
to dimension. Disc. Comput. Geometry, 35(4):617–652, 2006.

[21] D. Donoho and J. Tanner. Neighborliness of randomly-projected simplices in high dimensions.
Proc. Natl. Acad. Sci. USA, 102(27):9452–9457, 2005.

[22] D. Donoho and Y. Tsaig. Extensions of compressed sensing. Signal Processing, 86(3):533–548,
March 2006.

[23] D. L. Donoho and C. Grimes. Image manifolds which are isometric to Euclidean space. J.
Math. Imaging Comp. Vision, 23(1):5–24, July 2005.

[24] D. L. Donoho and C. E. Grimes. Hessian Eigenmaps: Locally linear embedding techniques for
high-dimensional data. Proc. Natl. Acad. Sci. USA, 100(10):5591–5596, May 2003.

22



[25] D. L. Donoho and J. Tanner. Counting faces of randomly-projected polytopes when then pro-
jection radically lowers dimension. Technical Report 2006-11, Stanford University Department
of Statistics, 2006.

[26] C. Grimes. New methods in nonlinear dimensionality reduction. PhD thesis, Department of
Statistics, Stanford University, 2003.

[27] J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. IEEE Trans.
Inform. Theory, 52(9):4036–4048, 2006.

[28] G. E. Hinton, P. Dayan, and M. Revow. Modeling the manifolds of images of handwritten
digits. IEEE Trans. Neural Networks, 8(1):65–74, January 1997.

[29] M. W. Hirsch. Differential Topology, volume 33 of Graduate Texts in Mathematics. Springer,
1976.

[30] P. Indyk and A. Naor. Nearest neighbor preserving embeddings. ACM Trans. Algorithms,
2006. To appear.

[31] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R. Bara-
niuk. Analog-to-information conversion via random demodulation. In Proc. IEEE Dallas
Circuits and Systems Workshop (DCAS), Dallas, Texas, October 2006.

[32] G. G. Lorentz, M. von Golitschek, and Y. Makovoz. Constructive approximation: Advanced
problems, volume 304. Springer Grundlehren, Berlin, 1996.

[33] S. Mallat. A wavelet tour of signal processing. Academic Press, San Diego, CA, USA, 1999.

[34] P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with confidence
from random samples. Disc. Comput. Geometry, 2006. To appear.

[35] A. Pinkus. n-widths and optimal recovery. In C. de Boor, editor, Proc. Symp. Applied Math.,
volume 36, pages 51–66. AMS, 1986.

[36] I. Ur Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schroeder. Multiscale represen-
tations for manifold-valued data. SIAM J. Multiscale Model. Simul., 4(4):1201–1232, 2005.

[37] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, December 2000.

[38] M. Rudelson and R. Vershynin. Geometric approach to error correcting codes and reconstruc-
tion of signals. Int. Math. Res. Not., 64:4019–4041, 2005.

[39] D. Takhar, V. Bansal, M. Wakin, M. Duarte, D. Baron, K. F. Kelly, and R. G. Baraniuk. A
compressed sensing camera: New theory and an implementation using digital micromirrors.
In Proc. Comp. Imaging IV at SPIE Electronic Imaging, San Jose, California, January 2006.

[40] D. S. Taubman and M. W. Marcellin. JPEG 2000: Image compression fundamentals, standards
and practice. Kluwer, 2001.

[41] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, December 2000.

23



[42] J. A. Tropp, M. B. Wakin, M. F. Duarte, D. Baron, and R. G. Baraniuk. Random filters
for compressive sampling and reconstruction. In Proc. Int. Conf. Acoustics, Speech, Signal
Processing (ICASSP). IEEE, May 2006.

[43] M. Turk and A. Pentland. Eigenfaces for recognition. J. Cogn. Neurosci., 3(1):71–83, 1991.

[44] M. B. Wakin. The Geometry of Low-Dimensional Signal Models. PhD thesis, Department of
Electrical and Computer Engineering, Rice University, Houston, TX, 2006.

[45] M. B. Wakin and R. G. Baraniuk. Random projections of signal manifolds. In Proc. Int. Conf.
Acoustics, Speech, Signal Processing (ICASSP). IEEE, May 2006.

[46] M. B. Wakin, D. L. Donoho, H. Choi, and R. G. Baraniuk. The multiscale structure of non-
differentiable image manifolds. In Proc. Wavelets XI at SPIE Optics and Photonics, San Diego,
California, August 2005.

[47] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite
programming. Int. J. Comp. Vision – Special Issue: Comp. Vision Pattern Recog. (CVPR
2004), 70(1):77–90, 2006.

[48] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimension reduction via tangent
space alignment. SIAM J. Sci. Comput., 26(1):313–338, 2005.

24


