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Abstract

We study the representation, approximation, and compression of functions in M dimen-
sions that consist of constant or smooth regions separated by smooth (M − 1)-dimensional
discontinuities. Examples include images containing edges, video sequences of moving objects,
and seismic data containing geological horizons. For both function classes, we derive the op-
timal asymptotic approximation and compression rates based on Kolmogorov metric entropy.
For piecewise constant functions, we develop a multiresolution predictive coder that achieves the
optimal rate-distortion performance; for piecewise smooth functions, our coder has near-optimal
rate-distortion performance. Our coder for piecewise constant functions employs surflets, a new
multiscale geometric tiling consisting of M -dimensional piecewise constant atoms containing
polynomial discontinuities. Our coder for piecewise smooth functions uses surfprints, which
wed surflets to wavelets for piecewise smooth approximation. Both of these schemes achieve the
optimal asymptotic approximation performance. Key features of our algorithms are that they
carefully control the potential growth in surflet parameters at higher smoothness and do not
require explicit estimation of the discontinuity. We also extend our results to the correspond-
ing discrete function spaces for sampled data. We provide asymptotic performance results for
both discrete function spaces and relate this asymptotic performance to the sampling rate and
smoothness orders of the underlying functions and discontinuities. For approximation of discrete
data we propose a new scale-adaptive dictionary that contains few elements at coarse and fine
scales, but many elements at medium scales. Simulation results demonstrate that surflets pro-
vide superior compression performance when compared to other state-of-the-art approximation
schemes.

This work was supported by NSF grant CCF–0431150, ONR grant N00014–02–1–0353, AFOSR grant FA9550–
04–0148, AFRL grant FA8650–051850, and the Texas Instruments Leadership University Program. Preliminary
versions of this work have appeared at the 38th Annual Conference on Information Sciences and Systems [1] and
the 2004 IEEE International Symposium on Information Theory [2]. Email: venkatc@mit.edu and {wakin, drorb,
richb}@rice.edu; Web: dsp.rice.edu
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1 Introduction

1.1 Motivation

Sparse signal representations feature prominently in a broad variety of signal processing applica-
tions. The advantages of characterizing signals using just a few elements from a dictionary are
clear in the case of compression [3–6], but also extend to tasks such as estimation [7–10] and
classification [11, 12]. The dimensionality of signals is an important factor in determining sparse
representations. Wavelets provide an appropriate representation for smooth one-dimensional (1D)
signals, achieving the optimal asymptotic representation behavior for this class [13, 14], and they
maintain this optimal performance even for smooth 1D signals containing a finite number of point
discontinuities.

Unfortunately, this optimality does not extend completely to 2D signals due to the different
nature of discontinuities in two dimensions [15, 16]. While smooth signals in 2D containing a finite
number of point singularities are sparsely represented by a wavelet basis, 2D piecewise smooth
signals containing discontinuities along 1D curves (“edges”) are not represented efficiently by a
wavelet basis.

The problem is that the isotropically scaled wavelet basis fails to capture the anisotropic struc-
ture of 1D discontinuities. Due to its global support, the Fourier basis also fails to effectively
capture the local nature of these discontinuities. Nonetheless, 2D piecewise smooth signals con-
taining 1D discontinuities are worthy candidates for sparse representation. The 1D discontinuities
often carry interesting information, since they signify a boundary between two regions. Edges in
images illustrate this point well. Lying along 1D curves, edges provide fundamental information
about the geometry of a scene. Therefore, any signal processing application that relies on a sparse
representation requires an efficient tool for representing discontinuities.

A growing awareness of the limitations of traditional bases for representing 2D signals with
1D discontinuities has resulted in new multiscale representations. (Multiscale representations offer
a number of advantages for signal processing, enabling, for example, predictive and progressive
source coding, powerful statistical models, and efficient tree-structured processing.) The resulting
solutions fall into two broad categories: tight frames and geometric tilings. Loosely speaking, tight
frames refer to dictionaries from which approximations are formed using linear combinations of
atomic functions, while geometric tiling schemes create an adaptive partitioning of the signal to
which local approximation elements are assigned. The key factor exploited by all these solutions
is that the discontinuities often have a coherent geometric structure in one dimension. A primary
solution proposed in the class of 2D tight frames is the curvelet dictionary [16]. The salient feature
of curvelets is an anisotropic scaling of the atomic elements, with increased directionality at finer
resolution; the resulting dictionary is well-suited to represent 1D singularities. In the category of
geometric tilings, wedgelets [8] are piecewise constant functions defined on 2D dyadic squares, where
a linear edge singularity separates the two constant regions. Tilings of wedgelets at various scales
combine to form piecewise linear approximations to the 1D edges in images. Each of these solutions
assumes that the underlying 1D discontinuity is C2-smooth. The class of 2D signals containing such
smooth 1D discontinuities is often referred to as the Horizon function model [8].

Unfortunately, the tight frames and geometric tilings proposed to date also face certain limita-
tions. First, none of these techniques is directly applicable to problems in higher dimensions beyond
2D. Signals in video (3D), geophysics (3D, 4D), and light-field imaging (4D, 5D) [17] frequently
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contain information-rich discontinuities separating different regions. The confounding aspect, as
before, is that these discontinuities often have a well-defined geometric structure in one lower di-
mension than that of the signal. In video signals, for example, where we can imagine stacking
a 2D image sequence to form a 3D volume, 3D regions are separated by smooth, well-structured
2D discontinuities traced out by the moving boundaries of objects in the video. Therefore, we
can model discontinuities in M -dimensional signals as smooth functions of M − 1 variables. This
is an analogous extension to the Horizon function model [8] used for 2D signals with 1D smooth
discontinuities.

Another limitation of current frame and tiling approaches is that they are intended primarily
for signals with underlying C2-smooth discontinuities. There exist signals, however, for which
the discontinuities are inherently of a higher order of smoothness [18]. While CK ⊂ C2 for K > 2,
dictionaries achieving the optimal performance can be constructed only if the full smoothness of the
discontinuities is exploited. Interesting mathematical insights can also be obtained by considering
higher orders of smoothness. Finally, some of the proposed solutions such as wedgelets [8] consider
representation of piecewise constant signals in higher dimensions. Real-world multi-dimensional
signals, however, often consist of discontinuities separating smooth (but not constant) regions.
This motivates a search for sparse representations for signals in any dimension consisting of regions
of arbitrary smoothness that are separated by discontinuities in one lower dimension of arbitrary
smoothness.

1.2 Approximation and Compression

In this paper, we address the problem of approximating and compressing M -dimensional signals
that contain a smooth (M −1)-dimensional discontinuity separating regions in M dimensions1 (see
Fig. 1 for examples in 2D and 3D). The discontinuities in our models have smoothness CKd in
M − 1 dimensions. They separate two regions that may be constant (Sec. 1.3.1) or CKs-smooth in
M dimensions (Sec. 1.3.2). Our approximation results characterize the number of atoms required
to efficiently represent a signal and are useful for tasks such as estimation [8, 10] and classifica-
tion [11, 12]. The measure for approximation performance is the asymptotic rate of decay of the
distortion between a signal and its approximant as the number of atoms becomes large. Com-
pression results, on the other hand, also take into account which atoms are used in constructing a
sparse approximation and are crucial for communicating an approximation to a signal. Compres-
sion performance is assessed by considering the asymptotic rate-distortion behavior, which specifies
the rate of decay of the distortion between a signal and its approximant as the number of bits used
to encode the approximant becomes large. Since it is impossible to determine for abstract function
classes precise approximation or rate-distortion results, we will state our performance results in
terms of metric entropy [19], which characterizes the order of the number of atoms or bits required
to describe a function in the class under consideration.

1.3 Contributions

We consider two function classes as models for M -dimensional signals containing (M − 1)-
dimensional discontinuities. This section outlines our contributions toward constructing efficient
representations for elements of these classes, including extensions to discrete data.

1We discuss possible extensions to signals containing multiple discontinuities in Sec. 4.6.
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Figure 1: (a) Piecewise constant (“Horizon-class”) functions for dimensions M = 2 and M = 3.
(b) Piecewise smooth function for dimension M = 2.

(a) (b) (c) (d)

Figure 2: Example surflets, designed for (a) M = 2, Kd ∈ (1, 2]; (b) M = 2, Kd ∈ (2, 3]; (c) M = 3,
Kd ∈ (1, 2]; (d) M = 3, Kd ∈ (2, 3].

1.3.1 Piecewise constant M-dimensional functions

We consider the function class FC(M, Kd), consisting of M -dimensional piecewise constant Horizon
functions [8] that contain a CKd-smooth (M −1)-dimensional discontinuity separating two constant
regions. We begin by deriving the optimal asymptotic rates for nonlinear approximation and com-
pression of functions in the class FC(M, Kd). These bounds extend the results of Cohen et al. [14],
Clements [20], and Kolmogorov and Tihomirov [19], which characterize the optimal asymptotic
approximation and compression behavior of (M − 1)-dimensional smooth functions.

We introduce a new M -dimensional geometric tiling framework for multiscale representation
of functions in FC(M, Kd). We propose a dictionary of atoms defined on dyadic hypercubes, where
each atom is an M -dimensional piecewise constant function containing an (M − 1)-dimensional
polynomial discontinuity. We christen these atoms surflets after Richard Surflet, a 16th century
translator, occultist, and “practitioner in physicke” [21], and also after the fact that they resemble
small pieces of surfaces in higher dimensional space (see Fig. 2 for examples in 2D and 3D).

The surflet dictionary is a generalization of the wedgelet dictionary [8] to higher-dimensional
signals containing discontinuities of arbitrary smoothness (a wedgelet is a surflet with Kd = 2 and
M = 2). We show that tilings of elements drawn from the the surflet dictionary can achieve the
optimal approximation rate

∥∥∥f c − f̂ c
N

∥∥∥
2

L2

.

(
1

N

) Kd
M−1
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(a) (b)

Figure 3: Example surflet tilings, (a) piecewise cubic with M = 2 and (b) piecewise linear with
M = 3.

for the class FC(M, Kd),
2 where f c ∈ FC(M, Kd) and f̂ c

N is the best N -term approximant to f c.
Example 2D and 3D surflet tilings appear in Fig. 3.

We also propose a tree-structured compression algorithm for M -dimensional functions using
surflets and establish that this algorithm achieves the optimal rate-distortion performance

∥∥∥f c − f̂ c
R

∥∥∥
2

L2

.

(
1

R

) Kd
M−1

for the class FC(M, Kd). Here, f̂ c
R is the best approximation to f c that can be encoded using R

bits.

Our approach incorporates the following major features:

• the ability to operate directly on the M -dimensional function, without requiring explicit
knowledge (or estimation) of the (M − 1)-dimensional discontinuity;

• the use of multiresolution predictive coding in order to realize significant gains in rate-
distortion performance; and

• a technique to quantize and encode higher-order polynomial coefficients with lesser precision
without a substantial increase in distortion.

Without such a quantization scheme, higher-order polynomials would be impractical for represent-
ing boundaries smoother than C2, due to an exponential explosion in the number of polynomial
parameters and thus the size of the dictionary. A fascinating aspect of our solution is that the
size of the surflet dictionary can be reduced tremendously without sacrificing the approximation
capability.

1.3.2 Piecewise smooth M-dimensional functions

We consider the function class FS(M, Kd, Ks), consisting of M -dimensional piecewise smooth func-
tions that contain a CKd-smooth (M −1)-dimensional discontinuity separating two regions that are
CKs-smooth in M dimensions. We establish the optimal approximation and rate-distortion bounds
for this class.

2We focus here on asymptotic performance. We use the notation f(α) . g(α), or f(α) = O(g(α)), if there exists
a constant C, possibly large but not dependent on the argument α, such that f(α) ≤ Cg(α).
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Despite their ability to efficiently describe a discontinuity, surflets alone are not a suitable rep-
resentation for functions in FS(M, Kd, Ks) because a piecewise constant approximation is inefficient
on the smooth M -dimensional regions. Conversely, we note that wavelets are well-suited for rep-
resenting these M -dimensional smooth regions, yet they fail to efficiently capture discontinuities.
Thus, we propose a dictionary consisting of the following elements:

• an M -dimensional basis of compactly supported wavelet atoms having sufficiently many van-
ishing moments [22]; and

• a dictionary of M -dimensional surfprint atoms. Each surfprint can be viewed as a linear
combination of wavelet basis functions. It is derived by projecting a piecewise polynomial
surflet atom (having two M -dimensional polynomial regions separated by a polynomial dis-
continuity) onto a wavelet subspace.

The surfprint dictionary is an extension of the wedgeprint dictionary [23] for higher-dimensional
signals having regions of arbitrary smoothness separated by discontinuities of arbitrary smoothness
(a wedgeprint is a surfprint with Kd = 2, Ks = 2, and M = 2). Constructed as projections of
piecewise polynomial surflets onto wavelet subspaces, surfprints interface naturally with wavelets for
sparse approximation of piecewise smooth M -dimensional functions. We show that the combined
wavelet/surfprint dictionary achieves the optimal approximation rate for FS(M, Kd, Ks):

∥∥∥f s − f̂ s
N

∥∥∥
2

L2

.

(
1

N

)min
(

Kd
M−1

, 2Ks
M

)

.

Here, f s ∈ FS(M, Kd, Ks), and f̂ s
N is the best N -term approximant to f s. We include a careful

treatment of the surfprint polynomial degrees and the number of wavelet vanishing moments re-
quired to attain the optimal approximation rates. We also propose a tree-based encoding scheme
that comes within a logarithmic factor of the optimal rate-distortion performance for this class:

∥∥∥f s − f̂ s
R

∥∥∥
2

L2

.

(
log R

R

)min
(

Kd
M−1

, 2Ks
M

)

.

Here, f̂ s
R is the best approximation to f s that can be encoded using R bits.

1.3.3 Extensions to discrete data

We also address the problem of representing discrete data obtained by sampling a continuous
function from FC(M, Kd) or FS(M, Kd, Ks). We denote these classes of discretized (or “voxelized”)

data by F̃C(M, Kd) and F̃S(M, Kd, Ks), respectively, and we allow for different sampling rates in
each of the M dimensions.

In order to efficiently represent data from F̃C(M, Kd), we use a dictionary of discrete surflet
atoms derived by voxelizing the surflet atoms of our continuous surflet dictionary. We show that,
up to a certain critical scale (which depends on Kd and the sampling rates in each dimension),

the approximation results for FC(M, Kd) extend to F̃C(M, Kd). Beyond this scale, however, vox-
elization effects dominate, and the surflets designed for elements of FC(M, Kd) offer unnecessary

precision for representing elements of F̃C(M, Kd). To account for these effects, we propose a new
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Figure 4: Comparison of pruned surflet tilings using two surflet dictionaries (see Sec. 6 for more
details). (a) Test image with M = 2 and Kd = 3. (b) The wedgelets from Dictionary 2 can be
encoded using 482 bits and yields PSNR 29.86dB. (c) The quadratic/wedgelet combination from
Dictionary 3 can be encoded using only 275 bits and yields PSNR 30.19dB.

scale-adaptive dictionary that contains few elements at coarse and fine scales, but many elements at
medium scales. We also present simulation results confirming the advantages of our surflet coding
strategies; see Fig. 4 for an example demonstrating the benefits of quadratic surflets.3

For elements of F̃S(M, Kd, Ks), we use a dictionary of compactly supported discrete wavelet
basis functions. The number of discrete vanishing moments required is the same as that of the con-
tinuous wavelet basis applied to members of FS(M, Kd, Ks). Discrete surfprint atoms are obtained
by projecting discrete surflet atoms onto this discrete wavelet basis. As before, we see a critical
scale at which voxelization effects begin to dominate; again these effects can be addressed by the
appropriate scale-adaptive surfprint dictionary.

