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Motivation

— Imagine data Y distributed across J agents in a connected network.

Y € R™™ rank(Y) <r
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“Global” data matrix that is distributed

across the IoT network : :
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— This problem is referred to as the distributed matrix factorization (DMF) problem.

— Mathematically, we consider formulating DMF as a global consensus optimization problem:
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— In addition to having global consensus variables, (DMF) involves local variables. Therefore:

— general distributed algorithms like distributed gradient descent (DGD) fail to apply
— although certain distributed methods like ADMM apply to this scenario, there is no existing guarantee
for exact recovery

— This work aims to extend the most simple distributed algorithm DGD such that it can achieve both
exact consensus and globally optimal convergence.
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Distributed Gradient Descent (DGD)+LOCAL Why is exact consensus achieved for DMF?

— Centralized Problem:

minimize f(X,y1,:--,¥s) =

unimiz fi(x,y;) (c)
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— Distributed /Decentralized Problem: involves common variables and local variables
minimize ij(xj,yj), st.x!=-..=x’ (f)

— DGD + LOCAL update:
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— |j;] is a symmetric weight matrix, playing a role in local averaging.

— Standard DGD only involves common variables x/.

Consensus and convergence analysis

Proof Ideas
1. DGD+LOCAL <= applying Gradient Descent (GD) to (g).
2. Any critical point of (g) is in the consensus space.

3. Critical points of (g) and (¢) correspond one-to-one.

4. GD converges to 2nd-order critical points = DGD+LOCAL converges to 2nd-order critical points.

1. DGD+LOCAL <= applying GD with stepsize u to (g)
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2. Any critical point of (g) is in the consensus space

Theorem 1. Suppose any f; satisfies the “symmetric gradient property” that (Vi f;(x,y;),x/) = (Vyfi(x/,¥,),¥;
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for any X’y i. Then any critical point of (g) satisfies x =x>=... =%

| ocal variables? Exact consensus?

DGD X X
DGD-+LOCAL v v

consensus error o< step size

symmetric gradient property

3. Critical points of (g) and (¢) correspond one-to-one

Theorem 2. If (x',....x),y1,---,y)) is a Ist/2nd-order critical point of (g) and x' = x> =... =X for
some X, then (X,y1,---,yy) is also a 1st/2nd-order critical point of (c).

4. GD converges to 2nd-order critical points = DGD+LOCAL...

Theorem 3. Assume every f; satisfies the “symmetric gradient property,” is globally lower-bounded,
and has bounded gradient and hessian in any bounded set. Then any bounded sequence generated by
DGD+LOCAL with a sufficiently small stepsize U almost surely converges to a 2nd-order critical point
of (g), and therefore corresponds to a 2nd-order critical point of (c).

Remark: If, furthermore, all 2nd-order critical points of (¢) are global minima, then DGD+LOCAL
converges to a global minimum of (c¢).
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minimize Y [[UV,;7 = Y,|% (h)
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- satisfy symmetric gradient property
- every 2nd-order critical point 1s global
optimal when Y 1s rank r
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Theorem 4. Ifrank(Y) < r, then any bounded sequence
generated by applying DGD+LOCAL to (DMF) almost
surely corresponds to a global minimizer of (h).
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Distributed matrix completion
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