Distributed Low-rank Matrix Factorization With Exact Consensus

Zhihui Zhu*, Qiuwei Li†, Xinshuo Yang†, Gongguo Tang†, Michael B. Wakin†

* Mathematical Institute for Data Science, Johns Hopkins University. † Department of Electrical Engineering, Colorado School of Mines.

Motivation

— Imagine data Y distributed across J agents in a connected network.

- This problem is referred to as the distributed matrix factorization (DMF) problem
- Mathematically, we consider formulating DMF as a global consensus optimization problem:

$$\begin{array}{ll}
\underset{\mathbf{U}^{1} \in \mathbb{R}^{n \times r}, \cdots, \mathbf{U}^{J} \in \mathbb{R}^{n \times r}, \\
\mathbf{V}_{1} \in \mathbb{R}^{m_{1} \times r}, \cdots, \mathbf{V}_{J} \in \mathbb{R}^{m_{J} \times r}
\end{array} \qquad \sum_{j=1}^{J} \|\mathbf{U}^{j} \mathbf{V}_{j}^{T} - \mathbf{Y}_{j}\|_{F}^{2}$$

$$\mathbf{S.t.} \quad \mathbf{U}^{1} = \mathbf{U}^{2} = \cdots = \mathbf{U}^{J}$$

- In addition to having global consensus variables, (DMF) involves local variables. Therefore:
- general distributed algorithms like distributed gradient descent (DGD) fail to apply
- although certain distributed methods like ADMM apply to this scenario, there is no existing guarantee for exact recovery
- This work aims to extend the most simple distributed algorithm DGD such that it can achieve both exact consensus and globally optimal convergence.

Distributed Gradient Descent (DGD)+LOCAL

– Centralized Problem:

$$\underset{\mathbf{x}, \mathbf{y}_1, \dots, \mathbf{y}_J}{\text{minimize}} f(\mathbf{x}, \mathbf{y}_1, \dots, \mathbf{y}_J) = \sum_{j=1}^J f_j(\mathbf{x}, \mathbf{y}_j) \tag{c}$$

- Distributed/Decentralized Problem: involves common variables and local variables

$$\underset{\mathbf{x}^{1},\dots,\mathbf{x}^{J},\mathbf{y}_{1},\dots,\mathbf{y}_{J}}{\text{minimize}} \sum_{j=1}^{J} f_{j}(\mathbf{x}^{j},\mathbf{y}_{j}), \text{ s.t. } \mathbf{x}^{1} = \dots = \mathbf{x}^{J}$$

$$\underbrace{\mathbf{y}_{1}}$$

- DGD + LOCAL update:

$$\mathbf{x}^{j}(k+1) = \sum_{i=1}^{J} (\boldsymbol{\omega}_{ji}\mathbf{x}^{i}(k)) - \mu \nabla_{\mathbf{x}} f_{j}(\mathbf{x}^{j}(k), \mathbf{y}_{j}(k))$$

$$\mathbf{y}_{j}(k+1) = \mathbf{y}_{j}(k) - \mu \nabla_{\mathbf{y}} f_{j}(\mathbf{x}^{j}(k), \mathbf{y}_{j}(k))$$

- $-\left[\omega_{ji}
 ight]$ is a symmetric weight matrix, playing a role in local averaging.
- Standard DGD only involves common variables \mathbf{x}^{j} .

Consensus and convergence analysis

Proof Ideas

- 1. DGD+LOCAL \iff applying Gradient Descent (GD) to (g).
- 2. Any critical point of (g) is in the consensus space.
- 3. Critical points of (g) and (c) correspond one-to-one.
- 4. GD converges to 2nd-order critical points \Rightarrow DGD+LOCAL converges to 2nd-order critical points.

1. DGD+LOCAL \iff applying GD with stepsize μ to (g)

$$\underset{\mathbf{x}^{1},\dots,\mathbf{x}^{J},\mathbf{y}_{1},\dots,\mathbf{y}_{J}}{\text{minimize}} g(\mathbf{x}^{1},\dots,\mathbf{x}^{J},\mathbf{y}_{1},\dots,\mathbf{y}_{J}) = \sum_{j=1}^{J} \left(f_{j}\left(\mathbf{x}^{j},\mathbf{y}_{j}\right) + \sum_{i=1}^{J} \frac{\omega_{ji}}{4\mu} \left\|\mathbf{x}^{j} - \mathbf{x}^{i}\right\|_{2}^{2} \right)$$
(g)

2. Any critical point of (g) is in the consensus space

Theorem 1. Suppose any f_j satisfies the "symmetric gradient property" that $\langle \nabla_{\mathbf{x}} f_j(\mathbf{x}^j, \mathbf{y}_j), \mathbf{x}^j \rangle = \langle \nabla_{\mathbf{y}} f_j(\mathbf{x}^j, \mathbf{y}_j), \mathbf{y}_j \rangle$ for any $\mathbf{x}^j, \mathbf{y}_j$. Then any critical point of (\mathbf{g}) satisfies $\mathbf{x}^1 = \mathbf{x}^2 = \ldots = \mathbf{x}^J$.

	Local variables?	Exact consensus?	
DGD	X	X	consensus error ∝ step size
DGD+LOCAL	\checkmark	\checkmark	symmetric gradient property

3. Critical points of (g) and (c) correspond one-to-one

Theorem 2. If $(\mathbf{x}^1, \dots, \mathbf{x}^J, \mathbf{y}_1, \dots, \mathbf{y}_J)$ is a 1st/2nd-order critical point of (\mathbf{g}) and $\mathbf{x}^1 = \mathbf{x}^2 = \dots = \mathbf{x}^J$ for some \mathbf{x} , then $(\mathbf{x}, \mathbf{y}_1, \dots, \mathbf{y}_J)$ is also a 1st/2nd-order critical point of (\mathbf{c}) .

4. GD converges to 2nd-order critical points \Rightarrow DGD+LOCAL...

Theorem 3. Assume every f_j satisfies the "symmetric gradient property," is globally lower-bounded, and has bounded gradient and hessian in any bounded set. Then any bounded sequence generated by DGD+LOCAL with a sufficiently small stepsize μ almost surely converges to a 2nd-order critical point of (g), and therefore corresponds to a 2nd-order critical point of (c).

Remark: If, furthermore, all 2nd-order critical points of (c) are global minima, then DGD+LOCAL converges to a global minimum of (c).

Why is exact consensus achieved for DMF?

Distributed matrix completion/sensing

Acknowledgement

This work was supported by the DARPA Lagrange Program under ONR/SPAWAR contract N660011824020. Thanks to Waheed Bajwa, Haroon Raja, Clement Royer, and Stephen Wright for many informative discussions.