1.4 Relation to previous work

Our work can be viewed as a generalization of wedgelet [8] and wedgeprint [23] representations.
Our extensions, however, provide fundamental new insights in the following directions:

• The wedgelet and wedgeprint dictionaries are restricted to 2D signals, while our proposed
representations are relevant in higher dimensions.

• Wedgelets and wedgeprints achieve optimal approximation rates only for functions that are
C2-smooth and contain a C2-smooth discontinuity; our results not only show that surflets and
surfprints can be used to achieve optimal rates for more general classes, but also highlight
the necessary polynomial quantization scheme (a nontrivial extension from wedgelets).

• In the construction of surfprint atoms, we derive the surfprint polynomial degrees required
for optimal performance as a function of Ks, Kd, and M . Such insight cannot be gained from
wedgeprints, which are derived simply from the projection of piecewise constant wedgelets.

• We also present a more thorough analysis of discretization effects, including new insights on
the multiscale behavior (not revealed by considering wedgelets alone), a new strategy for re-

3The Peak Signal-to-Noise Ratio (PSNR) we quote is a common measure of distortion that derives from the

mean-square error (MSE); assuming a maximum possible signal intensity of I, PSNR := 10 log10
I2

MSE
.
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ducing the surflet dictionary size at fine scales, and the first treatment of wedgeprint/surfprint
discretization.

During final preparation of this manuscript we learned of a related generalization of wedgelets
to quadratic polynomials [24]. Novel components of our work, however, include its broad generality
to arbitrary orders of smoothness and arbitrary dimension; the quantization scheme, predictive
coding, and analytical results; the scale-adaptive dictionary to deal with voxelization; and the
surfprints construction.

1.5 Paper organization

In Sec. 2, we define our function models and state the specific goals of our approximation and
compression algorithms. We introduce surflets in Sec. 3. In Sec. 4, we describe our surflet-based
representation schemes for elements of FC(M, Kd) in detail. In Sec. 5, we present our novel dic-
tionary of wavelets and surfprints for effectively representing elements of FS(M, Kd, Ks). Section 6

discusses extensions to discrete data from F̃C(M, Kd) and F̃S(M, Kd, Ks). Section 7 summarizes
our contributions and insights. The appendices provide additional details and proofs of all the
theorems.

2 Background

2.1 Lipschitz smoothness

A function of D variables has smoothness of order K > 0, where K = r + α, r is an integer, and
α ∈ (0, 1], if the following criteria are met [19, 20]:

• All iterated partial derivatives with respect to the D directions up to order r exist and are
continuous.

• All such partial derivatives of order r satisfy a Lipschitz condition of order α (also known as
a Hölder condition).4

We consider the space of smooth functions whose partial derivatives up to order r are bounded by
some constant Ω. We denote the space of such bounded functions with bounded partial derivatives
by CK , where this notation carries an implicit dependence on Ω. Observe that r = dK − 1e, where
d·e denotes rounding up. Also, when K is an integer CK includes as a subset the traditional space
“CK” (the class of functions that have K = r + 1 continuous partial derivatives).

2.2 Multi-dimensional signal model

Let x ∈ [0, 1]M , and let xi denote its i’th element, where boldface characters are used to denote
vectors. We denote the first M − 1 elements of x by y, i.e., y = [x1, x2, · · · , xM−1] ∈ [0, 1]M−1. Let
f , g1, and g2 be functions of M variables

f, g1, g2 : [0, 1]M → R,

4A function d ∈ Lip(α) if |d(z1 + z2) − d(z1)| ≤ C‖z2‖
α for all D-dimensional vectors z1, z2.
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and let b be a function of M − 1 variables

b : [0, 1]M−1 → R.

We define the function f in the following piecewise manner:

f(x) =

{
g1(x), xM ≥ b(y)
g2(x), xM < b(y).

2.2.1 Piecewise constant model

We begin by considering the “piecewise constant” case when g1 = 1 and g2 = 0. The (M − 1)-
dimensional discontinuity b defines a boundary between two constant regions in M dimensions.
The piecewise constant functions f defined in this manner are Horizon-class functions [8]. When
b ∈ CKd , with Kd = rd + αd, we denote the resulting space of functions f by FC(M, Kd). When
M = 2, these functions can be interpreted as images containing a CKd-smooth one-dimensional
discontinuity that separates a 0-valued region below from a 1-valued region above. For M = 3,
functions in FC(M, Kd) can be interpreted as cubes with a 2D CKd-smooth surface cutting through
them, dividing them into two regions — 0-valued below the surface and 1-valued above it (see
Fig. 1(a) for examples in 2D and 3D).

2.2.2 Piecewise smooth model

Next, we define a model for piecewise smooth functions. For this class of functions, we let g1, g2 ∈
CKs , with Ks = rs +αs, and b ∈ Kd, with Kd = rd +αd. The resulting piecewise smooth function f
consists of an (M−1)-dimensional CKd-smooth discontinuity that separates two CKs-smooth regions
in M dimensions (see Fig. 1(b) for an example in 2D). We denote the class of such piecewise smooth
functions by FS(M, Kd, Ks). One can check that both FC(M, Kd) and the space of M -dimensional
uniformly CKs functions are subsets of FS(M, Kd, Ks).

2.3 Approximation and compression performance measures

In this paper, we define dictionaries of atoms from which we construct an approximation f̂ to f ,
which may belong to FC(M, Kd) or FS(M, Kd, Ks). We analyze the performance of our coding
scheme using the Lp distortion measure between the M -dimensional functions f and f̂

∥∥∥f − f̂
∥∥∥

p

Lp([0,1]M )
=

∫

[0,1]M
|f − f̂ |p

with p = 2 (i.e., the standard squared-L2 distortion measure). We measure the ability of our dic-

tionary of atoms to represent f sparsely by the asymptotic approximation performance ‖f − f̂N‖
2
L2

.
Here, N is the number of atomic elements from the dictionary used to construct an approximation
to f and f̂N is the best N -term approximant to f . We consider the rate of decay of ‖f − f̂N‖

2
L2

as
N →∞.

We also present compression algorithms that encode those atoms from the corresponding dic-
tionaries (depending on whether f ∈ FC(M, Kd) or f ∈ FS(M, Kd, Ks)) used to construct f̂ . We
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measure the performance of these compression algorithms by the asymptotic rate-distortion func-
tion ‖f − f̂R‖

2
L2

, where f̂R is the best approximation to f that can be encoded using R bits [25].

We consider the behavior of ‖f − f̂R‖
2
L2

as R→∞.

In [14], Cohen et al. establish the optimal approximation rate for D-dimensional CK-smooth
functions d:

∥∥∥d− d̂N

∥∥∥
2

L2

.

(
1

N

)K
D

.

Similarly, the results of Clements [20] (extending those of Kolmogorov and Tihomirov [19]) regarding
metric entropy establish bounds on the optimal achievable asymptotic rate-distortion performance
for D-dimensional CK-smooth functions d:

∥∥∥d− d̂R

∥∥∥
2

L2

.

(
1

R

)K
D

.

These results, however, are only useful for characterizing optimal separate representations for the
(M−1)-dimensional discontinuity (D = M−1, K = Kd, d = b in Sec. 2.1) and the M -dimensional
smooth regions (D = M, K = Ks, d = g1, g2 in Sec. 2.1).

We extend these results to non-separable representations of the M -dimensional function classes
FC(M, Kd) and FS(M, Kd, Ks) in Theorems 1 and 2, respectively.

Theorem 1 The optimal asymptotic approximation performance that can be obtained for all f c ∈
FC(M, Kd) is given by

∥∥∥f c − f̂ c
N

∥∥∥
2

L2

.

(
1

N

) Kd
M−1

.

Similarly, the optimal asymptotic compression performance that can be obtained for all f c ∈
FC(M, Kd) is given by

∥∥∥f c − f̂ c
R

∥∥∥
2

L2

.

(
1

R

) Kd
M−1

.

Implicit in the proof of the above theorem, which appears in Appendix A, is that any scheme
that is optimal for representing and compressing the M -dimensional function f c ∈ FC(M, Kd)
in the squared-L2 sense is equivalently optimal for the (M − 1)-dimensional discontinuity in the
L1 sense. Roughly, the squared-L2 distance between two Horizon-class functions f c

1 and f c
2 over

an M -dimensional domain D = [D1
b,D

1
e ] × · · · × [DM

b ,DM
e ] is equal to the L1 distance over the

(M − 1)-dimensional subdomain [D1
b,D

1
e ]× · · · × [DM−1

b ,DM−1
e ] between the (M − 1)-dimensional

discontinuities bc
1 and bc

2 in f c
1 and f c

2 respectively.

More precisely and for future reference, for every y in the (M − 1)-dimensional subdomain of
D, we define the D-clipping of an (M − 1)-dimensional function b as

b(y) =





b(y), DM
b ≤ b(y) ≤ DM

e

DM
e , b(y) > DM

e

DM
b , b(y) < DM

b .
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The D-active region of b is defined to be
{
y ∈ [D1

b,D
1
e ]× · · · × [DM−1

b ,DM−1
e ] : b(y) ∈ [DM

b ,DM
e ]
}
,

that subset of the subdomain of D for which the range of b lies in [DM
b ,DM

e ]. The D-clipped L1

distance between bc
1 and bc

2 is then defined as

L1(b
c
1, b

c
2) =

∥∥bc
1 − bc

2

∥∥
L1([D1

b,D1
e ]×···×[DM−1

b ,DM−1
e ])

.

One can check that ‖f c
1 − f c

2‖
2
L2(D) = L1(b

c
1, b

c
2) for any D.

The following theorem, which is proved in Appendix B, characterizes the optimal achievable
asymptotic approximation rate and rate-distortion performance for approximating and encoding
elements of the function class FS(M, Kd, Ks).

Theorem 2 The optimal asymptotic approximation performance that can be obtained for all f s ∈
FS(M, Kd, Ks) is given by

∥∥∥f s − f̂ s
N

∥∥∥
2

L2

.

(
1

N

)min
(

Kd
M−1

, 2Ks
M

)

.

Similarly, the optimal asymptotic compression performance that can be obtained for all f s ∈
FS(M, Kd, Ks) is given by

∥∥∥f s − f̂ s
R

∥∥∥
2

L2

.

(
1

R

)min
(

Kd
M−1

, 2Ks
M

)

.

2.4 “Oracle” coders and their limitations

In order to approximate or compress an arbitrary function f c ∈ FC(M, Kd), an algorithm is given
the function f c; we denote its (M−1)-dimensional CKd-smooth discontinuity by bc. As constructed
in Sec. 2.2, all of the critical information about f c is contained in the discontinuity bc. One would
expect any efficient coder to exploit such a fact; methods through which this is achieved may vary.

One can imagine a coder that explicitly encodes an approximation b̂c to bc and then constructs
a Horizon approximation f̂ c. Knowledge of bc could be provided from an external “oracle” [26], or
bc could conceivably be estimated from the provided data f c. Wavelets provide an efficient method
for compressing the (M − 1)-dimensional smooth function bc. Cohen et al. [14] describe a tree-
structured wavelet coder that can be used to compress bc with optimal rate-distortion performance
in the L1 sense. It follows that this wavelet coder is optimal (in the squared-L2 sense) for coding
instances of f c at the optimal rate of Theorem 1. In practice, however, a coder is not provided with
explicit information of bc, and a method for estimating bc from f c may be difficult to implement.
Estimates for bc may also be quite sensitive to noise in the data.

A similar strategy could also be employed for f s ∈ FS(M, Kd, Ks). For such a function, we
denote the (M−1)-dimensional CKd-smooth discontinuity by bs and the M -dimensional CKs-smooth
regions by gs

1 and gs
2. Approximations to the discontinuity b̂s and the M -dimensional smooth regions

ĝs
1 and ĝs

2 may be encoded separately and explicitly. This strategy would have disadvantages for
the same reasons mentioned above. In fact, estimating the discontinuity in this scenario would be
much harder.

In this paper, we propose representation schemes and algorithms that approximate f c and f s

directly in M dimensions. We emphasize that no explicit knowledge of the functions bc, bs, gs
1, or
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gs
2 is required. We prove that surflet-based approximation techniques and encoding algorithms for

f c achieve the optimal decay rates, while our surfprint-based methods for f s achieve the optimal
approximation decay rate and a near-optimal rate-distortion decay rate (within a logarithmic factor
of the optimal decay rate of Theorem 2). Although we omit the discussion in this paper, our
algorithms can be extended to similar piecewise constant and piecewise smooth function spaces.
Our spatially localized approach, for example, allows for changes in the variable along which the
discontinuity varies (assumed throughout this paper to be xM as described in Sec. 2.2).

3 The Surflet Dictionary

In this section, we introduce a discrete dictionary of M -dimensional atoms called surflets that
can be used to construct approximations to a function f c ∈ FC(M, Kd). A surflet is a piecewise
constant function defined on an M -dimensional dyadic hypercube, where an (M − 1)-dimensional
polynomial specifies the discontinuity. Section 4 describes compression using surflets.

3.1 Motivation — Taylor’s theorem

The surflet atoms are motivated by the following property. If d is a function of D variables in CK

with K = r + α, r is a positive integer, and α ∈ (0, 1], then Taylor’s theorem states that

d(z + h) = d(z) +
1

1!

D∑

i1=1

dzi1
(z)hi1 +

1

2!

D∑

i1,i2=1

dzi1
,zi2

(z)hi1hi2 + · · ·

+
1

r!

D∑

i1,...,ir=1

dzi1
,··· ,zir

(z)hi1 · · ·hir + O(‖h‖K), (1)

where dz1,··· ,z`
refers to the iterated partial derivatives of d with respect to z1, . . . , z` in that order.

(Note that there are D` `’th order derivative terms.) Thus, over a small domain, the function d is
well approximated using a polynomial of order r (where the polynomial coefficients correspond to
the partial derivatives of d evaluated at z).

Clearly, in the case of f c, one method for approximating the discontinuity bc would be to
assemble a piecewise polynomial approximation, where each polynomial is derived from the local
Taylor approximation of bc (let D = M − 1, K = Kd, and d = bc in the above characterization).
These piecewise polynomials can be used to assemble a Horizon-class approximation of the function
f c. Surflets provide the M -dimensional framework for constructing such approximations and can
be implemented without explicit knowledge of bc or its derivatives.

3.2 Definition

A dyadic hypercube Xj ⊆ [0, 1]M at scale j ∈ N is a domain that satisfies5

Xj = [β12
−j , (β1 + 1)2−j)× · · · × [βM2−j , (βM + 1)2−j)

5To cover the entire domain [0, 1]M , in the case where (βi + 1)2−j = 1, i ∈ {1, . . . , M}, we replace the half-open
interval [βi2

−j , (βi + 1)2−j) with the closed interval [βi2
−j , (βi + 1)2−j ].
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with β1, β2, . . . , βM ∈ {0, 1, . . . , 2j − 1}. We explicitly denote the (M − 1)-dimensional hypercube
subdomain of Xj as

Yj = [β12
−j , (β1 + 1)2−j)× · · · × [βM−12

−j , (βM−1 + 1)2−j). (2)

The surflet s(Xj ; p; ·) is a Horizon-class function over the dyadic hypercube Xj defined through the
(M − 1)-dimensional polynomial p. For x ∈ Xj with corresponding y = [x1, x2, · · · , xM−1],

s(Xj ; p;x) =

{
1, xM ≥ p(y)
0, otherwise,

where the polynomial p(y) is defined as

p(y) = p0 +
M−1∑

i1=1

p1,i1 yi1 +
M−1∑

i1,i2=1

p2,i1,i2 yi1yi2 + · · ·+
M−1∑

i1,...,ird=1

prd,i1,i2,...,ird
yi1yi2 · · · yird

.

We call the polynomial coefficients {p`,i1,...,i`}
rd
`=0 the surflet coefficients.6 We note here that, in

some cases, a surflet may be identically 0 or 1 over the entire domain Xj . We sometimes denote a
generic surflet by s(Xj), indicating only its region of support.

