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Compressive Sensing
• Signal x is K-sparse
• Collect linear measurements y = Φxy

– random measurement operator Φ
• Recover x from y by exploiting assumption of sparsity

measurements
sparse
signal

nonzero
entries

[Candès et al., Donoho, …]



Application 1: Medical Imaging

S  d i
Fourier sampling 

Fourier coefficientsSpace domain patternFourier coefficients

Min TV, 34.23dB [CR]Backproj., 29.00dB



Application 2: Digital Photography

single photon 
detector

random patternp
on DMD array

4096 pixels4096 pixels
1600 measurements

(40%)

[with R. Baraniuk + Rice CS Team]



Application 3: Analog-to-Digital Conversion

• Sampling analog signals at the information level

Nyquist samples Compressive samplesNyquist samples Compressive samples



Application 4: Sensor Networks

• Joint sparsity• Joint sparsity

Distributed CS:• Distributed CS:
measure separately, 
reconstruct jointlyreconstruct jointly

distributed source coding

• Robust, scalable



Restricted Isometry Property (RIP)
• RIP requires: for all K-sparse x1 and x2,

K-planes

• Stable embedding of the sparse signal family

p



Proving that Random Matrices Work
• Goal is to prove that for all (2K)-sparse x ∈ RN

• Recast as a bound on a random process

where  is the set of all (2K)-sparse signals x with



Bounding a Random Process

• Common techniques:
- Dudley inequality relates the expected supremum of a 

random process to the geometry of its index set

- strong tail bounds control deviation from averagestrong tail bounds control deviation from average

• Works for a variety of random matrix typesWorks for a variety of random matrix types
- Gaussian and Fourier matrices [Rudelson and Vershynin]

- circulant and Toeplitz matrices [Rauhut, Romberg, Tropp]

- incoherent matrices [Candès and Plan]



Low-Complexity Inference

• In many problems of interest,

E l  k  i l t i ti

information level ¿ sparsity level

• Example: unknown signal parameterizations

• Is it necessary to fully recover a signal in order to 
ti t   l di i l t ?estimate some low-dimensional parameter?

- Can we somehow exploit the lower information level?
- Can we exploit the concentration of measure phenomenon?Can we exploit the concentration of measure phenomenon?



Compressive Signal Processing

• Low-complexity inference
- detection/classification 

[Haupt and Nowak; Davenport, W., et al.]

- estimation (“smashed filtering”) 
[Davenport, W., et al.]

• generic analysis based on stable 
manifold embeddings

• This talk: 
- focus on simple technique for estimating unknown signal - focus on simple technique for estimating unknown signal 

translations from random measurements
• efficient alternative to conventional matched filter designs

- special case: pure tone estimation from random samples
- what’s new

• analysis sharply focused on the estimation statistics• analysis sharply focused on the estimation statistics
• analog front end



Tone Estimation



Motivating Scenario
• Analog sinusoid with unknown frequency ω0 ∈ 

• Observe M random samples in timep
• tm ~ Uniform([-½, ½]) 

⎡
ejω0t1
jω0t2

⎤
y =

⎡⎢⎢⎢⎣ ejω0t2

...
jω0tM

⎤⎥⎥⎥⎦⎣
ejω0tM

⎦

t1 t2tM



Least-Squares Estimation

• Recall the measurement model⎡
ejω0t1

⎤
y =

⎡⎢⎢⎢⎣
e
ejω0t2

...

⎤⎥⎥⎥⎦
• For every ω ∈ , consider the test vector

⎣ .
ejω0tM

⎦
For every ω ∈ , consider the test vector⎡⎢ ejωt1

ejωt2

⎤⎥
ψω =

⎢⎢⎢⎣ ...
ejωtM

⎥⎥⎥⎦
• Compute test statistics                    and let

⎣ ⎦
X(ω) = hy,ψωibω0 = argmax
ω∈Ω

|X(ω)|X(ω)



Example

( )

*⎡⎢ ejω0t1

ejω0t2

⎤⎥ ⎡⎢ ejωt1

ejωt2

⎤⎥+
X(ω) =

*⎢⎢⎢⎣ ...
ejω0tM

⎥⎥⎥⎦ ,
⎢⎢⎢⎣ ...

ejωtM

⎥⎥⎥⎦
+

X(ω), M = 10( ),
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Analytical Framework
• is a random process indexed by ω.X(ω) = hy,ψωi

X(ω), M = 10( ),
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Analytical Framework
• is a random process indexed by ω.
• X(ω) is an unbiased estimate of the true autocorrelation function:

X(ω) = hy,ψωi

µ ¶
• At each frequency, the variance of the estimate decreases with M. 

E[X(ω)] = Msinc

µ
ω0 − ω

2

¶
At each frequency, the variance of the estimate decreases with M. 

X(ω), M = 10; E[X(ω)]( ), 0; [ ( )]
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X(ω), M = 10; X(ω), M = 20;
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X(ω), M = 50; X(ω), M = 1000;
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Analytical Framework
• When will X(ω) peak at or near the correct ω0?
• Can we bound the maximum (supremum) of

over the infinite set of frequencies ω ∈ ?
| X(ω) − E[X(ω)] |X(ω) E[X(ω)]

over the infinite set of frequencies ω ∈ ?

