Matched Filtering from Limited Frequency Samples

Armin Eftekhari Michael Wakin

Justin Romberg

Colorado School of Mines

Georgia Tech

Compressive Sensing

- Signal x is K-sparse
- Collect linear measurements $y = \Phi x$
 - *random* measurement operator Φ
- Recover x from y by exploiting assumption of sparsity

Application 1: Medical Imaging

Application 2: Digital Photography

4096 pixels 1600 measurements (40%)

[with R. Baraniuk + Rice CS Team]

Application 3: Analog-to-Digital Conversion

Sampling analog signals at the information level

Nyquist samples

Compressive samples

Application 4: Sensor Networks

- Joint sparsity
- Distributed CS:
 measure separately, reconstruct jointly distributed source coding
- Robust, scalable

Restricted Isometry Property (RIP)

• RIP requires: for all K-sparse x_1 and x_{2}

$$(1-\delta) \leq \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \leq (1+\delta)$$

• Stable embedding of the sparse signal family

Proving that Random Matrices Work

• Goal is to prove that for all (2K)-sparse $x \in \mathbb{R}^N$

$$(1-\delta) \leq \frac{\|\Phi x\|_2^2}{\|x\|_2^2} \leq (1+\delta)$$

• Recast as a bound on a random process

$$\sup_{x \in \Sigma} \left| \|\Phi x\|_2^2 - 1 \right|$$

where Σ is the set of all (2*K*)-sparse signals *x* with $||x||_2^2 = 1$.

Bounding a Random Process

- Common techniques:
 - Dudley inequality relates the expected supremum of a random process to the geometry of its index set

$$\mathbf{E}\sup_{x\in\Sigma} \left| \|\Phi x\|_2^2 - 1 \right| \le \gamma_1$$

- strong tail bounds control deviation from average

$$\Pr\left\{\sup_{x\in\Sigma}\left|\|\Phi x\|_{2}^{2}-1\right|>\gamma_{1}+\gamma_{2}\right\}\leq\gamma_{3}$$

- Works for a variety of random matrix types
 - Gaussian and Fourier matrices [Rudelson and Vershynin]
 - circulant and Toeplitz matrices [Rauhut, Romberg, Tropp]
 - incoherent matrices [Candès and Plan]

Low-Complexity Inference

• In many problems of interest,

information level « *sparsity level*

• Example: unknown signal parameterizations

- Is it necessary to fully recover a signal in order to estimate some low-dimensional parameter?
 - Can we somehow exploit the lower information level?
 - Can we exploit the concentration of measure phenomenon?

Compressive Signal Processing

- Low-complexity inference
 - detection/classification [Haupt and Nowak; Davenport, W., et al.]
 - estimation ("smashed filtering") [Davenport, W., et al.]
 - generic analysis based on stable manifold embeddings

- This talk:
 - focus on simple technique for estimating unknown signal translations from random measurements
 - efficient alternative to conventional matched filter designs
 - special case: pure tone estimation from random samples
 - what's new
 - analysis sharply focused on the estimation statistics
 - analog front end

Tone Estimation

Motivating Scenario

• Analog sinusoid with unknown frequency $\omega_{o} \in \Omega$

 $e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t) \qquad j = \sqrt{-1}$

- Observe *M* random samples in time
 - $t_m \sim \text{Uniform}([-\frac{1}{2}, \frac{1}{2}])$

Least-Squares Estimation

• Recall the measurement model

$$y = \begin{bmatrix} e^{j\omega_0 t_1} \\ e^{j\omega_0 t_2} \\ \vdots \\ e^{j\omega_0 t_M} \end{bmatrix}$$

• For every $\omega \in \Omega$, consider the test vector

$$\psi_{\omega} = \begin{bmatrix} e^{j\omega t_1} \\ e^{j\omega t_2} \\ \vdots \\ e^{j\omega t_M} \end{bmatrix}$$

• Compute test statistics $X(\omega) = \langle y, \psi_{\omega} \rangle$ and let

$$\widehat{\omega}_0 = rg\max_{\omega\in\Omega} |X(\omega)|$$

Example

0

20

40

60

-40 -20

-4

-60

Analytical Framework

• $X(\omega) = \langle y, \psi_{\omega} \rangle$ is a random process indexed by ω .

Analytical Framework

- $X(\omega) = \langle y, \psi_{\omega} \rangle$ is a random process indexed by ω .
- $X(\omega)$ is an unbiased estimate of the true autocorrelation function:

$$E[X(\omega)] = M \operatorname{sinc}\left(\frac{\omega_0 - \omega}{2}\right)$$

• At each frequency, the variance of the estimate decreases with M.

Analytical Framework

- When will $X(\omega)$ peak at or near the correct ω_0 ?
- Can we bound the maximum (supremum) of

 $|X(\omega) - E[X(\omega)]|$

over the infinite set of frequencies $\omega \in \Omega$?