A surflet s(Xj) approximates the function f c over the dyadic hypercube Xj . One can cover
the entire domain [0, 1]M with a collection of dyadic hypercubes (possibly at different scales) and
use surflets to approximate f c over each of these smaller domains. For M = 3, these surflets
tiled together look like piecewise polynomial “surfaces” approximating the discontinuity bc in the
function f c. Figure 2 illustrates a collection of surflets with M = 2 and M = 3.

3.3 Quantization

We obtain a discrete surflet dictionary M(j) at scale j by quantizing the set of allowable surflet
polynomial coefficients. For ` ∈ {0, 1, . . . , rd}, the surflet coefficient p`,i1,...,i` at scale j ∈ N is

restricted to values {µ ·∆Kd
`,j }µ∈Z, where the stepsize satisfies

∆Kd
`,j = 2−(Kd−`)j . (3)

The necessary range for µ will depend on the derivative bound Ω (Sec. 2.1). We emphasize that
the relevant discrete surflet dictionaryM(j) is finite at every scale j.

These quantization stepsizes are carefully chosen to ensure the proper fidelity of surflet approx-
imations without requiring excess bitrate. The key idea is that higher-order terms can be quantized
with lesser precision without increasing the residual error term in the Taylor approximation (1). In
fact, Kolmogorov and Tihomirov [19] implicitly used this concept to establish the metric entropy
for bounded uniformly smooth functions.

6Because the ordering of the terms yi1yi2 · · · yi`
in a monomial is irrelevant, only

(
`+M−2

`

)
monomial coefficients

(not (M − 1)`) need to be encoded for order `. We preserve the slightly redundant notation for ease of comparison
with (1).
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4 Representation and Coding of Piecewise Constant Functions

4.1 Overview

We now propose a surflet-based multiresolution geometric tiling approach to approximate and
encode an arbitrary function f c ∈ FC(M, Kd). The tiling is arranged on a 2M -tree, where each
node in the tree at scale j corresponds to a hypercube of sidelength 2−j . Each node is labeled with
a surflet appropriately chosen fromM(j) and is either a leaf node (hypercube) or has 2M children
nodes (children hypercubes that perfectly tile the volume of the parent hypercube). Leaf nodes
provide the actual approximation to the function f c, while interior nodes are useful for predicting
and encoding their descendants. This framework enables an adaptive, multiscale approximation of
f c — many small surflets can be used at fine scales for complicated regions, while few large surflets
will suffice to encode simple regions of f c (such as those containing all 0 or 1). Figure 3 shows
surflet tiling approximations for M = 2 and M = 3.

Section 4.2 discusses techniques for determining the proper surflet at each node. Section 4.3 de-
scribes a constructive algorithm for building tree-based surflet approximations. Section 4.4 describes
the performance of a simple surflet encoder acting only on the leaf nodes. Section 4.5 presents a
more advanced surflet coder, using a top-down predictive technique to exploit the correlation among
surflet coefficients. Finally, Sec. 4.6 discusses extensions of our surflet-based representation schemes
to broader function classes.

4.2 Surflet selection

Consider a node at scale j that corresponds to a dyadic hypercube Xj , and let Yj be the (M − 1)-
dimensional subdomain of Xj as defined in (2).

We first examine a situation where the coder is provided with explicit information about the
discontinuity bc and its derivatives. In this case, determination of the surflet at the node that
corresponds to Xj can proceed as implied by Sec. 3. The coder constructs the Taylor expansion of
bc around any point y ∈ Yj and quantizes the polynomial coefficients (3). We choose

yep =

[(
β1 +

1

2

)
2−j ,

(
β2 +

1

2

)
2−j , . . . ,

(
βM−1 +

1

2

)
2−j

]

and call this an expansion point. We refer to the resulting surflet as the quantized Taylor surflet.
From (1), it follows that the squared-L2 error between f c and the quantized Taylor surflet approxi-
mation s(Xj) (which equals the Xj-clipped L1 error between bc and the polynomial defining s(Xj))
obeys

‖f c − s(Xj)‖
2
L2(Xj)

=

∫

Xj

(f c − s(Xj))
2 = O

(
2−j(Kd+M−1)

)
. (4)

However, as discussed in Sec. 2.4, our coder is not provided with explicit information about bc.
Therefore, approximating functions in FC(M, Kd) using Taylor surflets is impractical.7

We now define a technique for obtaining a surflet estimate directly from the function f c. We
assume that there exists a method to compute the squared-L2 error ‖f c − s(Xj)‖

2
L2(Xj)

between

7We refer the reader to our technical report [27] for a thorough treatment of Taylor surflet-based approximation
of piecewise constant multi-dimensional functions.
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a given surflet s(Xj) and the function f c on the dyadic block Xj . In such a case, we can search
the finite surflet dictionary M(j) for the minimizer of this error without explicit knowledge of bc.
We refer to the resulting surflet as the native L2-best surflet. This surflet will necessarily obey (4)
as well. Section 4.4 discusses the coding implications of using L2-best surflets from M(j). Using
native L2-best surflets over dyadic blocks Xj achieves near-optimal performance.

As will be made apparent in Sec. 4.5, in order to achieve optimal performance, a coder must
exploit correlations among nearby surflets. Unfortunately, these correlations may be difficult to
exploit using native L2-best surflets. The problem arises because surflets with small Xj-active
regions (Sec. 2.3) may be close in L2 distance over Xj yet have vastly different underlying polynomial
coefficients. (These coefficients are used explicitly in our encoding strategy.)

To resolve this problem, we compute L2-best surflet fits to f c over the L-extension of each
dyadic hypercube Xj . That is, if Xj = [β12

−j , (β1 + 1)2−j)× · · · × [βM2−j , (βM + 1)2−j) then the
L-extension of Xj is defined to be

XL
j = [(β1 − L)2−j , (β1 + 1 + L)2−j)× · · · × [(βM − L)2−j , (βM + 1 + L)2−j),

where L > 0 is an extension factor (designed to expand the domain of analysis and increase
correlations between scales).8 An L-extended surflet is a surflet from M(j) that is now defined
over XL

j whose polynomial discontinuity has a non-empty Xj-active region. We define the L-
extended surflet dictionary RL(j) to be the set of L-extended surflets from M(j) plus the all-zero
and all-one surflets s(Xj) = 0 and s(Xj) = 1. An L-extended L2-best surflet fit to f c over Xj is
then defined to be the L2-best surflet to f c over XL

j chosen from RL(j). Note that even though

extended surflets are defined over extended domains XL
j , they are used to approximate the function

only over the associated native domains Xj . Such extended surflet fits (over extended domains)
provide sufficient mathematical constraints for a coder to relate nearby surflets, since extended
surflets that are close in terms of squared-L2 distance over XL

j have similar polynomial coefficients

(even if extended surflets have small Xj-active regions, they have large XL
j -active regions). In Sec.

4.5, we describe a coder that uses extended surflets from RL(j) to achieve optimal performance.

4.3 Tree-based surflet approximations

The surflet dictionary consists of M -dimensional atoms at various scales. Thus, a 2M -tree offers
a natural topology for arranging the surflets used in an approximation. Specifically, each node at
scale j in a 2M -tree is labeled by a surflet that approximates the corresponding dyadic hypercube
region Xj of the function f c. This surflet can be assigned according to any of the procedures
outlined in Sec. 4.2.

Given a method for assigning a surflet to each tree node, it is also necessary to determine the
proper dyadic segmentation for the tree approximation. This can be accomplished using the CART
algorithm, which is based on dynamic programming, in a process known as tree-pruning [8, 28].
Tree-pruning proceeds from the bottom up, determining whether to prune the tree beneath each
node (causing it to become a leaf node). Various criteria exist for making such a decision. In
particular, the approximation-theoretic optimal segmentation can be obtained by minimizing the
Lagrangian cost D+λN for a penalty term λ. Similarly, the Lagrangian rate-distortion cost D+λR
can be used to obtain the optimal rate-distortion segmentation.

8If necessary, each L-extension is truncated to the hypercube [0, 1]M .
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We summarize the construction of a surflet-based approximation as follows:

Surflet-based approximation

• Choose scale: Choose a maximal scale J ∈ Z for the 2M -tree.

• Label all nodes: For each scale j = 0, 1, . . . , J , label all nodes at scale j with either a native
or an extended L2-best surflet chosen appropriately from either discrete dictionary of surflets
M(j) or RL(j).

• Prune tree: Starting at the second-finest scale j = J − 1, determine whether each node at
scale j should be pruned (according to an appropriate pruning rule). Then proceed up to the
root of the tree, i.e., until j = 0.

The approximation performance of this algorithm is described in the following theorem, which is
proved in Appendix C.

Theorem 3 Using either quantized Taylor surflets or L2-best surflets (extended or native), a sur-
flet tree-pruned approximation of an element f c ∈ FC(M, Kd) achieves the optimal asymptotic
approximation rate of Theorem 1:

∥∥∥f c − f̂ c
N

∥∥∥
2

L2

.

(
1

N

) Kd
M−1

.

We discuss computational issues associated with finding best-fit surflets in Sec. 6.5, where we
also present results from simulations.

4.4 Leaf encoding

An initial approach toward surflet encoding would involve specification of the tree segmentation
map (which denotes the location of the leaf nodes) along with the quantized surflet coefficients at
each leaf node. The rate-distortion analysis in Appendix D then yields the following result.

Theorem 4 Using either quantized Taylor surflets or L2-best surflets (extended or native), a surflet
leaf-encoder applied to an element f c ∈ FC(M, Kd) achieves the following rate-distortion perfor-
mance

∥∥∥f c − f̂ c
R

∥∥∥
2

L2

.

(
log R

R

) Kd
M−1

.

Comparing with Theorem 1, this simple coder is near-optimal in terms of rate-distortion per-
formance. The logarithmic factor is due to the fact that it requires O(j) bits to encode each surflet
at scale j. In Sec. 4.5, we propose an alternative coder that requires only a constant number of
bits to encode each surflet.
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4.5 Top-down predictive encoding

Achieving the optimal performance of Theorem 1 requires a more sophisticated coder that can
exploit the correlation among nearby surflets. We now briefly describe a top-down surflet coder
that predicts surflet parameters from previously encoded values.

Top-down predictive surflet coder

• Encode root node: Encode the best surflet fit s([0, 1]M ) to the hypercube [0, 1]M . Encode
a flag (1-bit) specifying whether this node is interior or a leaf. Set j ← 0.

• Predict surflets from parent scale: For every interior node/hypercube Xj at scale j,
partition its domain into 2M children hypercubes at scale j + 1. Compute the polynomial
coefficients on each child hypercube Xj+1 that agree with the encoded parent surflet s(XL

j ).
These serve as “predictions” for the polynomial coefficients at the child.

• Encode innovations at child nodes: For each predicted polynomial coefficient, encode
the discrepancy with the L-extended surflet fit s(XL

j+1).

• Descend tree: Set j ← j + 1 and repeat until no interior nodes remain.

This top-down predictive coder encodes an entire tree segmentation starting with the root node,
and proceeding from the top down. Given an L-extended surflet s(XL

j ) at an interior node at scale
j, we show in Appendix E that the number of possible L-extended surflets from RL(j) that can be
used for approximation at scale j + 1 is constant, independent of the scale j. Thus, given a best-fit
surflet at scale 0, a constant number of bits is required to encode each surflet at subsequent scales.
This prediction is possible because L-extended surflets are defined over L-extended domains, which
ensures coherency between the surflet fits (and polynomial coefficients) at a parent and child node.

We note that predicting L-extended best-fit surflets to dyadic hypercube regions around the
borders of [0, 1]M may not be possible with a constant number of bits when the discontinuity is
not completely contained within the dyadic hypercube. However, we make the mild simplifying
assumption that the intersections of the discontinuity with the hyperplanes xM = 0 or xM = 1
can be contained within O(2(M−2)j) hypercubes at each scale j. Therefore, using O(Kdj) bits to
encode such “border” dyadic hypercubes (with the discontinuity intersecting xM = 0 or xM = 1)
does not affect the asymptotic rate-distortion performance of the top-down predictive coder. In
Appendix E, we prove the following theorem.

Theorem 5 The top-down predictive coder applied to an element f c ∈ FC(M, Kd) using L-
extended L2-best surflets from RL(j) achieves the optimal rate-distortion performance of Theo-
rem 1:

∥∥∥f c − f̂ c
R

∥∥∥
2

L2

.

(
1

R

) Kd
M−1

.

Although only the leaf nodes provide the ultimate approximation to the function, the additional
information encoded at interior nodes provides the key to efficiently encoding the leaf nodes. In
addition, unlike the surflet leaf-encoder of Sec. 4.3, this top-down approach yields a progressive
bitstream — the early bits encode a low-resolution (coarse scale) approximation, which is then
refined using subsequent bits.
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4.6 Extensions to broader function classes

Our results for classes of functions that contain a single discontinuity can be extended to spaces of
signals that contain multiple discontinuities. Functions containing multiple discontinuities that do
not intersect can be represented using the surflet-based approximation scheme described in Sec. 4.3
at the optimal asymptotic approximation rate. This is because at a sufficiently high scale, dyadic
hypercubes that tile signals containing multiple non-intersecting discontinuities contain at most
one discontinuity.

Analysis of the surflet-based approximation scheme of Sec. 4.3 applied to signals containing
intersecting discontinuities is more involved. Let f c

] be an M -dimensional piecewise constant func-

tion containing two (M − 1)-dimensional CKd-smooth discontinuities that intersect each other (the
analysis that follows can easily be extended to allow for more than two intersecting discontinuities).
Note that the intersection of (M − 1)-dimensional functions forms an (M − 2)-dimensional mani-
fold. Again, we make the mild simplifying assumption that the intersection of the discontinuities
can be contained in O(2(M−2)j) hypercubes at each scale j. The following theorem describes the
approximation performance achieved by the scheme in Sec. 4.3 applied to f c

] . A consequence of

this theorem is that there exists a smoothness threshold Kth
d that defines the boundary between

optimal and sub-optimal approximation performance.

Theorem 6 Using either quantized Taylor surflets or L2-best surflets (extended or native), the
approximation scheme of Sec. 4.3 applied to a piecewise constant M -dimensional function f c

] that

contains two intersecting CKd-smooth (M − 1)-dimensional discontinuities achieves performance
given by:

• M > 2, Kd ≤
2(M−1)

M−2 :

∥∥∥f c
] − f̂ c

],N

∥∥∥
2

L2

.

(
1

N

) Kd
M−1

.

• M > 2, Kd > 2(M−1)
M−2 :

∥∥∥f c
] − f̂ c

],N

∥∥∥
2

L2

.

(
1

N

) 2
M−2

.

• M = 2, any Kd:
∥∥∥f c

] − f̂ c
],N

∥∥∥
2

L2

.

(
1

N

) Kd
M−1

.

Thus, the representation scheme in Sec. 4.3 achieves optimal approximation performance for
M = 2 even in the presence of intersecting discontinuities, while it achieves optimal performance
for M > 2 up to a smoothness threshold of Kth

d = 2(M−1)
M−2 (for Kd > Kth

d , the scheme performs

sub-optimally: ‖f c
] − f̂ c

],N‖
2
L2

.
(

1
N

) Kth
d

M−1 ). This performance of the approximation scheme for

M > 2 is still superior to that of wavelets, which have Kth,wl
d = 1. The reason for this difference in

performance between the cases M = 2 and M > 2 is that intersections of discontinuities when M =
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2 correspond to points,9 while intersections in higher dimensions correspond to low-dimensional
manifolds. Hence, the number of hypercubes that contain intersections in the two-dimensional
case is constant with scale, whereas the number of hypercubes that contain the intersections when
M > 2 grows exponentially with scale. The analysis above can clearly be extended to prove
analogous results for functions containing piecewise CKd-smooth discontinuities.

