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Introduction:
Filling in the blanks
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Two Key Ingredients

1. Model:
“How is the sighal supposed to behave?”
2. Algorithm:

“How can | fill in the blanks so that the signal
obeys the model?”



Data-Rich Environments

 The Big Data Era
— Social networks
— Scientific instrumentation
— Hyperspectral imaging



Challenges

e Storage, transmission, processing

e Conventional solution:

collect all of the data then compress it
 New solution:

collect less data



Data-Poor Environments

e Limitations:

— size, power, weight
e embedded systems

— cost
e sensing hardware
* seismic surveys

— time
* magnetic resonance imaging

— communications bandwidth
e wireless sensor networks

e Make the most of the data we can collect



Compressive Sensing (CS) in a Nutshell

Using signal models to fill in the blanks

Topics:

What are signal models?

What do we mean by “blanks”?

How can we fill in the blanks?

How can we understand this process?

Al S i

What (else) can we do with these ideas?



1. What are signal models?



Sinusoids

 Sinusoids are fundamental
to signal processing.

e Many real-world phenomena travel in waves or are
generated by harmonic motion.

— electromagnetic waves
— acoustic waves
— seismic waves

 Many real-world systems propagate sinusoids in a
natural way: a sinusoidal input produces a sinusoidal
output of exactly the same frequency.



Fourier Transform (1807)
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Example Audio Signal
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Frequency Spectrum
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Bandlimited Signal Model

bandwidth:
highest effective
frequency

__._._.l.ﬂ-l_‘.._l__._a._._._l.d-i_.__._._. —en

0 1000 2000 3000 4000 5000
frequency (Hz)

18



Features of the Model

e Expressed in terms of a transform:

Fourier transform

e Variable complexity:

higher bandwidths allow for broader classes
of signals but at the expense of greater
complexity



Shannon/Nyquist Sampling Theorem
(1920s-1940s)

e Theorem:

Any bandlimited signal can be perfectly reconstructed
from its samples, provided that the sampling frequency
is at least twice the signal’s bandwidth.

e Sampling at the information level:
— sampling frequency is proportional to bandwidth

— as model complexity increases, must take more
samples (per second)
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Implications

* For bandlimited signals it is possible to perfectly
fill in the blanks between adjacent samples.

 There are many potential ways to “connect the

dots” but only one of these will have the correct
bandwidth.

e All of the others are known as aliases — they will
all have higher bandwidths.
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Digital Signal Processing (DSP) Revolution

e Sampling theorem

— sample signals without loss of information and
process them on a computer

 Advances in computing

— Moore’s law

e Algorithms such as the Fast Fourier Transform
— first discovered by Gauss (1805)
— rediscovered by Cooley and Tukey (1965)



From Bandlimitedness to Sparsity

Time-frequency analysis

frequency content may change over time

Sinusoids go on forever .. \W

Short-time Fourier transform
Wigner—Ville distribution (1932)
Gabor transform (1946)



Recall: Audio Signal
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Frequency Spectrum
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Spectrogram
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Wavelet Analysis (1980s-1990s)

[Morlet, Grossman, Meyer, Daubechies, Mallat, ...]
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Wavelet Coefficients

 Which parts of a signal have high frequency behavior?

N-pixel image N wavelet coefficients



Wavelets as Edge Detectors




Wavelets as Building Blocks
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Sparsity in Wavelet Coefficients

few large coefficients
(just “K”)
+ 32.7x & +  17.4x:

- 8.3% = + 4.0x »

4+ 0.05%xs« + 0.03%x« + 0.01%x =

+ ...
many small coefficients

(IV coefficients in total)
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Wavelet Advantage

 Wavelets capture the energy of many natural
signals more economically than sinusoids

e Example signal:
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Compression: Wavelet vs. Fourier
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Sparsity in General

e Sparsity can exist in many domains
— time (spike trains)
— frequency (sparse spectrum)
— wavelets (piecewise smooth signals)
— curvelets (piecewise smooth images)

e The 1990s and 2000s witnessed many new Xlets

— shearlets, bandelets, vaguelettes, contourlets,
chirplets, ridgelets, beamlets, brushlets, wedgelets,
platelets, surflets, seislets, ...



