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Compressive Sensing

e Signal z Is K-sparse
e Collect linear measurements y = ox
— random measurement operator ¢
e Recover x from y by exploiting assumption of sparsity
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[Candes et al., Donoho, ...]
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Application 2: Digital Photography

-

« &2 single photon
©s detector

)

random pattern
on DMD array

4096 pixels
1600 measurements
(40%)

[with R. Baraniuk + Rice CS Team]



Application 3: Analog-to-Digital Conversion

e Sampling analog signals at the information level

Nyquist samples Compressive samples



Application 4: Sensor Networks

e Joint sparsity

e Distributed CS:

measure separately,
reconstruct jointly

distributed source coding

e Robust, scalable




Restricted Isometry Property (RIP)

= RIP requires: for all K-sparse z; and z,
|Px1 — ¢$2||2

|21 — 22]|3

e e

e Stable embedding of the sparse signal family

(1-9) < < (1+459)




Proving that Random Matrices Work

 Goal is to prove that for all (2K)-sparse x € RV

®z|3

|
(1-9) <
|15

< (1+9)

« Recast as a bound on a random process
sup ||| ®x||5 — 1
P 2
TrE

where 2 is the set of all (2K)-sparse signals x with

|l]l3 = 1.



Bounding a Random Process

« Common techniques:

- Dudley inequality relates the expected supremum of a
random process to the geometry of its index set

E sup |H<I>.CCH§ — 1‘ <™

‘\

>§’73

TrTE
- strong tail bounds control deviation from average
r
Pr < sup “|(I).CL"H2 — 1| > Y1+ Y2
L TEX

« Works for a variety of random matrix types
- Gaussian and Fourier matrices [Rudelson and Vershynin]
- circulant and Toeplitz matrices [Rauhut, Romberg, Tropp]
- Incoherent matrices [Candés and Plan]



Low-Complexity Inference

 In many problems of interest,

INformation level <« sparsity level

« Example: unknown signal parameterizations

a1 EEE

 Is it necessary to fully recover a signal in order to
estimate some low-dimensional parameter?
- Can we somehow exploit the lower information level?
- Can we exploit the concentration of measure phenomenon?




Compressive Sighal Processing

 Low-complexity inference

- detection/classification
[Haupt and Nowak; Davenport, W., et al.]

- estimation (“smashed filtering”)
[Davenport, W., et al.]

e generic analysis based on stable
manifold embeddings

 This talk:
- focus on simple technique for estimating unknown signal
translations from random measurements
« efficient alternative to conventional matched filter designs
- special case: pure tone estimation from random samples
- what’s new

« analysis sharply focused on the estimation statistics
 analog front end



Tone Estimation



Motivating Scenario
* Analog sinusoid with unknown frequency w, € Q
190t — cos(wot) + 5 sin(wot) j=v-1

e Observe M random samples in time
e t_— Uniform([-%4, ¥2])
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Least-Squares Estimation

e Recall the measurement model

B eijtl 7
ejw0t2

eJwotnm

 For every w € Q, consider the test vector

- ethl -
ethZ

¢w:

« Compute test statistics X (w) = (y, 1,,) and let

Wo = arg max [ X (w)



Example
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Analytical Framework

¢« X(w)=(y,v,)Iis a random process indexed by w.
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Analytical Framework

¢« X(w)=(y,v,)is a random process indexed by w.
« X(w) i1s an unbiased estimate of the true autocorrelation function:

E[X (w)] = Msinc (“’0 ~ “’)

At each frequency, the variance of the estimate decreases with M.

X(w), M =10; B[X(v)]
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X(w), M = 10; E[X(w)
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Analytical Framework

« When will X(w) peak at or near the correct w,?
« Can we bound the maximum (supremum) of

X(w) — ElX(w)]|

over the infinite set of frequencies w € Q7
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X(w),M =10; E[X(w)]
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Chaining

e Consider the centered process Y (w) = X (w) — F[X(w)]
mo(w) e




Chaining

Consider the centered process Y (w) = X (w) — F[X (w)]
7'('0((4)) . Q




Chaining

Consider the centered process Y (w) = X (w) — F[X (w)]

7'('0((4))




Modifying the Random Process
Recall the centered random process
Y(w) =X (w) - E[X(w)]
Define an independent copy called Y (w) with an

Independent set of random times {¢’_}

Define the symmetric random process
M

m=1
Modulate with a Rademacher (+/- 1) sequence

M
Z/(w) = Y em(e/e0)tn — It

m=1



Bounding the Random Process

Conditioned on times {t¢t_} and {¢’ }, Hoeffding’s
iInequality bounds Z’(w) and its increments:

_CX?