Future work will focus on improving the threshold Kth
d for the case M > 2. In order to

achieve optimal performance for M > 2, one may need a dictionary containing regular surflets and
specially-designed “intersection” surflets that are specifically tailored for intersections. In addition
to classes of functions containing multiple intersecting discontinuities, our representation scheme
may also be adapted to function spaces where the transient direction of the discontinuity is not
fixed to be xM . This is possible due to the localized nature of our surflet-based approximations.

5 Representation and Coding of Piecewise Smooth Functions

In this section, we extend our coding strategies for piecewise constant functions to encoding an
arbitrary element f s from the class FS(M, Kd, Ks) of piecewise smooth functions.

5.1 Motivation

For a CKs-smooth function f in M dimensions, a wavelet basis with sufficient vanishing moments [22]

provides approximations at the optimal rate — ‖f − f̂N‖
2
L2

.
(

1
N

) 2Ks
M . Even if one introduces a

finite number of point singularities into the M -dimensional CKs-smooth function, wavelet-based
approximation schemes still attain the optimal rate. Wavelets succeed in approximating smooth
functions because most of the wavelet coefficients have small magnitudes and can thus be neglected.
Moreover, an arrangement of wavelet coefficients on the nodes of a tree leads to an interesting
consequence: wavelet coefficients used in the approximation of M -dimensional smooth functions
are coherent — often, if a wavelet coefficient has small magnitude, then its children coefficients also
have small magnitude. These properties of the wavelet basis have been exploited in state-of-the-art
wavelet-based image coders [4, 5].

Although wavelets approximate smooth functions well, the wavelet basis is not well-equipped
to approximate functions containing higher-dimensional manifold discontinuities. Wavelets also do
not take advantage of any structure (such as smoothness) that the (M − 1)-dimensional disconti-
nuity might have, and therefore many high-magnitude coefficients are often required to represent
discontinuities [16]. Regardless of the smoothness order of the discontinuity, the approximation
rate achieved by wavelets remains the same.

Despite this drawback, we desire a wavelet domain solution to approximate f s ∈ FS(M, Kd, Ks)
because most of the function f s is smooth in M dimensions, except for an (M − 1)-dimensional
discontinuity. In order to solve the problem posed by the discontinuity, we propose the addition of
surfprint atoms to the dictionary of wavelet atoms. A surfprint is a weighted sum of wavelet basis
functions derived from the projection of a piecewise polynomial surflet atom (an (M−1)-dimensional
polynomial discontinuity separating two M -dimensional polynomial regions) onto a subspace in the
wavelet domain (see Fig. 5 for an example in 2D). Surfprints possess all the properties that make

9Our analysis also applies to “T-junctions” in images, where one edge terminates at its intersection with another.

19



Figure 5: Example surflet and the corresponding surfprint. The white box is the dyadic hypercube
in which we define the surflet; note that the removal of coarse scale and neighboring wavelets causes
the surfprint to appear different from the surflet.

surflets well-suited to represent discontinuities. In addition, surfprints coherently model wavelet
coefficients that correspond to discontinuities. Thus, we obtain a single unified wavelet-domain
framework that is well-equipped to sparsely represent both discontinuities and smooth regions.

The rest of this section is devoted to the definition of surfprints and their use in a wavelet
domain framework to represent and encode approximations to elements of FS(M, Kd, Ks). We do
not discuss the extension of our results to classes of piecewise smooth signals containing multiple
intersecting discontinuities, but note that such an analysis would be similar to that described in
Sec. 4.6.

5.2 Surfprints

Let XJo be a dyadic hypercube at scale Jo. Let v1, v2 be M -dimensional polynomials of degree rsp
s ,

and let v be an M -dimensional function as follows:

v1, v2, v : XJo → R.

Let q be an (M − 1)-dimensional polynomial of degree rsp
d :

q : YJo → R.

As defined in Sec. 2.2, let x ∈ XJo and let y denote the first M − 1 elements of x. Let the
M -dimensional piecewise polynomial function v be defined as follows:

v(x) =

{
v1(x), xM ≥ q(y)
v2(x), xM < q(y).

Next, we describe how this piecewise polynomial function is projected onto a wavelet subspace to
obtain a surfprint atom. LetW be a compactly supported wavelet basis in M dimensions with Kwl

s

vanishing moments. A surfprint sp(v, XJo ,W) is a weighted sum of wavelet basis functions with
the weights derived by projecting the piecewise polynomial v onto the subtree of basis functions
whose idealized supports nest in the hypercube XJo :

sp(v, XJo ,W) =
∑

j≥Jo,Xj⊆XJo

〈
v, wXj

〉
wXj

, (5)
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where wXj
represents the wavelet basis function having idealized compact support on the hypercube

Xj . (The actual support of wXj
may extend slightly beyond Xj .) The hypercube XJo thus defines

the root node (or coarsest scale) of the surfprint atom.

We propose an approximation scheme in Sec. 5.5 where we use wavelet atoms to represent
uniformly smooth regions of f s and surfprint atoms to represent regions through which the dis-
continuity passes. Before presenting our approximation scheme, we begin in Sec. 5.3 by describing
how to choose the surfprint polynomial degrees rsp

s and rsp
d and the number of vanishing moments

Kwl
s for the wavelet basis.

5.3 Vanishing moments and polynomial degrees

In general, due to Taylor’s theorem, when approximating elements f s ∈ FS(M, Kd, Ks), the re-
quired surfprint polynomial degrees and wavelet vanishing moments are determined by the orders
of smoothness Kd and Ks:

Kwl
s ≥ Ks, rsp

d = dKd − 1e, and rsp
s = dKs − 1e.

However, the exponent in the expression of Theorem 2 for the optimal approximation rate for
FS(M, Kd, Ks) indicates that for every (Kd, Ks), either the (M − 1)-dimensional discontinuity or
the M -dimensional smooth region dominates the decay rate. For instance, in two dimensions, the
smaller of the two smoothness orders Kd and Ks defines the decay rate.10 This implies that the
surfprint polynomial degrees and/or the number of wavelet vanishing moments can be relaxed (as
if either the discontinuity or the smooth regions had a lower smoothness order), without affecting
the approximation rate.

Rather than match the surfprint parameters directly to the smoothness orders Kd and Ks, we
let Ksp

d and Ksp
s denote the operational smoothness orders to which the surfprint parameters are

matched. These operational smoothness orders are selected to ensure the best approximation or
rate-distortion performance. The detailed derivations of Appendix G and Appendix H yield the
following values for the operational smoothness orders:

• Discontinuity dominates: In this case, Kd
M−1 < 2Ks

M . We let Ksp
d = Kd and choose Ksp

s ∈

[Kd−1
2 , Ks] and Kwl

s ∈ [ KdM
2(M−1) , Ks].

• Smooth regions dominate: In this case, 2Ks
M < Kd

M−1 . We let Kwl
s = Ks, and choose

Ksp
s ∈ [Ks(1−

1
M )− 1

2 , Ks] and Ksp
d ∈ [2Ks(M−1)

M , Kd].

• Both contribute equally: In this case, 2Ks
M = Kd

M−1 . We let Kwl
s = Ks, Ksp

d = Kd, and

choose Ksp
s ∈ [Ks(1−

1
M )− 1

2 , Ks].

The surfprint polynomial degrees are given by

rsp
d = dKsp

d − 1e and rsp
s = dKsp

s − 1e.

10We note also that in the case where the functions g1 and g2, which characterize f s above and below the dis-
continuity, have differing orders of smoothness, the smaller smoothness order will determine both the achievable
approximation rates and the appropriate approximation strategies.
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Therefore, if dKsp
d −1e < dKd−1e and dKsp

s −1e < dKs−1e, then the required surfprint polynomial
degrees for optimal approximations are lower than what one would naturally expect. Note that even
in the scenario where both terms in the exponent of the approximation rate match, one can choose
Ksp

s slightly smaller than Ks while still attaining the optimal approximation rate of Theorem 2.

5.4 Quantization

In order to construct a discrete surfprint/wavelet dictionary, we quantize the coefficients of the

wavelet and surfprint atoms. The quantization step-size ∆Kwl
s for the wavelet coefficients depends

on the specific parameters of an approximation scheme. We present our prototype approximation
scheme and discuss the wavelet coefficient step-sizes in Sec. 5.5 (see (8) below).

The quantization step-size for the surfprint polynomial coefficients of order ` at scale j is
analogous to the step-size used to construct a discrete surflet dictionary (3):

∆
Ksp

d
`,j = 2−(Ksp

d −`)j (6)

and
∆Ksp

s
`,j = 2−(Ksp

s −`)j . (7)

As before, the key idea is that higher-order polynomial coefficients can be quantized with lesser
precision without affecting the error term in the Taylor approximation (1).

5.5 Surfprint-based approximation

We present a tree-based representation scheme using quantized wavelet and surfprint atoms
and prove that this scheme achieves the optimal approximation rate for every function f s ∈
FS(M, Kd, Ks). Let W be a compactly supported wavelet basis in M dimensions with Kwl

s vanish-
ing moments, as defined in Sec. 5.3. Consider the decomposition of f s into the wavelet basis vectors:
f s =

∑
j〈f

s, wXj
〉wXj

. The wavelet coefficients 〈f s, wXj
〉 are quantized according to the step-size

∆Kwl
s defined below. Let these wavelet atoms be arranged on the nodes of a 2M -tree. We classify

the nodes based on the idealized support of the corresponding wavelet basis functions. Nodes whose
supports Xj are intersected by the discontinuity bs are called Type D nodes. All other nodes (over
which f s is smooth) are classified as Type S. Consider now the following surfprint approximation
strategy:11

Surfprint approximation

• Choose scales and wavelet quantization step-size: Choose a maximal scale J ∈ Z and
m, n ∈ Z such that m

n = M
M−1 and both m and n divide J . The quantization step-size for

wavelet coefficients at all scales j is given by:

∆Kwl
s = 2−

J
m

(Kwl
s +M

2
) (8)

and thus depends only on the maximal scale J and the parameter m.

11The wavelet decomposition actually has 2M −1 distinct directional subbands; we assume here that each is treated
identically. Also we assume the scaling coefficient at the coarsest scale j = 0 is encoded as side information with
negligible cost.
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• Prune tree: Keep all wavelet nodes up to scale J
m ; from scale J

m to scale J
n , prune the tree

at all Type S nodes (discarding those wavelet coefficients and their descendant subtrees).

• Select surfprint atoms: At scale J
n replace the wavelet atom at each Type D discontinu-

ity node and its descendant subtree (up to depth J) by a quantized surfprint atom chosen
appropriately from the dictionary with Jo = J

n in (5):

– M -dimensional polynomials: Choose M -dimensional polynomials v1 and v2 of degree
rsp
s = dKsp

s − 1e. These polynomials should approximate the M -dimensional smooth

regions up to an absolute (pointwise) error of O

(
2

−K
sp
s J

n

)
. The existence of such poly-

nomials is guaranteed by Taylor’s theorem (1) (let D = M , K = Ksp
s , and r = rsp

s ) and
the quantization scheme (7).

– (M−1)-dimensional polynomial: Choose an (M−1)-dimensional polynomial q of degree
rsp
d = dKsp

d − 1e such that the discontinuity is approximated up to an absolute error of

O

(
2

−K
sp
d

J

n

)
. The existence of such a polynomial is guaranteed by Taylor’s theorem (1)

(let D = M − 1, K = Ksp
d , and r = rsp

d ) and the quantization scheme of (6).

The following theorem summarizes the performance analysis for such surfprint approximations (see
Appendix G for the proof).

Theorem 7 A surfprint-based approximation of an element f s ∈ FS(M, Kd, Ks) as presented above
achieves the optimal asymptotic approximation rate of Theorem 2:

∥∥∥f s − f̂ s
N

∥∥∥
2

L2

.

(
1

N

)min
(

Kd
M−1

, 2Ks
M

)

.

An approximation scheme that uses the best configuration of N wavelet and surfprint atoms
in the L2 sense would perform at least as well as the scheme suggested above. Hence, surfprint
approximation algorithms designed to choose the best N -term approximation (even without explicit
knowledge of the discontinuity or the M -dimensional smooth regions) will achieve the optimal
approximation rate of Theorem 2.

5.6 Encoding a surfprint/wavelet approximation

We now consider the problem of encoding the tree-based approximation of Sec. 5.5. A simple
top-down coding scheme that specifies the pruned tree topology, quantized wavelet coefficients,
and surfprint parameters achieves a near-optimal rate-distortion performance (see Appendix H for
proof).

Theorem 8 A coding scheme that encodes every element of the surfprint-based approximation of
an element f s ∈ FS(M, Kd, Ks) as presented in Sec. 5.5 achieves the near-optimal asymptotic
rate-distortion performance (within a logarithmic factor of the optimal performance of Theorem 2):

∥∥∥f s − f̂ s
R

∥∥∥
2

L2

.

(
log R

R

)min
(

Kd
M−1

, 2Ks
M

)

.
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Repeating the argument of Sec. 5.5, this near optimal rate-distortion performance serves as an
upper bound for an encoding scheme that encodes elements of an L2-best approximation. We will
discuss the extension of these theoretical results to the approximation of discrete data and related
issues in Sec. 6.3.

6 Extensions to Discrete Data

6.1 Overview

In this section, we consider the problem of representing discrete data obtained by “voxelizing”
(pixelizing in 2D dimensions) functions from the classes FC(M, Kd) and FS(M, Kd, Ks). Let f be a
continuous M -dimensional function. We discretize f according to a vector π = [2π1 , . . . , 2πM ] ∈ ZM ,
which specifies the number of voxels along each dimension of the discretized M -dimensional function
f̃π. Each entry of f̃π is obtained either by averaging f over an M -dimensional voxel or by sampling
f at uniformly spaced intervals. (Because of the smoothness characteristics of FC(M, Kd) and
FS(M, Kd, Ks), both discretization mechanisms provide the same asymptotic performance.) In
our analysis, we allow the number of voxels along each dimension to vary in order to provide a
framework for analyzing various sampling rates along the different dimensions. Video data, for
example, is often sampled differently in the spatial and temporal dimensions. Future research will
consider different distortion criteria based on asymmetry in the spatiotemporal response of the
human visual system.

For our analysis, we assume that the voxelization vector π is fixed and denote the resulting
classes of voxelized functions by F̃C(M, Kd) and F̃S(M, Kd, Ks). Sections 6.2 and 6.3 describe the

sparse representation of elements from F̃C(M, Kd) and F̃S(M, Kd, Ks), respectively. In Sec. 6.4,
we discuss the impact of discretization effects on fine scale approximations. Finally, we present our
simulation results in Sec. 6.5.

6.2 Representing and encoding elements of F̃C(M,Kd)

Suppose f c ∈ FC(M, Kd) and let f̃ c
π ∈ F̃C(M, Kd) be its discretization. (We view f̃ c

π as a function
on the continuous domain [0, 1]M that is constant over each voxel.) The process of voxeliza-

tion affects the ability to approximate elements of F̃C(M, Kd). At coarse scales, however, much
of the intuition for coding FC(M, Kd) can be retained. In particular, we can bound the dis-

tance from f̃ c
π to f c. We note that f̃ c

π differs from f c only over voxels through which b passes.
Because each voxel has size 2−π1 × 2−π2 · · · × 2−πM , the number of voxels intersected by b is

O
(
2
∑M−1

i=1 πi

⌈(
Ω · 2−min(πi)

M−1
i=1

)
/ (2−πM )

⌉)
, where Ω is the universal derivative bound (Sec. 2.1).

The squared-L2 distortion incurred on each such voxel (assuming only that the voxelization process
is bounded and local) is O(2−(π1+···+πM )). Summing over all voxels it follows that the (nonsquared)
L2 distance obeys ∥∥∥f c − f̃ c

π

∥∥∥
L2([0,1]M )

< C1 · 2
−(min πi)/2 (9)

where the minimum is taken over all i ∈ {1, . . . , M}.