X(ω), M = 10; E[X(ω)]( ), 0; [ ( )]

-60 -40 -20 0 20 40 60
ω
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Chaining
( ) ( ) [ ( )]( ) [ ( )]• Consider the centered process Y (ω) = X(ω)− E[X(ω)]

Ω
π0(ω)

X(ω) E[X(ω)]

Ω
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ω



Chaining
( ) ( ) [ ( )]( ) [ ( )]• Consider the centered process Y (ω) = X(ω)− E[X(ω)]

Ω
π0(ω)

X(ω) E[X(ω)]

Ω
π1(ω)

π2(ω)

ω

Y (ω) = Y (πo(ω)) +
X
j≥0
(Y (πj+1(ω))− Y (πj(ω)))



Chaining
( ) ( ) [ ( )]( ) [ ( )]• Consider the centered process

Ω
π0(ω)

Y (ω) = X(ω)− E[X(ω)]X(ω) E[X(ω)]

Ω
π1(ω)

π2(ω)

ω

sup
ω∈Ω

|Y (ω)| ≤ max
p0∈Ω0

|Y (p0)|+
X
j≥0

max
(pj ,qj)∈Lj

|Y (qj)− Y (pj)|



Modifying the Random Process
• Recall the centered random process

Y (ω) = X(ω)− E[X(ω)]X(ω) E[X(ω)]

• Define an independent copy called Y’(ω) with an 
independent set of random times {t’ }

( ) ( ) [ ( )]( ) [ ( )]

independent set of random times {t m}
• Define the symmetric random process

• Modulate with a Rademacher (+/- 1) sequence 



Bounding the Random Process
d d { } d { } ffdi ’• Conditioned on times {tm} and {t’m}, Hoeffding’s

inequality bounds Z’(ω)  and its increments:

Ch i i  b d  f ’( )• Chaining argument bounds supremum of Z’(ω):

• Careful union bound combines all of this to give:



Finishing Steps

• After removing the conditioning on times {tm} and 
{t’ }  d l ti  Z’( ) t  Y( )   l d  th t{t’m}, and relating Z’(ω) to Y(ω), we conclude that

E sup |X(ω)− E[X(ω)]| = E sup |Y (ω)| ≤ C ·
p

M log |Ω|,X(ω) E[X(ω)]

whereas the peak of E[X(ω)] scales with M.
ω∈Ω

| ( ) [ ( )]|
ω∈Ω

| ( )|
p

| |( ) [ ( )]

• Slightly extending these arguments, we have

sup |X(ω)− E[X(ω)]| = sup |Y (ω)| ≤ C ·
p

M log(|Ω|/δ)X(ω) E[X(ω)]

with probability at least 1-.

p
ω∈Ω

| ( ) [ ( )]| p
ω∈Ω

| ( )|
p

g(| |/ )( ) [ ( )]



Estimation Accuracy

• From our bounds, we conclude that if

(| |/ )
then with probability at least 1-  the peak of |X(ω)| 

M ≥ C log(|Ω|/δ),
then with probability at least 1 , the peak of |X(ω)| 
will occur within the correct main lobe.

• If our observation interval has length T and we take 

we are guaranteed a frequency resolution of

M ≥ C log(|Ω||T |/δ),
we are guaranteed a frequency resolution of

|ω0 − bω0| ≤ 2π

|T |
with probability at least 1-

|T |



Extensions
• Arbitrary unknown amplitude + Gaussian noise

t1 t2tM



Extension to Noisy Samples
• Observations • Random processes

hy,ψωi = A ·X(ω) +N(ω)

• Bounds

E sup
ω∈Ω

|A ·X(ω)− E[A ·X(ω)]| ≤ C ·A ·
p

M logΩ

E sup
∈Ω
|N(ω)| ≤ C · σn ·

p
M logΩ

ω∈Ω



Estimation Accuracy

• If
M ≥ C ·max(log(|Ω||T |) log(2/δ)) · σ2n

then with probability at least 1-2  the peak

M ≥ C ·max(log(|Ω||T |), log(2/δ)) · |A|2 ,

then with probability at least 1-2, the peakbω0 = argmax
ω∈Ω

|A ·X(ω) +N(ω)|

will have a guaranteed a accuracy of
2

ω∈Ω

|ω0 − bω0| ≤ 2π

|T | .

• The amplitude A can then be accurately estimated 
via least-squaresvia least-squares.



Compressive Matched Filtering



Exchanging Time and Frequency
• Known pulse template s0(t), unknown delay τ0 ∈ T



Exchanging Time and Frequency
• Known pulse template s0(t), unknown delay τ0 ∈ T

• Random samples in frequency on p q y



Exchanging Time and Frequency
• Known pulse template s0(t), unknown delay τ0 ∈ T

• Random samples in frequency on p q y
bs0(ω)



Exchanging Time and Frequency
• Known pulse template s0(t), unknown delay τ0 ∈ T

• Random samples in frequency on p q y
bs0(ω)

• Compute test statistics                    and letX(τ) = hy,ψτ ibτ0 = argmax
τ∈T

|X(τ )|



Experiment: Narrow Gaussian Pulse



Experiment: Narrow Gaussian Pulse



Experiment: Narrow Gaussian Pulse



Matched Filter Guarantees
• Measurement bounds again scale with

l (|Ω||T |) SNR−1

times a factor depending on uniformity of spectrum

log(|Ω||T |) · SNR 1

times a factor depending on uniformity of spectrum

bs0(ω)s0(ω)



Interpreting the Guarantee
• When M ~ , the compressive matched filter is as 

robust to noise as traditional Nyquist sampling
• However, when noise is small this gives us a 

principled way to undersample without the risk of 
aliasing

bs0(ω)s0(ω)



Conclusions

• Random measurements
– recover low-complexity signals
– answer low-complexity questions

• Compressive matched filter
– simple least squares estimation
– analytical framework based on random processes
– robust performance with sub-Nyquist measurements
– measurement bounds agnostic to sparsity level– measurement bounds agnostic to sparsity level
– could incorporate into larger algorithm

• More is known about these problems
- spectral compressive sensing [Duarte, Baraniuk] p p g [ , ]

- delay estimation using unions of subspaces [Gedalyahu, Eldar]