• Consider the centered process $Y(\omega) = X(\omega) - E[X(\omega)]$

• Consider the centered process $Y(\omega) = X(\omega) - E[X(\omega)]$

• Consider the centered process $Y(\omega) = X(\omega) - E[X(\omega)]$

Modifying the Random Process

• Recall the centered random process

 $Y(\omega) = X(\omega) - E[X(\omega)]$

- Define an *independent copy* called Y'(ω) with an independent set of random times {t'_m}
- Define the *symmetric* random process

$$Z(\omega) = Y(\omega) - Y'(\omega) = \sum_{m=1}^{M} e^{j(\omega - \omega_0)t_m} - e^{j(\omega - \omega_0)t'_m}$$

• *Modulate* with a Rademacher (+/- 1) sequence

$$Z'(\omega) = \sum_{m=1}^{M} \epsilon_m (e^{j(\omega - \omega_0)t_m} - e^{j(\omega - \omega_0)t'_m})$$

Bounding the Random Process

 Conditioned on times {t_m} and {t'_m}, *Hoeffding's* inequality bounds Z'(ω) and its increments:

$$P_{\epsilon_m}\{|Z'(\omega)| > \lambda\} \le e^{-\frac{C\lambda^2}{M}}$$
$$P_{\epsilon_m}\{|Z'(\omega_1) - Z'(\omega_2)| > \lambda\} \le e^{-\frac{C\lambda^2}{M|\Omega|^2|\omega_1 - \omega_2|^2}}$$

- Chaining argument bounds supremum of $Z'(\omega)$: $\sup_{\omega \in \Omega} |Z'(\omega)| \le \max_{p_0 \in \Omega_0} |Z'(p_0)| + \sum_{j \ge 0} \max_{(p_j, q_j) \in L_j} |Z'(q_j) - Z'(p_j)|$
- Careful *union bound* combines all of this to give:

$$P_{\epsilon_m} \{ \sup_{\omega \in \Omega} |Z'(\omega)| > \lambda \} \le |\Omega| e^{-\frac{C\lambda^2}{M}}$$

Finishing Steps

• After removing the conditioning on times $\{t_m\}$ and $\{t'_m\}$, and relating $Z'(\omega)$ to $Y(\omega)$, we conclude that

 $\operatorname{E}_{\omega\in\Omega} |X(\omega) - E[X(\omega)]| = \operatorname{E}_{\omega\in\Omega} |Y(\omega)| \le C \cdot \sqrt{M \log |\Omega|},$ whereas the peak of $\operatorname{E}[X(\omega)]$ scales with M.

• Slightly extending these arguments, we have $\sup_{\omega \in \Omega} |X(\omega) - E[X(\omega)]| = \sup_{\omega \in \Omega} |Y(\omega)| \le C \cdot \sqrt{M \log(|\Omega|/\delta)}$

with probability at least $1-\delta$.

Estimation Accuracy

• From our bounds, we conclude that if

 $M \ge C \log(|\Omega|/\delta),$

then with probability at least 1- δ , the peak of $|X(\omega)|$ will occur within the correct main lobe.

• If our observation interval has length T and we take

$$M \ge C \log(|\Omega||T|/\delta),$$

we are guaranteed a frequency resolution of

$$|\omega_0 - \widehat{\omega}_0| \le \frac{2\pi}{|T|}$$

with probability at least $1-\delta$.

Extensions

• Arbitrary unknown amplitude + Gaussian noise

Extension to Noisy Samples

Observations

$$y = \begin{bmatrix} Ae^{j\omega_0 t_1} \\ Ae^{j\omega_0 t_2} \\ \vdots \\ Ae^{j\omega_0 t_M} \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_M \end{bmatrix}$$

• Random processes

$$\langle y, \psi_{\omega} \rangle = A \cdot X(\omega) + N(\omega)$$

• Bounds

 $\operatorname{E}\sup_{\omega\in\Omega}|A\cdot X(\omega) - E[A\cdot X(\omega)]| \le C\cdot A\cdot \sqrt{M\log\Omega}$

$$\operatorname{E}_{\omega\in\Omega}|N(\omega)| \le C \cdot \sigma_n \cdot \sqrt{M\log\Omega}$$

Estimation Accuracy

If
$$M \ge C \cdot \max(\log(|\Omega||T|), \log(2/\delta)) \cdot \frac{\sigma_n^2}{|A|^2},$$

then with probability at least $1-2\delta$, the peak

$$\widehat{\omega}_0 = \arg \max_{\omega \in \Omega} |A \cdot X(\omega) + N(\omega)|$$

will have a guaranteed a accuracy of

$$|\omega_0 - \widehat{\omega}_0| \le \frac{2\pi}{|T|}.$$

• The amplitude A can then be accurately estimated via least-squares.

Compressive Matched Filtering

• Known pulse template $s_0(t)$, unknown delay $\tau_0 \in T$

- Known pulse template $s_0(t)$, unknown delay $\tau_0 \in T$
- Random samples in frequency on $\boldsymbol{\Omega}$

- Known pulse template $s_0(t)$, unknown delay $\tau_0 \in T$
- Random samples in frequency on $\boldsymbol{\Omega}$

- Known pulse template $s_0(t)$, unknown delay $\tau_0 \in T$
- Random samples in frequency on $\boldsymbol{\Omega}$

• Compute test statistics $X(\tau) = \langle y, \psi_{\tau} \rangle$ and let

$$\widehat{\tau}_0 = \arg\max_{\tau \in T} |X(\tau)|$$

Experiment: Narrow Gaussian Pulse

Experiment: Narrow Gaussian Pulse

Experiment: Narrow Gaussian Pulse

Matched Filter Guarantees

• Measurement bounds again scale with

 $\log(|\Omega||T|) \cdot \mathrm{SNR}^{-1}$

times a factor depending on uniformity of spectrum

Interpreting the Guarantee

- When $M \sim \Omega$, the compressive matched filter is as robust to noise as traditional Nyquist sampling
- However, when noise is small this gives us a principled way to undersample without the risk of aliasing

Conclusions

- Random measurements
 - recover low-complexity signals
 - answer low-complexity questions
- Compressive matched filter
 - simple least squares estimation
 - analytical framework based on random processes
 - robust performance with sub-Nyquist measurements
 - measurement bounds agnostic to sparsity level
 - could incorporate into larger algorithm
- More is known about these problems
 - spectral compressive sensing [Duarte, Baraniuk]
 - delay estimation using unions of subspaces [Gedalyahu, Eldar]