Now we consider the problem of encoding elements of F̃C(M, Kd). At a particular bitrate R, we
know from Theorem 1 that no encoder could represent all elements of FC(M, Kd) using R bits and
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incurring L2 distortion less than C2 ·
(

1
R

) Kd
2(M−1) . (This lower bound for metric entropy is in effect for

R sufficiently large, which we assume to be the case.) Suppose we consider a hypothetical encoder

for elements of F̃C(M, Kd) that, using R bits, could represent any element with L2 distortion of

F̃C(M, Kd) less than some Dhyp(R). This coder could also be used as an encoder for elements of
FC(M, Kd) (by voxelizing each function before encoding). This strategy would yield L2 distortion
no worse than C1 ·2

−(min πi)/2+Dhyp(R). By applying the metric entropy arguments on FC(M, Kd),
we have the following constraint on Dhyp(R):

C1 · 2
−(min πi)/2 + Dhyp(R) ≥ C2 ·

(
1

R

) Kd
2(M−1)

,

or equivalently,

Dhyp(R) ≥ C2 ·

(
1

R

) Kd
2(M−1)

− C1 · 2
−(min πi)/2. (10)

This inequality helps establish a rate-distortion bound for the class F̃C(M, Kd). At sufficiently

low rates, the first term on the RHS dominates, and F̃C(M, Kd) faces similar rate-distortion con-
straints to FC(M, Kd). At high rates, however, the RHS becomes negative, giving little insight into

the coding of F̃C(M, Kd). This breakdown point occurs when R ∼ 2(min πi)(M−1)/Kd .

We can, in fact, specify a constructive encoding strategy for F̃C(M, Kd) that achieves the
optimal compression rate up to this breakdown point. We construct a dictionary of discrete surflet
atoms by voxelizing the elements of the continuous quantized surflet dictionary. Assuming there
exists a technique to find discrete `2-best surflet fits to f̃ c

π, the tree-based algorithm described in

Sec. 4.3 can simply be used to construct an approximation
̂̃
f c

π.

Theorem 9 While R . 2(min πi)(M−1)/Kd , the top-down predictive surflet coder from Sec. 4.5 ap-

plied to encode the approximation
̂̃
f c

π to f̃ c
π using discrete `2-best surflets achieves the rate-distortion

performance
∥∥∥∥f̃ c

π −
̂̃
f c

π

∥∥∥∥
2

L2

.

(
1

R

) Kd
M−1

.

As detailed in the proof of this theorem (see Appendix I), the breakdown point occurs when
using surflets at a critical scale Jvox = min πi

Kd
. Up to this scale, all of the familiar approximation and

compression rates hold. Beyond this scale, however, voxelization effects dominate. An interesting
corollary to Theorem 9 is that, due to the similarities up to scale Jvox, the discrete approximation
̂̃
f c

π itself provides an effective approximation to the function f c.

Corollary 10 While R . 2(min πi)(M−1)/Kd , the discrete approximation
̂̃
f c

π provides an approxima-
tion to f c with the following rate-distortion performance:

∥∥∥∥f c −
̂̃
f c

π

∥∥∥∥
2

L2

.

(
1

R

) Kd
M−1

.
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The details of the proof appear in Appendix J. While we have provided an effective strategy
for encoding elements of F̃C(M, Kd) at sufficiently low rates (using surflets at scales j ≤ Jvox),

this leaves open the question of how to code F̃C(M, Kd) at higher rates. Unfortunately, (10) does
not offer much insight. In particular, it is not clear whether surflets are an efficient strategy for
encoding F̃C(M, Kd) beyond scale Jvox. We revisit this issue in Sec. 6.4.

6.3 Representing and encoding elements of F̃S(M,Kd, Ks)

Next, let f̃ s
π be an arbitrary signal belonging to F̃S(M, Kd, Ks). Similar arguments apply to the

voxelization effects for this class. In order to approximate functions in F̃S(M, Kd, Ks), we use a
dictionary of compactly supported discrete wavelet basis functions with Kwl

s vanishing moments
and discrete surfprint atoms. A discrete surfprint atom is derived by projecting a discrete piecewise
polynomial surflet atom onto a subspace of the discrete wavelet basis.

We use the scheme described in Sec. 5.5 with Jvox
n = min(πi)

min(Ksp
d ,2Ksp

s +1)
to approximate f̃ s

π by
̂̃
f s

π.

Using (40), (41), and (42), this scale corresponds to a range of bitrates up to O(Jvox2
(M−1)Jvox

n ).
Within this range, the approximation is encoded as described in Sec. 5.6. The performance of this
scheme is evaluated in Appendix K and appears below.

Theorem 11 While R . Jvox2
(M−1)Jvox

n where Jvox = n·min(πi)

min(Ksp
d ,2Ksp

s +1)
, the coding scheme from

Sec. 5.5 applied to encode the approximation
̂̃
f s

π to f̃ s
π using a discrete wavelet/surfprint dictionary

achieves the following near-optimal asymptotic rate-distortion performance (within a logarithmic
factor of the optimal performance of Theorem 2):

∥∥∥∥f̃ s
π −

̂̃
f s

π

∥∥∥∥
2

L2

.

(
log R

R

)min
(

Kd
M−1

, 2Ks
M

)

.

Again, a corollary follows naturally (see Appendix L for the proof).

Corollary 12 While R . Jvox2
(M−1)Jvox

n , the discrete approximation
̂̃
f s

π provides an approximation
to f s with the following rate-distortion performance:

∥∥∥∥f s −
̂̃
f s

π

∥∥∥∥
2

L2

.

(
log R

R

)min
(

Kd
M−1

, 2Ks
M

)

.

6.4 Discretization effects and varying sampling rates

We have proposed surflet algorithms for discrete data at sufficiently coarse scales. Unfortunately,
this leaves open the question of how to represent such data at finer scales. In this section, we
discuss one perspective on fine scale approximation that leads to a natural surflet coding strategy.

Consider again the class F̃C(M, Kd). Section 6.2 provided an effective strategy for encod-

ing elements of F̃C(M, Kd) at sufficiently low rates (using surflets at scales j ≤ Jvox = min πi

Kd
).
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Beyond scale Jvox, however, the voxelization effects dominate the resolution afforded by surflet
approximations. To restore a balance, we suggest a coding strategy for finer scales based on the ob-
servation that FC(M, Kd) ⊂ FC(M, K) for K < Kd. Surflet approximations on the class FC(M, K)

(tied to the smoothness K) have lower accuracy in general. As a result, F̃C(M, K) has a higher

“breakdown rate” than F̃C(M, Kd), and discrete surflets tailored for smoothness K will achieve
the coding rate O(R−K/(M−1)) up to scale min πi

K . While this may not be a worthwhile strategy

before scale Jvox, it could be useful beyond scale Jvox and up to scale min πi

K . In fact, beyond that
scale, we can again reduce K, obtaining a new breakdown rate and a finer scale to code (using

lower-order surflets). This gives us a concrete strategy for coding F̃C(M, Kd) at all scales, although
our optimality arguments apply only up to scale Jvox. At scale j, we use surflets designed for

smoothness Kj = min
(
Kd,

min(πi)
j

)
, 0 ≤ j ≤ min(πi). A surflet dictionary constructed using such

scale-adaptive smoothness orders consists of relatively few elements at coarse scales (due to the low
value of j in the quantization stepsize) and relatively few at fine scales (due to the decrease of Kj),
but many elements at medium scales. This agrees with the following intuitive notions:

• The large block sizes at coarse scales do not provide sufficient resolution to warrant large
dictionaries for approximation at these scales.

• The relatively small number of voxels in each block at very fine scales also means that a coder
does not require large dictionaries in order to approximate blocks at such scales well.

• At medium scales where the block sizes are small enough to provide good resolution but large
enough to contain many voxels, the dictionary contains many elements in order to provide
good approximations.

Similar strategies can be proposed, of course, for the class F̃S(M, Kd, Ks).

Finally we note that the interplay between the sampling rate (number of voxels) along the differ-
ent dimensions and the critical approximation scale Jvox can impact the construction of multiscale
source coders. As an example of the potential effect of this phenomenon in real-world applications,
the sampling rate along the temporal dimension could be the determining factor when designing a
surfprint-based video coder because this rate tends to be lower than the sampling rate along the
spatial dimensions.

6.5 Simulation results

To demonstrate the potential for coding gains based on surflet representations, we perform the
following numerical experiments in 2 and 3 dimensions.

6.5.1 2D coding

We start by coding elements of F̃C(M, Kd) with M = 2 and Kd = 3. We generate 1024 × 1024
discretized versions of these images (that is, π1 = π2 = 10). Our two example images are shown in
Figs. 6(a) and 7(a).

On each image we test three types of surflet dictionaries for encoding.
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Figure 6: (a) Test function f̃ c
π. (b) Rate-distortion performance for each dictionary (with the best

fixed set of dictionary parameters). (c) Rate-distortion performance for each dictionary (selected
using best convex hull in R/D plane over all dictionary parameters).
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Figure 7: (a) Test function f̃ c
π. (b) Rate-distortion performance for each dictionary (selected using

best convex hull in R/D plane over all dictionary parameters).

• Dictionary 1 uses wedgelets as implemented in our previous work [23, 29]. In this dictionary we
do not use the quantization stepsizes as specified in (3). Rather, we use a quantization stepsize
∆`,j ∼ 2−(1−`)j . As a result, the quantized wedgelet dictionary has the same cardinality at
each scale and is self-similar (simply a dyadic scaling of the dictionary at other scales).

• Dictionary 2 adapts with scale. Following the arguments of Sec. 6.4, at a given scale j, we
use surflets tailored for smoothness Kj = min(2, min πi

j ) = min(2, 10
j ). We use surflets of

the appropriate polynomial order and quantize the polynomial coefficients analogous to (3);
that is, ∆`,j ∼ 2−(Kj−`)j . The limitation Kj ≤ 2 restricts our surflets to linear polynomials
(wedgelets) for comparison with the first dictionary above.

• Dictionary 3 is a surflet dictionary that also adapts with scale. This dictionary is constructed
similarly to the second, except that it is tailored to the actual smoothness of f c: we set
Kj = min(Kd,

min πi

j ) = min(Kd,
10
j ). This modification allows quadratic surflets to be used

at coarse scales 0 ≤ j ≤ 5, beyond which Kj again dictates that wedgelets are used.

For each dictionary, we must also specify the range of allowable polynomial coefficients and a
constant multiplicative factor on each quantization stepsize. We optimize these parameters through
simulation.
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Table 1: Surflet dictionary size at each scale (using the surflet parameters chosen to generate
Fig. 6(b)). Our surflet dictionaries (2 and 3) adapt to scale, avoiding unnecessary precision at
coarse and fine scales.

Scale j 0 1 2 3 4 5 6 7 8 9

Dictionary 1 181631 181631 181631 181631 181631 181631 181631 181631 181631 181631
Dictionary 2 219 4143 62655 987903 987903 248191 62655 15967 4143 1119
Dictionary 3 357 14335 407719 12216207 6264455 248191 62655 15967 4143 1119

Our coding strategy for each dictionary uses a top-down prediction. Based on the prediction
from a (previously coded) parent surflet, we partition the set of possible children surflets into two
classes for entropy coding. A probability mass of ρ is distributed among the W surflets nearest
the predicted surflet (measured using `2 distance), and a probability mass of (1− ρ) is distributed
among the rest to allow for robust encoding. We optimize the choice of W and ρ experimentally.

To find the discrete `2-best fit surflet to a given block, we use a coarse-to-fine iterative algorithm
to search for the closest point along the manifold of possible surflets; we refer the reader to [30]
for a detailed description of this algorithm. Based on the costs incurred by this coding scheme,
we optimize the surflet tree pruning using a Lagrangian tradeoff parameter λ. We repeat the
experiment for various values of λ.

Figure 6(b) shows what we judge to be the best R/D curve for each dictionary (Dictionary 1:
dotted curve, 2: dashed curve, and 3: solid curve). Each curve is generated by sweeping λ but
fixing one combination of polynomial parameters/constants. Over all simulations (all polynomial
parameters/constants), we also take the convex hull over all points in the R/D plane. The results
are plotted in Figs. 6(c) and 7(b).

We see from the figures that Dictionary 2 outperforms Dictionary 1, requiring 0-20% fewer
bits for an equivalent distortion (or improving PSNR by up to 4dB at a given bitrate). Both
dictionaries use wedgelets — we conclude that the coding gain comes from the adaptivity through
scale. Table 1 lists the number of admissible quantized surflets as a function of scale j for each of
our three dictionaries.

We also see from the figures that Dictionary 3 often outperforms Dictionary 2, requiring 0-50%
fewer bits for an equivalent distortion (or improving PSNR by up to 10dB at a given bitrate). Both
dictionaries adapt to scale — we conclude that the coding gain comes from the quadratic surflets
used at coarse scales (which are designed to exploit the actual smoothness Kd = 3). Figure 4
compares two pruned surflet decompositions using Dictionaries 2 and 3. In this case, the quadratic
dictionary offers comparable distortion using 40% fewer bits than the wedgelet dictionary.

6.5.2 3D coding

We now describe numerical experiments for coding elements of F̃C(M, Kd) and M = 3. We generate
64× 64× 64 discretized versions of these signals (that is, πi = 6). Our two example discontinuities
bc are shown in Fig. 8(a) (for which Kd = 2) and Fig. 10(a) (for which Kd =∞).

For these simulations we compare surflet coding (analogous to Dictionary 2 above, with Kj =

29



(a)

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
2

x
1

x 3

(b)
5000 10000 15000

0

5

10

15

20

25

30

35

40

R (bits)

P
S

N
R

 (
dB

)

Surflets
Wavelets

Figure 8: (a) Horizon bc used to generate 3D test function f̃ c
π. (b) Rate-distortion performance for

surflet coding compared with wavelet coding.

(a) (b) (c)

Figure 9: Volumetric slices of 3D coded functions. (a) Original test function f̃ c
π from Fig. 8.

(b) Surflet-coded function using 2540 bits; PSNR 33.22dB. (c) Wavelet-coded function using ap-
proximately 2540 bits; PSNR 23.08dB.

min(2, 6
j )) with wavelet coding. Our wavelet coding is based on a 3D Haar wavelet transform,

which we threshold at a particular level (keeping the largest wavelet coefficients). For the purpose
of the plots we assume (optimistically) that each significant wavelet coefficient was coded with
zero distortion using only three bits per coefficient. We see from the figures that surflet coding
significantly outperforms the wavelet approach, requiring up to 80% fewer bits than our aggressive
wavelet estimate (or improving PSNR by up to 10dB a given bitrate). Figure 9 shows one set
of coded results for the function in Fig. 8; at an equivalent bitrate, we see that surflets offer a
significant improvement in PSNR and a dramatic reduction in ringing/blocking artifacts compared
with wavelets. We also notice from Figs. 8 and 10, however, that at high bitrates the gains diminish
relative to wavelets. We believe this is due to small errors made in the surflet estimates at fine
scales using our current implementation of the manifold-based technique. Future work will focus
on improved surflet estimation algorithms; however using even these suboptimal estimates we still
see superior performance across a wide range of bitrates.

7 Conclusion

In this paper, we have studied the representation and compression of piecewise constant and piece-
wise smooth functions with smooth discontinuities. For both classes of functions, we determined
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Figure 10: (a) Horizon bc used to generate 3D test function f̃ c
π. (b) Rate-distortion performance

for surflet coding compared with wavelet coding.

the metric entropy and then provided compression strategies based on multiresolution predictive
coding in order to realize significant gains in rate-distortion performance. For piecewise constant
functions, our surflet-based compression framework approximates and encodes such functions by
assembling piecewise approximations over dyadic hypercubes at different scales, where each surflet
approximant contains a (high-order) polynomial discontinuity that separates two constant regions.
This surflet-based approach achieves the optimal approximation performance and the metric en-
tropy bound. For piecewise smooth functions, we derived surfprints by combining surflets with
wavelets. Our surfprint-based compression framework provides optimal approximation performance
and near-optimal rate-distortion performance.

