

The Multiscale Structure of Non-Differentiable Image Manifolds

Michael Wakin

Electrical Engineering Colorado School of Mines

Joint work with Richard Baraniuk, Hyeokho Choi, David Donoho

Models for Image Structure

• Not all N-pixel images are created equal

- Models capture concise structure
 - few degrees of freedom
 - permit effective denoising, compression, registration, detection, classification, segmentation, estimation, ...

Geometry: Where are the Images?

concise models ⇔ low-dimensional geometry

Linear Subspace Models

e.g., 2D Fourier basis with bandlimited images

Many Image Families are Highly Nonlinear

Sparse Models: Unions of Subspaces

e.g., wavelet bases with piecewise smooth images

What more can we say about nonlinear signal families?

Manifold Models

• K-dimensional parameter $\theta \in \Theta$ captures degrees of freedom in signal $f_{\theta} \in R^N$

- Signal class $F = \{f_{\theta}: \theta \in \Theta\}$ forms a K-dimensional manifold
 - also nonparametric collections: faces, handwritten digits, shape spaces, etc.
- Generally nonlinear
- Surprise: Often *non-differentiable*

Overview

- Motivating application: parameter estimation
- Non-differentiability from edge migration
- Parameter estimation (revisited)
- Non-differentiability from edge occlusion
- Manifolds in Compressive Sensing

Application: Parameter Estimation

- Given an observed image $I=f_{\theta}$, can we recover the underlying articulation parameters θ
 - efficiently, and
 - with high precision?

- Given a *noisy* image $I \approx f_{\theta}$, can we do the same?
- Relevant in pose estimation, image registration, computer vision, edge detection, ...

Newton's Method

• Optimization problem $\min_{\theta' \in \Theta} \|I - f_{\theta'}\|_2$

 For a differentiable manifold, project onto tangent planes

$$\theta^{(k+1)} \leftarrow \theta^{(k)} + [H(\theta^{(k)})]^{-1} J(\theta^{(k)})$$

$$J_i = \langle f_{\theta} - I, \tau_{\theta}^i \rangle$$

$$H_{ij} = \langle \tau_{\theta}^i, \tau_{\theta}^j \rangle$$

Overview

- Motivating application: parameter estimation
- Non-differentiability from edge migration
- Parameter estimation (revisited)
- Non-differentiability from edge occlusion
- Manifolds in Compressive Sensing

Non-differentiability from Edge Migration

- Problem: movement of sharp edges
 - example: shifted disk [Donoho, Grimes]

$$||f_{\theta+h} - f_{\theta}||_2 \sim ||h||_2^{1/2}, \quad h \to 0$$

$$\left\| \frac{f_{\theta+h}-f_{\theta}}{h} \right\|_2 \sim \frac{1}{\|h\|_2^{1/2}} o \infty$$

- Tangents do not exist
- Visualization: Local PCA experiment

Multiscale Tangent Structure

- Family of approximate tangent planes
 - $T(\varepsilon, \theta)$ scale, location on manifold
- If manifold F were differentiable:

$$\lim_{\epsilon \to 0} T(\epsilon, \theta) = T_{\theta}(F)$$

Does not happen when edges exist:

- Tangent spaces do not converge
 - twisting into new dimensions
- But we can study and exploit this multiscale structure
 - ~ wavelets for non-differentiable functions

Shortcut to Multiscale Structure via Regularization

- Smoothing the *images* smoothes the *manifold*
 - more smoothing gives smoother manifold
- Example: convolution with Gaussian, width s

$$f_{\theta,s} = \phi_s * f_\theta \qquad F_s = \{f_{\theta,s} : \theta \in \Theta\}$$

- Alternate family of multiscale tangent planes
 - tangent planes well defined, analogous to PCA

Wavelet-like Characterization

• Family $T(s,\theta)$ like continuous wavelet transform

- discretization: $T(s_i, \theta_i)$ (i,j)

Fixed angle of twist between samples

Sampling is manifold-dependent

Overview

- Motivating application: parameter estimation
- Non-differentiability from edge migration
- Parameter estimation (revisited)
- Non-differentiability from edge occlusion
- Manifolds in Compressive Sensing

Multiscale Newton Algorithm

• Construct a coarse-to-fine $sequence \{F_s\}$ of manifolds that converge to F

$$\phi_s * f_\theta \to f_\theta, \quad s \to 0$$

$$F_s \to F, \quad s \to 0$$

Take one Newton step at each scale

New Perspective on Multiscale Techniques

- Image Registration & Coarse-to-Fine Differential Estimation
 - Irani/Peleg,
 - Belhumeur/Hager,
 - Keller/Averbach,
 - Simoncelli
 - & many others...

...all suggested by the geometry of the manifold

Experiments: Translating Disk

s = 1/2

s=1/4

s = 1/16

s = 1/256

Experiments: Rotating 3-D Cube

s = 1/2

s=1/4

s = 1/16

s = 1/256

Overview

- Motivating application: parameter estimation
- Non-differentiability from edge migration
- Parameter estimation (revisited)
- Non-differentiability from edge occlusion
- Manifolds in Compressive Sensing

- Sudden appearance/disappearance of edges
- Tangent spaces changing dimension
 - different "left", "right" tangents
- Occurs at every scale

θ: *pitch*, roll, yaw

Five Relevant Tangent Vectors

Can explicitly consider such points in parameter estimation

Overview

- Motivating application: parameter estimation
- Non-differentiability from edge migration
- Parameter estimation (revisited)
- Non-differentiability from edge occlusion
- Manifolds in Compressive Sensing

Compressive Sensing

- Signal x is K-sparse in basis/dictionary Ψ
- Collect linear measurements $y = \Phi x$
 - measurement operator Φ incoherent with elements from Ψ
 - not adapted to signal x $random \Phi will work$

"Single Pixel" CS Camera

4096 pixels 1600 measurements (40%)

[with R. Baraniuk + Rice CS Team]

Why CS Works: Stable Embeddings

One Challenge: Non-Differentiability

- Many image manifolds are non-differentiable
 - no embedding guarantee
 - difficult to navigate

• Solution: multiscale random projections

Noiselets [Coifman et al.]

Example: Ellipse Parameters

 $N = 128 \times 128 = 16384$

K=5 (major & minor axes; rotation; up & down)

M= 6 per scale (30 total): 57% success

M = 20 per scale (100 total): 99% success

Multi-Signal Recovery: "Manifold Lifting"

200 images $N = 64^2 = 4096$

192

Final Reconstruction

image-by-image reconstruction without using manifold structure

joint reconstruction using manifold structure

PSNR 15.4dB

PSNR 23.8dB

Conclusions

- Image manifolds contain rich geometric structure
- Image appearance manifolds
 - non-differentiable, due to sharp edges
 - edge migration → global non-differentiability
 - wavelet-like multiscale structure
 - accessible by regularizing each image
 - edge occlusion → local non-differentiability
- Can exploit multiscale structure in algorithms
 - proxy for standard calculus
 - new interpretation for image registration, etc.
 - applications in Compressive Sensing