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Models for Image Structure

• Not all N-pixel images are created equal

• Models capture concise structure
– few degrees of freedom
– permit effective denoising, compression, registration, 

detection  classification  segmentation  estimation  detection, classification, segmentation, estimation, …



Geometry: Where are the Images?

concise models  low-dimensional geometry



Linear Subspace Models

 2D F i  b i  ith b dli it d ie.g., 2D Fourier basis with bandlimited images



Many Image Families are Highly Nonlinear

+ =



Sparse Models: Unions of Subspaces

e g  wavelet bases with piecewise smooth imagese.g., wavelet bases with piecewise smooth images

What more can we say about nonlinear signal families?at o e ca e say about o ea s g a a es



Manifold Models
• K-dimensional parameter ∈ 

captures degrees of freedom
i  i l f RNin signal f ∈ RN

f

• Signal class F = {f :  ∈ } • Signal class F = {f:  ∈ } 
forms a K-dimensional manifold
– also nonparametric collections: p

faces, handwritten digits, 
shape spaces, etc.



• Generally nonlinear

• Surprise: Often non-differentiable



Overview

• Motivating application: parameter estimation

• Non-differentiability from edge migration

• Parameter estimation (revisited)

• Non-differentiability from edge occlusion

• Manifolds in Compressive Sensing



Application: Parameter Estimation

• Given an observed image I = f, g f,
can we recover the underlying 
articulation parameters 

(?,?)

articulation parameters 
– efficiently, and 
– with high precision?g p

• Given a noisy image I ≈ f, can we do the y g f,
same?

• Relevant in pose estimation, image registration, 
computer vision, edge detection, …



Newton’s Method

• Optimization problem

For a differentiable manifold  project onto • For a differentiable manifold, project onto 
tangent planes

tangent



Newton’s Method…
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Non-differentiability from Edge Migration

• Problem: movement of sharp edges
– example: shifted disk [Donoho,Grimes]example: shifted disk [Donoho,Grimes]

• Tangents do not exist

• Visualization: Local PCA experiment





“Local PCA” to approximate
tangent spacetangent space





spanspan









Multiscale Tangent Structure
• Family of approximate tangent planes

– T(,) scale, location on manifold

• If manifold F were differentiable:

• Does not happen when edges exist:

300 300

• Tangent spaces do not converge
– twisting into new dimensionstwisting into new dimensions

• But we can study and exploit this multiscale structure
 l t  f  diff ti bl  f ti~ wavelets for non-differentiable functions



Shortcut to Multiscale Structure
via Regularization

• Smoothing the images smoothes the manifold

via Regularization

– more smoothing gives smoother manifold

• Example: convolution with Gaussian, width s

• Alternate family of multiscale tangent planes• Alternate family of multiscale tangent planes
– tangent planes well defined, analogous to PCA



Wavelet-like Characterization

• Family T(s,) like continuous wavelet transform 
– discretization: T(si,j)   (i j)discretization: T(si,j)   (i,j)
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• Sampling is manifold-dependent
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Recall Newton’s Method…



Recall Newton’s Method…



Multiscale Newton Algorithm

• Construct a coarse-to-fine sequence {Fs} of 
manifolds that converge to F

• Take one Newton step at each scale





















New Perspective on Multiscale Techniques

• Image Registration & • Image Registration & 
Coarse-to-Fine Differential 
Estimation
– Irani/Peleg,
– Belhumeur/Hager,
– Keller/Averbach,Keller/Averbach,
– Simoncelli
– & many others…
all suggested by the …all suggested by the 

geometry of the 
manifoldmanifold



Experiments: Translating Disk



s = 1/2



s = 1/4



s = 1/16



s = 1/256



MSE

iterationiteration



Experiments: Rotating 3-D Cube



s = 1/2



s = 1/4



s = 1/16



s = 1/256
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Occlusion-based Non-differentiability
• Sudden appearance/disappearance of edges
• Tangent spaces changing dimensiong p g g

– different “left”, “right” tangents
• Occurs at every scale

pitch, roll, yaw



Occlusion-based Non-differentiability
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Occlusion-based Non-differentiability



Occlusion-based Non-differentiability



Occlusion-based Non-differentiability



Five Relevant Tangent Vectors
left right

“head-on” view roll (1)

pitch (2)

 (2)yaw (2)

• Can explicitly consider such points in parameter estimation
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Compressive Sensing
• Signal x is K-sparse in basis/dictionary Ψ
• Collect linear measurements y = Φx

– measurement operator Φ incoherent with elements from Ψ
– not adapted to signal x – random Φ will work

signal or imagemeasurements

[Candès, Romberg, Tao; Donoho]



“Single Pixel” CS Camera

single photon 
detector

random pattern
on DMD array

4096 pixels4096 pixels
1600 measurements

(40%)

[with R. Baraniuk + Rice CS Team]



Why CS Works: Stable Embeddings



One Challenge: Non-Differentiability
• Many image manifolds are 

non-differentiable
– no embedding guarantee
– difficult to navigate

• Solution: multiscale random projections

• Noiselets [Coifman et al.]



Example: Ellipse Parameters

N  128 128  16384

original initial guess initial error

N = 128x128 = 16384
K = 5 (major & minor axes; rotation; up & down)

M = 6 per scale (30 total):   57% success

M = 20 per scale (100 total): 99% success



Multi-Signal Recovery: “Manifold Lifting”

?
200 images

N = 642 = 4096N = 64 = 4096



Final Reconstruction
joint reconstruction

using manifold structure
image-by-image reconstruction
without using manifold structure

PSNR 23.8dBPSNR 15.4dB



Conclusions

• Image manifolds contain rich geometric structure

• Image appearance manifolds
– non-differentiable, due to sharp edges
– edge migration → global non-differentiability

• wavelet-like multiscale structure
• accessible by regularizing each image• accessible by regularizing each image

– edge occlusion → local non-differentiability

• Can exploit multiscale structure in algorithms
– proxy for standard calculus

new interpretation for image registration  etc– new interpretation for image registration, etc.
– applications in Compressive Sensing