In addition, we extended our results for the continuous signal classes FC(M, Kd) and
FS(M, Kd, Ks) to their corresponding discrete function spaces. We provided asymptotic perfor-
mance results for both discrete function spaces and related this asymptotic performance to the
sampling rate and smoothness orders of the underlying functions and discontinuities. Our simula-
tion results for 2D discrete piecewise constant functions demonstrate the coding gains achieved by
using higher-order polynomials in the construction of surflet-based approximations and by defining
surflet dictionaries based on scale-adaptive smoothness orders. Our 3D simulation results show
that surflet-based approximations are vastly superior to wavelet-based methods over a large range
of bitrates.

The insights that we gained, namely, in quantizing higher-order terms with lesser precision
and using predictive coding to decrease bitrate, can be used to solve more sophisticated signal
representation problems. In addition, our methods require knowledge only of the higher-dimensional
function and not the smooth discontinuity. We conclude that surfprint-based representations will
enable significant rate-distortion gains in realistic scenarios, as supported by our simulation results.

Future research will focus on the application of the approximation schemes presented in this
paper to statistical estimation of higher dimensional signals containing arbitrary smooth discon-
tinuities given noisy data (extending the piecewise constant Kd = 2, M = 2 case treated in [8]).
We would like to develop new representation schemes that provide optimal approximation perfor-
mance for functions containing multiple intersecting discontinuities with high smoothness orders
(for M > 2). We are also interested in studying practical applications of our coding schemes to
the compression of natural images (addressing issues similar to those discussed in [23]), video, and
light-field data. Such a study will involve tuning the various parameters related to the quantization
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schemes, and the construction of the surflet and surfprint dictionaries. Additional work will also
improve practical methods for fitting `2-best surflets, extending the methods described in [30].
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A Proof of Theorem 1

Main idea: Let f c
N be an N -term approximant from any representation scheme that provides an

approximation to a function f c ∈ FC(M, Kd) using N terms. We show that we can construct a
Horizon-class function from f c

N with the same asymptotic rate as this approximation scheme. As a
result, it follows that we only need to consider Horizon-class approximation schemes in establishing
a bound on the optimal asymptotic approximation performance for FC(M, Kd). (There cannot exist
a scheme using non-Horizon approximants that performs better asymptotically.) This connection
allows us to directly apply the approximation and metric entropy results pertaining to the (M−1)-
dimensional discontinuity.

Approximation: Let x ∈ [0, 1]M and let y denote the first M − 1 elements of x (as defined
in Sec. 2.2). Define a function f such that

f(x) =

{
1, f c

N (x) > 0.5

0, otherwise.

Considering the four cases of f c being 0 or 1 and f being 0 or 1, we have

∥∥f c − f
∥∥2

L2
≤ 4 ·

∥∥∥f c − f c
N

∥∥∥
2

L2

. (11)

Now we construct a Horizon-class function from f . Let b̂c
N be an (M − 1)-dimensional function

defined as

b̂c
N (y) = 1−

∫ 1

0
f(y, xM )dxM .

Finally, let f̂ c
N be a Horizon-class function defined by the (M − 1)-dimensional discontinuity b̂c

N :

f̂ c
N (x) =

{
1, xM ≥ b̂c

N (y)

0, xM < b̂c
N (y).

Again, considering the four cases of f c being 0 or 1 and f̂ c
N being 0 or 1, we have

∥∥∥f c − f̂ c
N

∥∥∥
2

L2

≤
∥∥f c − f

∥∥2

L2
,
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and using (11) we conclude that

∥∥∥f c − f̂ c
N

∥∥∥
2

L2

≤ 4 ·
∥∥∥f c − f c

N

∥∥∥
2

L2

. (12)

This result shows that the approximation performance of any scheme that approximates f c is
bounded below by the approximation performance of a corresponding Horizon-class representation
scheme.

Because f̂ c
N is a Horizon-class function,

∥∥∥f c − f̂ c
N

∥∥∥
2

L2

≤
∥∥∥bc − b̂c

N

∥∥∥
L1

, (13)

where bc is the CKd discontinuity in f c and b̂c
N , the implicit estimate to bc, is the Horizon disconti-

nuity in f̂ c
N . From the work of Cohen et al. [14] regarding optimal approximation rates, the optimal

approximation rate for the (M − 1)-dimensional CKd class of functions is

∥∥∥bc − b̂c
N

∥∥∥
L1

.

(
1

N

) Kd
M−1

. (14)

Combining (12), (13), and (14), we have an upper-bound on achievable approximation performance
for FC(M, Kd):

∥∥∥f c − f̂ c
N

∥∥∥
2

L2

.

(
1

N

) Kd
M−1

. (15)

However, (13) is satisfied with equality when both bc and b̂c
N are completely contained inside the

unit hypercube (i.e., 0 ≤ bc(y), b̂c
N (y) ≤ 1), and we also know that (14) provides the optimal

approximation rate for the (M − 1)-dimensional CKd class of functions. Thus, (15) provides the
optimal approximation performance that could be achieved for every f c ∈ FC(M, Kd).

Rate distortion: To find the optimal rate-distortion performance for FC(M, Kd), a similar ar-
gument could be made using the work of Clements [20] (extending Kolmogorov and Tihomirov [19])
regarding metric entropy. It follows from these papers that the optimal asymptotic rate-distortion
performance for the (M − 1)-dimensional CKd class of functions is

∥∥∥bc − b̂c
R

∥∥∥
L1

.

(
1

R

) Kd
M−1

.

�

B Proof of Theorem 2

Let f s be defined by the (M − 1)-dimensional CKd discontinuity bs separating two M -dimensional
CKs functions gs

1, g
s
2. We first establish a lower bound on the optimal approximation rate with

respect to the squared-L2 distortion measure for FS(M, Kd, Ks). We note that both the space
of M -dimensional uniformly CKs-smooth functions and FC(M, Kd) are subsets of FS(M, Kd, Ks).
Cohen et al. [14] show that the optimal approximation decay rate for the space of M -dimensional
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uniformly CKs-smooth functions is
(

1
N

) 2Ks
M , while Theorem 1 proves that the optimal approximation

rate for FC(M, Kd) is
(

1
N

) Kd
M−1 . Therefore, the optimal approximation rate for FS(M, Kd, Ks) is

bounded below by
(

1
N

)min
(

Kd
M−1

, 2Ks
M

)
.

We now prove that this lower bound can be achieved, thus establishing the optimal approxima-
tion rate for FS(M, Kd, Ks). We assume that explicit information about bs and gs

1, g
s
2 is provided by

an external “oracle”. Given such information about the M -dimensional CKs functions, one could

use a wavelet-based approximation scheme [14] to achieve the optimal approximation rate
(

1
N

) 2Ks
M

for such functions. Next, one could use a similar wavelet-based approach in M − 1 dimensions to

represent bs with the optimal approximation rate of
(

1
N

) Kd
M−1 . Thus, we have provided the optimal

approximation rate for every function f s ∈ FS(M, Kd, Ks). (The assumption about availability
of explicit information about bs enables to prove the existence of efficient approximations for f s.)
Finally, given the results of Clements [20] (extending Kolmogorov and Tihomirov [19]), the optimal
rate-distortion performance for FS(M, Kd, Ks) can be derived similarly. �

C Proof of Theorem 3

Consider a candidate surflet decomposition grown fully up to level J but pruned back in regions
away from the discontinuity to consolidate nodes that are entirely 0- or 1-valued. This surflet
decomposition then consists of the following leaf nodes:

• dyadic hypercubes at level J through which the singularity b passes, and which are decorated
with a surflet; and

• dyadic hypercubes at various levels through which the singularity b does not pass, and which
are all-zero or all-one.

We establish the asymptotic approximation rate for this candidate decomposition. Because this
configuration is among the options available to the approximation rate optimized tree-pruning in
Sec. 4.3, this provides an upper bound on the asymptotic approximation rate of the algorithm.

Distortion: First we establish a bound on the distortion in such a decomposition. We assume
quantized Taylor surflets for this analysis; this provides an upper bound for the distortion of native
L2-best surflets as well (since native L2-best surflets are chosen from a dictionary that includes the
quantized Taylor surflets). In fact, the behavior of the upper bound will also hold for extended L2-
best surflets, but with slightly larger constants. Let XJ be a dyadic hypercube at level J , and let yep

be its expansion point. Using Taylor’s theorem (with D = M − 1, d = bc, K = Kd, r = rd, α = αd

in (1)), we construct a polynomial approximation of the discontinuity bc using the Taylor surflet
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sT (XJ ; p; ·) as follows. For each y ∈ YJ

p(y) = p(yep + h) = [bc(yep) + c0 · 2
−KdJ ]

+
1

1!

M−1∑

i1=1

[bc
yi1

(yep) + c1,i1 · 2
−(Kd−1)J ] · hi1

+
1

2!

M−1∑

i1,i2=1

[bc
yi1

,yi2
(yep) + c2,i1,i2 · 2

−(Kd−2)J ] · hi1hi2 + · · ·

+
1

rd!

M−1∑

i1,··· ,ird=1

[bc
yi1

,··· ,yird
(yep) + crd,i1,··· ,ird

· 2−αdJ ] · hi1 · · ·hird
, (16)

where each constant c`,i1,··· ,i` depends on bc
yi1

,··· ,yi`
(yep), and |c`,i1,··· ,i` | ≤

1
2 . The surflet polynomial

discontinuity p is constructed by using quantized values of the derivatives of bc evaluated at yep

as the polynomial coefficients. The set of all such sT (XJ ; p; ·)’s is precisely M(J). From Taylor’s
theorem (1) and (16), we have that the XJ -clipped L1 distance between bc and p is

L1(b
c, p) ≤ C3 · 2

−KdJ−(M−1)J . (17)

Thus we have that the squared-L2 error between f c and sT (XJ ; p; ·) over XJ is

∥∥f c − sT (XJ ; p; ·)
∥∥2

L2(XJ )
≤ C3 · 2

−KdJ−(M−1)J . (18)

We construct an approximation f̂ c
J to f c at scale J by tiling together all the surflets sT (XJ ; p; ·)

(where the surflet polynomial p differs from one hypercube to another). Let Nj,SL denote the
number of nodes at level j through which the discontinuity b passes. Due to the bounded curvature
of bc, Nj,SL . 2(M−1)j . Therefore, we have that the total distortion is

∥∥∥f c − f̂ c
J

∥∥∥
2

L2

≤ C4 · 2
−KdJ . (19)

Number of terms: Next we establish a bound on the number of surflets required to encode
this decomposition (using either quantized Taylor surflets or L2-best surflets). We know from
above that due to the bounded curvature of bc, the number of nodes at level j through which the
discontinuity bc passes is given by Nj,SL . 2(M−1)j . Let Nj,ZO be the number of all-zero and all-one
nodes in the pruned decomposition at level j:

Nj,ZO ≤ 2M ·Nj−1,SL ≤ 2M · C5 · 2
(M−1)(j−1) ≤ C6 · 2

(M−1)j .

Thus, the number of terms required in the approximation is given by

N ≤
J∑

j=0

Nj,SL + Nj,ZO ≤ C7 · 2
(M−1)J . (20)

Finally, we combine (19) and (20) to obtain the result. �
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D Proof of Theorem 4

As in Theorem 3, we consider a candidate surflet decomposition grown fully up to level J but
pruned back in regions away from the discontinuity. This surflet decomposition then consists of
the following nodes:

• leaf nodes at level J , which are decorated with a surflet;

• leaf nodes at various levels, which are all-zero or all-one; and

• internal nodes at various levels, which are decorated with surflets.

Since the leaf nodes are used to construct the approximation, we may use the distortion bound (19)
from Theorem 3. This bound holds for both quantized Taylor surflets and L2-best surflets.

Number of bits: We establish a bound on the bitrate required to encode this decomposition
(using either quantized Taylor surflets or L2-best surflets). There are three contributions to the
bitrate:

• To encode the structure (topology) of the pruned tree indicating the locations of the leaf
nodes, we can use one bit for each node in the tree [31]. Using (20), we have

R1 ≤
J∑

j=0

Nj,SL + Nj,ZO ≤ C7 · 2
(M−1)J . (21)

• For each leaf node that is all-zero or all-one we can use a constant number of bits to specify
the homogeneous nature of the node and the constant value (0 or 1). We have

R2 ≤
J∑

j=0

Nj,ZO ≤ C8 · 2
(M−1)J . (22)

• For each leaf node at scale J labeled with a surflet, we must encode the quantized surflet
parameters. For a surflet coefficient at scale J of order ` ∈ {0, · · · , rd}, the number of bits
required per coefficient is O((Kd − `)J), and the number of such coefficients is O((M − 1)`).
Hence, the total number of bits required to encode each surflet is O(J

∑rd
`=0(Kd−`)(M−1)`) =

O(J). (Note that our order term describes the scaling with J .) Therefore, we have that

R3 ≤ NJ,SL ·O(J) ≤ C9 · J · 2
(M−1)J . (23)

Combining (21), (22), and (23), the total bitrate R(f c, f̂ c
J) required to describe the surflet decom-

position satisfies
R(f c, f̂ c

J) = R1 + R2 + R3 ≤ C10 · J · 2
(M−1)J .

We conclude the proof by combining this result with (19). �
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E Proof of Theorem 5

The proof consists of three steps. First, we show that the L-extended L2-best surflet fits to f c over a
hypercube Xj and one of its children Xj+1 share a non-trivial common XL

j+1-active region. Second,
we use this fact to show that the surflet polynomial coefficients of these L-extended L2-best surflet
fits are similar in the case where the common XL

j+1-active region is aligned with the center of the
hypercube Xj+1. Finally, we extend the second step to show that the surflet polynomial coefficients
of the L-extended L2-best surflet fits are similar regardless of the exact location of the common
XL

j+1-active region. We combine these steps to prove that the surflet polynomial coefficients at
scale j +1 can be encoded using a constant number of bits given the surflet polynomial coefficients
at scale j.

Surflet fits over Xj and Xj+1 share non-trivial active region: Assume that the disconti-
nuity bc passes through Xj+1. (Note that if bc passes through Xj but not through Xj+1, our coder
uses an all-0 or all-1 surflet to approximate f c over Xj+1; checking for such an occurrence does
not require explicit knowledge of bc.) From (17), we have that the L-extended L2-best surflet fits
sL(Xj ; pj ; ·) and sL(Xj+1; pj+1; ·) obey the following relations:

L1(b
c, pj) ≤ C3 · 2

−(Kd+M−1)j (24)

and
L1(b

c, pj+1) ≤ C3 · 2
−(Kd+M−1)(j+1). (25)

Since bc passes through Xj+1, it is clear that bc will have a nontrivial (M − 1)-dimensional
XL

j+1-active region. One can also check that the surflet polynomials pj and pj+1 have similar XL
j+1-

active regions. In particular, there exists an (M − 1)-dimensional hypercube region Aj+1 that is
contained in the XL

j+1-active regions of bc, pj , and pj+1, with sidelength(Aj+1) = C11 · 2
−(j+1) in

each dimension with the constant C11 independent of j; otherwise the bounds (24) and (25) could
not hold with bc passing through Xj+1. Hence vol(Aj+1) = (C11)

M−1 · 2−(M−1)(j+1), where the
constant C11 depends on the universal derivative bound for functions in FC(M, Kd), the extension
L, and the dimension of the problem M . We emphasize here that the notion of L-extensions of
hypercubes is the key reason that surflet fits at successive scales share such a non-trivial common
XL

j+1-active region.