P {12/ ()| > A} < e S

A2

Pem{|Z,(w1) o ZI(W2)| = )\} < e MI|Q|2|w) —wg|?

Chaining argument bounds supremum of 7’ (w):

sup [Z'(w)| < max |Z’ + max |Z'(q;) — 7' (p;
sup |7/(w)| < max |7'(po)| + 3 max |7(a) = 7'(ps)

Careful union bound combines all of this to give:

P., {sup |Z'(w)| > A} < |Q]e~
wel)




Finishing Steps

« After removing the conditioning on times {¢_} and
{t',.}, and relating Z’(w) to Y(w), we conclude that

Esup | X (w)— E[X (w)]| = Esup |V (w)] < C - /M log |,
wel weEl

whereas the peak of E[ X(w)] scales with M.

e Slightly extending these arguments, we have

sup | X (w) = EX ()] = sup [Y (w)] < € v M log(|2]/9)

with probability at least 1-9.



Estimation Accuracy

e From our bounds, we conclude that if
M > Clog(|2]/9),

then with probability at least 1-6, the peak of | X(w)]
will occur within the correct main lobe.

* If our observation interval has length 7'and we take
M > Clog(|Q2|T'[/0),

we are guaranteed a frequency resolution of
2T

with probability at least 1-0.



Extensions

o Arbitrary unknown amplitude + Gaussian noise
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Extension to Noisy Samples

 Observations « Random processes
- AeJwots ] Ny
Aelwot2 no
Y= : + ; <y7¢w>:A'X(w)+N(w)
I AeIwotm ] Cny
« Bounds

Esup|A-X(w)— E[A- X(w)]| <C-A-+/MlogQ
weEs

Esup |[N(w)| < C -0, -/ Mlog
wel



Estimation Accuracy

e |f 2
O-n
M>C- max(log(|QHT|),log(2/5)) ' |A|2’

then with probability at least 1-26, the peak

Wy = argmag[A»X(w) + N(w)]

wE

will have a guaranteed a accuracy of

2T
‘w() — (D()| S —.
T

e The amplitude A can then be accurately estimated
via least-squares.



Compressive Matched Filtering



Exchanging Time and Freguency

 Known pulse template sy(t), unknown delay 7, € T
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Exchanging Time and Freguency

 Known pulse template sy(t), unknown delay 7, € T
« Random samples in frequency on Q
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Exchanging Time and Freguency

 Known pulse template sy(t), unknown delay 7, € T
« Random samples in frequency on Q
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Exchanging Time and Freguency

 Known pulse template sy(t), unknown delay 7, € T
« Random samples in frequency on Q

A - so(t — 710) g()((x))
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« Compute test statistics X (1) = (y,,) and let

. ¥
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Experiment: Narrow Gaussian Pulse
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Experiment: Narrow Gaussian Pulse
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Experiment: Narrow Gaussian Pulse
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Matched Filter Guarantees

e Measurement bounds again scale with
log(|Q||T]) - SNR™*

times a factor depending on uniformity of spectrum
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Interpreting the Guarantee

When M — Q, the compressive matched filter is as
robust to noise as traditional Nyquist sampling
However, when noise is small this gives us a

principled way to undersample without the risk of
aliasing
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Conclusions

Random measurements
— recover low-complexity signals
— answer low-complexity questions

Compressive matched filter

— simple least squares estimation

— analytical framework based on random processes

— robust performance with sub-Nyquist measurements
— measurement bounds agnostic to sparsity level

— could incorporate into larger algorithm

More is known about these problems
- spectral compressive sensing [Duarte, Baraniuk]
- delay estimation using unions of subspaces [Gedalyahu, Eldar]