We now restrict the domain of consideration of pj to the L-extended domain corresponding

to the hypercube Xj+1 at scale j + 1. We denote the resulting polynomial by pj+1
j . Thus, using

(24), (25), and the triangle inequality, the L1 distance between pj+1
j and pj+1 over the (M − 1)-

dimensional active region Aj+1 is bounded by

‖pj+1
j − pj+1‖L1(Aj+1) ≤ C12 · 2

−(Kd+M−1)(j+1), (26)

with the constant C12 independent of j.

Surflet polynomial coefficients are similar when Aj+1 is centered with respect to

Xj+1: We first assume for simplicity that Aj+1 = [−C11
2 · 2

−(j+1), C11
2 · 2

−(j+1)]M−1. In order to
relate the similarity (26) between pj and pj+1 in the L1 sense to their polynomial coefficients, we
present the following lemma.
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Lemma 1 [32, pp. 72-73] Let {v1, v2, · · · , vD} be a set of linearly independent vectors. Then there
exists C > 0 such that for any collection of coefficients γ = {γi}

D
i=1,

|γi| ≤ C · ‖v‖, ∀i ∈ {1, · · · , D},

where v =
∑D

i=1 γivi. (For any norm, such a constant exists.)

In order to employ the lemma, we define a monomial basis that contains all monomials of the
form yi1

1 · y
i2
2 · · · y

iM−1

M−1 , where i1 + i2 + · · ·+ iM−1 ∈ {0, . . . , rd}. We denote by vi,` a monomial basis
element of order i1 + i2 + · · · + iM−1 = `, with i as an index (i specifies the powers in the basis
monomial). At level j + 1, the domain of each vi,` is restricted to Aj+1. We express pj+1 and pj+1

j

as polynomials in the vector space spanned by the monomial basis:

pj+1
j =

∑

i,`

aj+1

i,`,pj+1
j

vi,`

and
pj+1 =

∑

i,`

aj+1
i,`,pj+1

vi,`.

Now, we define an error vector
ej+1 = pj+1

j − pj+1.

We define aj+1
i,` = aj+1

i,`,pj+1
j

− aj+1
i,`,pj+1

, and so we have ej+1 =
∑

i,` aj+1
i,` vi,`. Using (26), over a

subdomain Aj+1 of volume (C11)
M−1 · 2−(M−1)(j+1):

‖ej+1‖L1(Aj+1) ≤ C12 · 2
−(Kd+M−1)(j+1). (27)

To complete the proof, we must show that the L2-best surflet polynomial coefficients at scale
j + 1 can be encoded using a constant number of bits given the surflet polynomial coefficients at
scale j. To do so, note that the quantization bin-size (3) of an `’th order coefficient at scale j + 1
is 2−(Kd−`)(j+1). Consequently, it suffices to show that

|aj+1
i,` | ≤ C13 · 2

−(Kd−`)(j+1) (28)

with C13 independent of j. Such a bound on |aj+1
i,` | would imply that the L2-best surflet coefficients

at scale j + 1 can be encoded using roughly log2(2C13 + 1) (constant) bits, given the L2-best
surflet coefficients encoded at scale j. We now proceed to establish (28) in the case where Aj+1 =
[−C11

2 · 2
−(j+1), C11

2 · 2
−(j+1)]M−1; in the third part of the proof we will adjust our arguments to

establish (28) for arbitrary Aj+1.

Since we only have bounds on the L1 distance between pj+1 and pj+1
j over Aj+1, we restrict

our attention to this shared active region. Normalizing the basis vectors vi,` with respect to the
domain Aj+1, we have that

eAj+1 =
∑

i,`

c
Aj+1

i,` w
Aj+1

i,` ,
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where w
Aj+1

i,` = vi,`/‖vi,`‖L1(Aj+1), ‖vi,`‖L1(Aj+1) =
∫
Aj+1
|vi,`|, and c

Aj+1

i,` = aj+1
i,` · ‖vi,`‖L1(Aj+1).

Let vi,` = yi1
1 · y

i2
2 · · · y

iM−1

M−1 be a basis monomial with i1 + i2 + · · ·+ iM−1 = `. From the definition
of the ‖ · ‖L1(Aj+1) norm, we have that

‖vi,`‖L1(Aj+1) =

∫

y∈[−
C11
2

·2−(j+1),
C11
2

·2−(j+1)]M−1

|yi1
1 · · · y

iM−1

M−1 | · dy1 · · · dyM−1

= 2−` · C`+M−1
11 ·

2−`(j+1) · 2−(M−1)(j+1)

(i1 + 1) · · · (iM−1 + 1)
. (29)

Note that C11 is independent of j. Because the basis vectors w
Aj+1

i,` are linearly independent over
Aj+1, we know from the lemma that there exists a C(j + 1) such that

|c
Aj+1

i,` | ≤ C(j + 1) · ‖eAj+1‖L1(Aj+1). (30)

We need to show that C(j + 1) is actually independent of j. This would allow us to conclude (28)
for Aj+1 = [−C11

2 · 2
−(j+1), C11

2 · 2
−(j+1)]M−1 because

|aj+1
i,` | =

∣∣∣∣∣∣
c
Aj+1

i,`

‖vi,`‖L1(Aj+1)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
c
Aj+1

i,` · (i1 + 1) · · · (iM−1 + 1)

2−` · C`+M−1
11 · 2−`(j+1) · 2−(M−1)(j+1)

∣∣∣∣∣∣

≤
C(j + 1) · C12 · (i1 + 1) · · · (iM−1 + 1)

2−` · C`+M−1
11

· 2−(Kd−`)(j+1), (31)

where we obtain the second equality from (29), and the inequality from (27) and (30). Indeed,
if C(j + 1) is independent of j we note from (31) that we could set C13 = [C(j + 1) · C12 · (i1 +
1) · · · (iM−1 + 1)]/[2−` · C`+M−1

11 ] in (28).

We let ξ ∈ [−C11
2 , C11

2 ]M−1 denote the “relative position” within the active hypercube region of

a surflet. For any level j1 with Aj1 = [−C11
2 · 2

−j1 , C11
2 · 2

−j1 ]M−1,

w
Aj+1

i,` (ξ · 2−(j+1))

w
Aj+1

i′,`′ (ξ · 2−(j+1))
=

w
Aj1
i,` (ξ · 2−j1)

w
Aj1
i′,`′(ξ · 2

−j1)

from (29). Setting `′ = 0, we have that

w
Aj+1

i,` (ξ · 2−(j+1)) = 2−(M−1)(j1−j−1) ·w
Aj1
i,` (ξ · 2−j1). (32)

Thus, we can construct a vector eAj1 at level j1 using the same coefficients c
Aj+1

i,` , i.e., c
Aj1
i,` = c

Aj+1

i,`
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so that

‖eAj+1‖L1(Aj+1) =

∫

y∈Aj+1

∣∣∣∣∣∣
∑

i,`

c
Aj+1

i,` w
Aj+1

i,` (y)

∣∣∣∣∣∣
dy1 · · · dyM−1

(ξi = yi · 2
(j+1))

=

∫

ξ∈[−
C11
2

,
C11
2

]M−1

∣∣∣∣∣∣
∑

i,`

c
Aj+1

i,` w
Aj+1

i,` (ξ · 2−(j+1))

∣∣∣∣∣∣
· 2−(M−1)(j+1)dξ1 · · · dξM−1

=

∫

ξ∈[−
C11
2

,
C11
2

]M−1

∣∣∣∣∣∣
∑

i,`

c
Aj+1

i,` w
Aj1
i,` (ξ · 2−j1)

∣∣∣∣∣∣
· 2−(M−1)j1dξ1 · · · dξM−1

(yi = ξi · 2
−j1 ; c

Aj1
i,` = c

Aj+1

i,` )

=

∫

y∈Aj1

∣∣∣∣∣∣
∑

i,`

c
Aj1
i,` w

Aj1
i,` (y)

∣∣∣∣∣∣
dy1 · · · dyM−1

= ‖eAj1‖L1(Aj1
),

where we get the third equality from (32). Since the coefficients at the two levels, j + 1 and j1, are
the same, we can set C14 = C(j + 1) in (30)

|c
Aj1
i,` | ≤ C14 · ‖e

Aj1 ||L1(Aj1
).

In this manner, one can show that

|c
Aj+1

i,` | ≤ C14 · ‖e
Aj+1 ||L1(Aj+1) (33)

is true for for all j (because j1 is arbitrary), and hence C14 is independent of j. Switching back to
the original coefficients aj+1

i,` , we have that

|aj+1
i,` | ≤ C13 · 2

−(Kd−`)(j+1), (34)

following the logic in (31), with C13 independent of j.

Surflet polynomial coefficients are similar independent of the specific location of

Aj+1: We now suppose Aj+1 = [−C11
2 · 2

−(j+1) + η1,
C11
2 · 2

−(j+1) + η1] × · · · × [−C11
2 · 2

−(j+1) +

ηM−1,
C11
2 · 2

−(j+1) + ηM−1], where η denotes the “center” of Aj+1. As in the previous step, let

ej+1 =
∑

i,` aj+1
i,` vi,`. Suppose that we transform the basis vectors vi,` to be centered around η

rather than around 0. The transformed coefficients would then satisfy the bound in (34). To make

this point precise, let v
Aj+1

i,` (y) = vi,`(y − η) = (y1 − η1)
i1 · · · (yM−1 − ηM−1)

iM−1 , and let a
Aj+1

i,`

denote the transformed coefficients of the error vector so that ej+1 =
∑

i,` a
Aj+1

i,` v
Aj+1

i,` . We have
that

|a
Aj+1

i,` | ≤ C13 · 2
−(Kd−`)(j+1), (35)

from (34). In order to complete the proof, we need to show that

|aj+1
i,` | ≤ C15 · 2

−(Kd−`)(j+1), (36)
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with C15 independent of j. Note that the key difference between this step and the result of the
previous step of the proof is that Aj+1 is not necessarily aligned with the center of the hypercube
Xj+1. Hence, proving (36) is more general than the result in the previous step. Using the binomial
theorem, we have the following relationship between the two sets of coefficients:

aj+1
i,` =

∑

(i′,`′)∈S(i,`)

a
Aj+1

i′,`′

(
M−1∏

k=1

(
i′k

i′k − ik

)
(−ηk)

i′
k
−ik

)
,

where S(i, `) = {(i′, `′) : `′ ≥ `; i′1 ≥ i1, · · · , i
′
M−1 ≥ iM−1; i

′
1 + i′2 + · · ·+ i′M−1 = `′}. The outer sum

is finite and |ηk| ≤ C16 · 2
−(j+1) for all k, thus establishing (36):

|aj+1
i,` | ≤

∑

(i′,`′)∈S(i,`)

|a
Aj+1

i′,`′ |

(
M−1∏

k=1

C17 · |ηk|
i′
k
−ik

)

≤
∑

(i′,`′)∈S(i,`)

|a
Aj+1

i′,`′ | · (C17 · C16)
M−1 · 2−(j+1)

∑M−1
k=1 i′

k
−ik

≤
∑

(i′,`′)∈S(i,`)

C13 · 2
−(Kd−`′)(j+1) · (C17 · C16)

M−1 · 2−(j+1)(`′−`)

≤ C15 · 2
−(Kd−`)(j+1).

Here, we use (35) for the third inequality. �

F Proof of Theorem 6

We begin by providing a simple performance bound (which we improve upon below) for the approx-
imation scheme described in Sec. 4.3 applied to f c

] . At scale J , the (M−2)-dimensional intersection

manifold passes through O(2(M−2)J) hypercubes. Let one such hypercube be denoted by XJ,]. The
squared-L2 error in XJ,] due to the use of a surflet (that is ill-suited for representing intersections)
can be approximated by the volume of the hypercube and is equal to O(2−MJ). Therefore, the
total squared-L2 approximation error in representing the (M−2)-dimensional intersection manifold
is given by O(2−2J) (for every M). Comparing this result to the bound in (19), we see that the
approximation performance achieved by our surflet-based representation scheme applied to f c

] is

‖f c
] − f̂ c

],N‖
2
L2

.
(

1
N

) 2
M−1 . Hence, the representation scheme from Sec. 4.3 applied to f c

] achieves
optimal approximation performance for Kd = 2, but sub-optimal performance for Kd > 2. Thus,
the smoothness threshold Kth

d = 2. This performance is still better than that achieved by wavelets,
which treat the discontinuities as C1-smooth functions regardless of any additional structure in the
discontinuities, and thus have a smoothness threshold of Kth,wl

d = 1 (i.e., the performance achieved

by wavelets is ‖f c
] − f̂ c

],N‖
2
L2

.
(

1
N

) 1
M−1 ).

Using more sophisticated analysis we now improve upon the performance bound described
above to show that the approximation scheme has a smoothness threshold Kth

d greater than two,
thus increasing the range of Kd for which we achieve optimal performance. In order to improve
the performance bound, we consider the scenario where the approximation scheme further subdi-
vides those hypercubes at scale J containing intersections. At scale J , the scheme described in
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Sec. 4.3 uses N = O(2(M−1)J) terms to construct an approximation (analyzed in detail in Ap-
pendix C). This suggests that an additional O(2J) mini-hypercubes could be used within each of
the O(2(M−2)J) hypercubes that contain the (M − 2)-dimensional intersection manifold (again, let
one such hypercube be denoted by XJ,]), while still maintaining the same order for N . Let the
sidelength of the mini-hypercubes be 2−s. Each of these mini-hypercubes is labeled with a surflet
(chosen from a dictionary at scale s). Within each XJ,], the approximation scheme would ideally
use the O(2J) mini-hypercubes to only approximate those regions that contain the intersection
manifold rather than to tile the entire hypercube XJ,]. Using this idea we compute the sidelength,
and consequently the smoothness threshold Kth

d , as follows:

• M > 2: The number of mini-hypercubes used in each XJ,] is O(2J). We would like all
these mini-hypercubes of sidelength 2−s to approximate regions within XJ,] that contain the

intersection manifold. This implies that 2J ∼ 2(M−2)(s−J), which results in s =
⌈

(M−1)J
M−2

⌉
.

The total squared-L2 error due to the use of these mini-hypercubes in each XJ,] is O(2J ·

2−Ms) = O(2J · 2
−M(M−1)J

M−2 ). The total squared-L2 error over all of the O(2(M−2)J) XJ,]’s due

to the mini-hypercubes is given by O(2J · 2
−M(M−1)J

M−2 · 2(M−2)J) = O(2
−2(M−1)J

M−2 ). Comparing

with (19), we have that Kth
d = 2(M−1)

M−2 .

• M = 2: In this case, discontinuities intersect at points. Therefore, only a constant number
of mini-hypercubes are needed inside each XJ,]. As a result, the number of mini-hypercubes
that are required to cover the intersection manifold does not grow with scale. Choosing

s =
⌈

KdJ
M

⌉
, we see that the total squared-L2 error due to the use of these mini-hypercubes

in each XJ,] is O(2−Ms) = O(2−KdJ). The total squared-L2 error over all of the hypercubes
XJ,] (a constant number) due to the mini-hypercubes is also given by O(2−KdJ). Comparing
with (19), we see that the scheme in Sec. 4.3 achieves optimal approximation performance for
every Kd.

Note that the analysis of the approximation scheme as described above requires explicit informa-
tion about the location of the intersections; however, an approximation scheme based on L2-best
surflets (with the dictionary containing regular and “mini”-surflets) would not require such explicit
information but would still achieve the same performance. �

G Proof of Theorem 7

According to the prototype algorithm, there are three sources of error in the approximation —
quantizing wavelet coefficients that are kept in the tree, pruning Type S nodes (and their descen-
dant subtrees) from scale J

m to scale J
n , and approximating Type D discontinuity nodes at scale

J
n (and their descendant subtrees) by surfprint atoms. The terms used in constructing the ap-
proximation include Type S wavelet coefficients, Type D wavelet coefficients, and surfprint atoms.
We will analyze the approximation error and number of terms separately before calculating the
approximation rate of the surfprint-based representation.

Distortion: The sources of distortion contribute in the following manner:
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• Quantizing wavelet coefficients: There are N1: J
m

= O(2
MJ
m ) wavelet nodes up to scale J

m . The

number of Type D nodes (which are not pruned) at scales j ∈ [ J
m + 1, J

n ] is given by Nj,D =

O(2(M−1)j). This implies that the total number of Type D nodes at these scales is bounded

by N J
m

+1:J
n

,D = O(2
J(M−1)

n ) = O(2
MJ
m ) because m

n = M
M−1 . Using (8), each wavelet coefficient

in the approximation is quantized up to resolution (∆Kwl
s )2 = 2−

J
m

(2Kwl
s +M). Therefore, the

total quantization distortion is O(2−
2Kwl

s J

m ).

• Pruning Type S nodes: First, we consider Type S nodes at scale J
m . The magnitude of wavelet

coefficients for Type S smooth nodes decays as O(2−(Kwl
s +M/2)j) [25]. The squared-L2 error

from a single pruning at scale J
m is given by:

∞∑

j= J
m

2M(j− J
m

) · 2−j(2Kwl
s +M) . 2−

J
m

(M+2Kwl
s ), (37)

where a Type S node at scale J/m has 2M(j− J
m

) children nodes at scale j. There are N J
m

,S =

O(2
MJ
m ) Type S nodes at scale J

m . Therefore, the total distortion from pruning Type S nodes

at scale J
m is O(2−

2Kwl
s J

m ). Second, we consider Type S nodes (not previously pruned) at deep
scales greater than J

m . The error given by (37) also serves as an upper bound for every Type S
pruning from scale J

m + 1 to scale J
n . For a Type S node at these scales to have not been

previously pruned, it must have a Type D parent. Because N J
m

+1:J
n

,D = O(2
MJ
m ), the total

error due to pruning is O(2
−2Kwl

s J

m + 2−
J(M+2Kwl

s )

m · 2
MJ
m ) = O(2

−2Kwl
s J

m ).

• Using surfprint approximations: The number of Type D discontinuity nodes at scale J
n (ap-

proximated by surfprint atoms) is NJ
n

,D = NJ
n

,SP = O(2
(M−1)J

n ). The error due to each surf-

print approximation is given by O(2
−K

sp
d

J

n ·2
−(M−1)J

n +2
−(2K

sp
s +M)J
n ). (This error is bounded by

the squared-L2 error of the quantized piecewise polynomial surflet approximation over each
hypercube XJ/n, extended if necessary to cover the supports of the wavelets.) Therefore, the

total error due to surfprint approximations is given by O(2−min(
K

sp
d

J

n
,
(2K

sp
s +1)J
n

)).

Thus, the total squared distortion is given by

∥∥∥f s − f̂ s
J

∥∥∥
2

L2

= O(2−min(
2Kwl

s J

m
,
K

sp
d

J

n
,
(2K

sp
s +1)J
n

)). (38)

Number of terms: The following three types of terms are used in assembling an approxima-
tion to f s ∈ FS(M, Kd, Ks):

• Coarse-scale wavelets: The total number wavelets used at coarse scales is

N1: J
m

= O(2
MJ
m ) = O(2(M−1)J

n ).

• Intermediate Type D wavelets: The number of Type D nodes used at intermediate scales is

N J
m

+1:J
n

,D = O(2
(M−1)J

n ).
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• Surfprints: The total number of surfprints used in the approximation is NJ
n

,SP = O(2
(M−1)J

n ).

Thus, the total number of terms, N , used in assembling the approximation is

N = N1: J
m

+ N J
m

+1:J
n

,D + NJ
n

,SP = O(2
(M−1)J

n ) = O(2
MJ
m ). (39)

Combining (38) and (39), we get the following approximation rate for the performance of our
prototype surfprint-based approximation scheme:

∥∥∥f s − f̂ s
N

∥∥∥
2

L2

.

(
1

N

)min(
K

sp
d

M−1
,
2Kwl

s
M

,
2K

sp
s +1

M−1
)

.

The conditions on the operational smoothness orders Ksp
d , Kwl

s , and Ksp
s (as specified in Sec. 5.3)

ensure that the proper terms dominate the decay in this expression and it matches the optimal
asymptotic approximation rate of Theorem 2. �

H Proof of Theorem 8

Consider an N -term approximation f̂ s
N to f s constructed by the scheme in Sec. 5.5. The distortion

between f̂ s
N and f s is given by (38). We only need to analyze the number of bits required to encode

this approximation.

Number of bits: We encode the topology of the tree and the quantized wavelet and surfprint
terms.

• To encode the structure of the tree, we use O(1) bits to encode each node in the tree:

R1 = O(N) = O(2
(M−1)J

n ) = O(2
MJ
m ), (40)

from (39).

• The number of possible quantization bins for a wavelet coefficient 〈f s, wXj
〉 at scale j is given

by

Bins(j) = O(2
J
m

(Kwl
s +M

2
)−j),

based on the quantization step-size (8) and the fact that a wavelet coefficient at scale j near
the (M − 1)-dimensional discontinuity decays as 2−j [25]. Thus, the number of bits required
to encode wavelet coefficients is given by

R2 =

J
m∑

j=0

(Nj,S + Nj,D) log(Bins(j)) +

J
n∑

j= J
m

+1

Nj,D log(Bins(j)) = O(J2M J
m ). (41)

• The number of bits required to encode surfprint coefficients at scale J
n is

R3 = NJ
n

,SPO

(
(Ksp

d + Ksp
s )

J

n

)
= O(J2(M−1)J

n ). (42)

Combining (38), (40), (41), and (42), we obtain the desired result. �
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I Proof of Theorem 9

Let XJ be an M -dimensional dyadic hypercube12 with J ≤ Jvox := min(πi)
Kd

. Let f̂ c
L be the continuous

L2-best surflet fit to f c over XJ . We know from (4) that
∥∥∥f c − f̂ c

L

∥∥∥
2

L2(XJ )
= O(2−J(Kd+M−1)). (43)

We assume that the values of the discretized function f̃ c
π are obtained by averaging f c

over each voxel. The distortion between f c and f̃ c
π over XJ is nonzero only over vox-

els through which the discontinuity bc passes. The squared-L2 distortion over each such
voxel is O(2−(π1+···+πM )). Also, the number of voxels through which bc passes within

XJ = O
(
2
∑M−1

i=1 (πi−J)
⌈(

Ω · 2−min(πi)
M−1
i=1

)
/ (2−πM )

⌉)
, where Ω is the universal derivative bound

(Sec. 2.1). Thus, we have
∥∥∥f c − f̃ c

π

∥∥∥
2

L2(XJ )
= O(2−J(M−1)−min(πi)) = O(2−J(Kd+M−1)), (44)

where the second equality is due to fact that J ≤ min(πi)
Kd

. Note that we define f̃ c
π as a continuous

function (constant over each M -dimensional voxel) in order to compare with f c. Similarly, one can
check that ∥∥∥∥f̂ c

L −
˜̂
f c

L,π

∥∥∥∥
2

L2(XJ )

= O(2−J(Kd+M−1)), (45)

where
˜̂
f c

L,π is the sampled version of f̂ c
L.

Equations (44) and (45) indicate that at scale J , voxelization effects are comparable to the
approximations afforded by surflets. Essentially, then, all of the approximation results for surflets
at this scale are preserved when applied to the voxelized function. In particular, combining (43),
(44), and (45), we have the following result:

∥∥∥∥f̃ c
π −

˜̂
f c

L,π

∥∥∥∥
2

L2(XJ )

≤

(∥∥∥f c − f̃ c
π

∥∥∥
L2(XJ )

+
∥∥∥f c − f̂ c

L

∥∥∥
L2(XJ )

+

∥∥∥∥f̂ c
L −

˜̂
f c

L,π

∥∥∥∥
L2(XJ )

)2

= O(2−J(Kd+M−1)).

Thus, discrete surflets are as effective on the discrete block as continuous surflets are on the cor-
responding continuous block (see Appendix C). However, we are only provided with the discrete

function f̃ c
π and would like to use `2-best surflets on dyadic blocks of f̃ c

π. Let
̂̃
f c

π denote the discrete

`2-best surflet fit to f̃ c
π over XJ .

By definition, ‖f̃ c
π −

̂̃
f c

π‖
2
L2(XJ ) ≤ ‖f̃

c
π −

˜̂
f c

L,π‖
2
L2(XJ ). Thus, we have that

∥∥∥∥f̃ c
π −

̂̃
f c

π

∥∥∥∥
2

L2(XJ )

= O(2−J(Kd+M−1)). (46)

It remains to be shown that `2-best surflets can be predicted across scales. The proof of this fact
is analogous to the proof of Theorem 5. �

12We omit an additive constant that may be added to Jvox to ensure a more exact agreement with the voxelization
breakdown rate.
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J Proof of Corollary 10

Combining (44) and (46) from Appendix I, we have the following result:

∥∥∥∥f c −
̂̃
f c

π

∥∥∥∥
2

L2(XJ )

≤

(∥∥∥f c − f̃ c
π

∥∥∥
L2(XJ )

+

∥∥∥∥f̃ c
π −

̂̃
f c

π

∥∥∥∥
L2(XJ )

)2

= O(2−J(Kd+M−1)).

Hence, the quality of the approximation provided by the `2-best surflets
̂̃
f c

π operating on f̃ c
π to the

continuous function f c, with
̂̃
f c

π considered to be continuous (constant over each M -dimensional
voxel), is as good as the approximation performance provided by continuous L2-best surflet fits
to f c (see Appendix C). The rest of the proof follows in an analogous manner to the proof of
Theorem 5. �

K Proof of Theorem 11

In smooth regions of f̃ s
π, discrete wavelet coefficients (corresponding to a discrete wavelet basis with

Kwl
s vanishing moments applied to f̃ s

π) decay as O(2−(Kwl
s +M/2)j) [25]. This is the same decay rate

that continuous wavelet coefficients obey on smooth regions of f s (see Appendix G). Therefore,

the total error due to the use of discrete wavelets to approximate f̃ s
π, the quantization of the

corresponding discrete wavelet coefficients, and the pruning of Type S nodes is analogous to the
corresponding error in the continuous case analyzed in Appendix G.

What remains to be analyzed is the distortion due to the use of discrete surfprint approxima-
tions. This analysis is analogous to the analysis in Appendix I. Consider a Type D node at scale
J
n to which a surfprint approximation is assigned. Let the hypercube corresponding to this node
be XJ

n
. First, we have the following distortion between f s and the L2-best surfprint fit to f s over

XJ
n
, f̂ s

sp,L (see Appendix G):

∥∥∥f s − f̂ s
sp,L

∥∥∥
2

L2(X J
n

)
= O

(
2

−(K
sp
d

+M−1)J

n + 2
−(2K

sp
s +M)J
n

)

= O
(
2−

(M−1)J
n · 2−min(Ksp

d ,2Ksp
s +1) J

n

)
. (47)

Second, we characterize the error due to voxelization of f s over XJ
n
. For each voxel in XJ

n
through

which the discontinuity passes, the squared-L2 error between f s and f̃ s
π is given by O(2−(π1+···+πM )).

The number of such voxels in XJ
n

= O
(
2
∑M−1

i=1 (πi−
J
n

)
⌈(

Ω · 2−min(πi)
M−1
i=1

)
/ (2−πM )

⌉)
, where Ω

is the universal derivative bound (Sec. 2.1). Discretization over the smooth regions of f s can
be viewed as a construction of 0’th order Taylor approximations (constants) locally over each

voxel. Therefore, the squared-L2 error between f s and f̃ s
π over a voxel in the smooth region is

O
(
2−2min(πi) · 2−(π1+···+πM )

)
. The number of such voxels in XJ

n
= O

(
2
∑M

i=1(πi−
J
n

)
)
. Thus, the
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total error between f s and f̃ s
π is

∥∥∥f s − f̃ s
π

∥∥∥
2

L2(X J
n

)
= O

(
2−

(M−1)J
n

−min(πi) + 2−
MJ
n

−2 min(πi)
)

= O
(
2−

(M−1)J
n

−min(πi)
)

= O
(
2−

(M−1)J
n · 2−min(Ksp

d ,2Ksp
s +1) J

n

)
. (48)

The last equality is due to the assumption that J
n ≤

min{πi}
min{Ksp

d ,2Ksp
s +1}

. Similarly, the squared-L2

error between a continuous surfprint atom and its discrete analog at scale J
n is also given by

∥∥∥∥f̂ s
sp,L −

˜̂
f s
sp,L,π

∥∥∥∥
2

L2(X J
n

)

= O
(
2−

(M−1)J
n · 2−min(Ksp

d ,2Ksp
s +1) J

n

)
. (49)

Combining (47), (48), and (49), we have the following result:

∥∥∥∥f̃ s
π −

˜̂
f s
sp,L,π

∥∥∥∥
2

L2(X J
n

)

≤



∥∥∥f s − f̃ s

π

∥∥∥
L2(X J

n
)
+
∥∥∥f s − f̂ s

sp,L

∥∥∥
L2(X J

n
)
+

∥∥∥∥f̂ s
sp,L −

˜̂
f s
sp,L,π

∥∥∥∥
L2(X J

n
)




2

= O
(
2−

(M−1)J
n · 2−min(Ksp

d ,2Ksp
s +1) J

n

)
. (50)

There are O
(
2

(M−1)J
n

)
Type D nodes at scale J

n . From (50), we have that the total error due to dis-

crete surfprint approximations is given by O
(
2−min(Ksp

d ,2Ksp
s +1) J

n

)
. Similar to the argument made

in Appendix I, we have by definition that the discrete surfprint approximation
̂̃
f s
sp,π, constructed

using the discrete `2-best surfprint atoms, satisfies ‖f̃ s
π−

̂̃
f s
sp,π‖

2
L2(XJ ) ≤ ‖f̃

s
π−

˜̂
f s
sp,L,π‖

2
L2(XJ ). Thus,

∥∥∥∥f̃ s
π −

̂̃
f s
sp,π

∥∥∥∥
2

L2(X J
n

)

= O
(
2−

(M−1)J
n · 2−min(Ksp

d ,2Ksp
s +1) J

n

)
.

Combining this result with the arguments made in the first paragraph of this proof, the squared-

L2 error between the discrete function f̃ s
π and the discrete wavelet/surfprint approximation

˜̂
f s

π

(this approximation now represents a composite wavelet/surfprint approximation; the previous
paragraph only analyzed surfprint approximations) is

∥∥∥∥f̃ s
π −

̂̃
f s

π

∥∥∥∥
2

L2

= O

(
2−min(

2Kwl
s J

m
,
K

sp
d

J

n
,
(2K

sp
s +1)J
n

)

)
. (51)

The rest of this proof is analogous to the proof of Theorem 8 in Appendix H. �

L Proof of Corollary 12

This proof is similar to the proof in Appendix J. We begin by extending the bound provided by (48).
This bound holds for Type D hypercubes at scale J

n . The total number of such Type D hypercubes
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at scale J
n is given by O(2(M−1)J

n ). Following the logic preceding (48), we have that the squared-L2

error between f s and f̃ s
π over a Type S hypercube at scale j is given by O(2−Mj−2min(πi)), and the

total number of such Type S hypercubes at scale j is given by O(2Mj). Combining these arguments
with (51) from Appendix K, we have the following result:

∥∥∥∥f s −
̂̃
f s

π

∥∥∥∥
2

L2

≤

(∥∥∥f s − f̃ s
π

∥∥∥
L2

+

∥∥∥∥f̃ s
π −

̂̃
f s

π

∥∥∥∥
L2

)2

= O

(
2−min(

2Kwl
s J

m
,
K

sp
d

J

n
,
(2K

sp
s +1)J
n

)

)
.

The rest of the proof follows in an analogous manner to the proof of Theorem 8. �
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