The Curvelet Transform (1999)

[Candes and Donoho]

e Sparse representation for piecewise smooth images with
smooth discontinuities




Curvelets and the Wave Equation

[Candes and Demanet]
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Dictionary Learning
e Sparse transforms can also be learned from

collections of training data

e Example algorithm: K-SVD (2006) [Aharon et al.]

e Demonstration: image patches
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Learned Dictionary
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Compression Performance

K-SVD dictionary Overcomplete DCT dictionary Complete DCT dictionary
8 bits per coefficients 8 bits per coefficients 8 bits per coefficients
PSNR =34.1564 PSNR =32.4021 PSNR =32.3917

Rate = 0.70651 BPP Rate = 0.69419 BPP Rate = 0.70302 BPP
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Implications of Sparsity

e When we sample a signal (say =«
to obtain /N samples or pixels), *
there may be some residual :
structure in those samples.

40"

-60t ) . : : ]
0 0.02 0.04 0.06 0.08 0.1
time (seconds)

e This could permit us to further
compress the samples.

e Or... we could reduce the
number of samples we collect,
and just fill in the blanks later.
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2. What do we mean
by “blanks”?



New Ways of Sampling

e Recall the two ingredients:
1. Model: “How is the sighal supposed to behave?”

2. Algorithm: “How can | fill in the blanks so that the
signal obeys the model?”

* Now, we will suppose that our signal is sparse in
some particular transform.

e \We must be careful about how we “measure”
the sighal so that we don’t miss anything
iImportant.



Don’t

e Don’t just take uniform samples more slowly.

e Aliasing becomes a risk —there will be more than
one way to fill in the blanks using a sparse signal.



Example Signal with Sparse Spectrum
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Uniform Samples (5x Sub-Nyquist)
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Uniform Samples (5x Sub-Nyquist)
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Alias with Sparse Spectrum
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Sparse Spectrum of the Alias
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Do

e Do take measurements that are “incoherent”
with the sparse structure (we will explain).

e This ensures that there is only one way to fill in
the blanks using a signal that is sparse.

* Incoherence is often achieved using:
(1) non-uniform samples or
(2) generic linear measurements
along with some amount of randomness.



Non-uniform Sampling

0 /\A
i 0

N Nyquist-rate samples M non-uniform samples

M < N
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Common Approach: Sub-sample Nyquist Grid

L
4 WM

Sample/retain only a random subset
of the Nyquist samples
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Example: Non-uniform Sampler

[with Northrop Grumman, Caltech, Georgia Tech]

 Underclock a standard ADC to capture spectrally sparse signals

*l' NUS Sampler IC
active channels HU
‘7 \ MSH SSH
W/ / '

Timing
:C[I\'
candidate channels '
(e.g., 200kHz GSM bins)

* Prototype system:

- captures 1.2GHz+ bandwidth (800MHz to 2GHz) with 400MHz
ADC underclocked to 236 MHz (10x sub-Nyquist)

- up to 100MHz total occupied spectrum



Generic Linear Measurements

Nyquist-rate

z(2) z(3)
samples :c(l)\ P vaw(l\f)
(don’t record /
these directly)

32xx(l) —2.7+x(2)+---+8.1*xx(N)
—81%xx(1)4+03*xx(2)+---—0.4%x(N)

NNy
N N
N =
S e’
|

Generic linear

measurements :
y(M) = 42xxz(1)+1.7xx(2)+---+0.7xx(N)
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Generic Linear Measurements

Nyquist-rate
samples

(don’t record
these directly)

y(1) = 3.2 (pixel 1) — 2.7 * (pixel 2) 4 - - -

Generic linear y(2) = —8.1x (pixel 1)+ 0.3 x (pixel 2) + - --

measurements ,
y(M) = 4.2 (pixel 1) + 1.7 x (pixel 2) + - --

64



Then What?

e Filling in the blanks means reconstructing the
original N Nyquist-rate samples from the

measurements.

y(1) = 3.2 (pixel 1) — 2.7  (pixel 2) + - --
y(2) = —8.1x (pixel 1)+ 0.3 * (pixel 2) + - - -

y(M) = 4.2 (pixel 1)+ 1.7 * (pixel 2) 4 - --

65



How Many Measurements?

e N:number of conventional Nyquist-rate samples
e K: sparsity level in a particular transform domain

o Sufficient number of incoherent measurements

M=~ Klog N

 Sampling at the information level:
— sampling frequency is proportional to sparsity

— as model complexity increases, must take more
measurements



Random Modulation Pre-Integrator (RMPI)

[with Northrop Grumman, Caltech, Georgia Tech]

e RMPI receiver
- four parallel “random demodulator” channels
- effective instantaneous bandwidth spanning 100MHz—2.5GHz
- 385 MHz measurement rate (13x sub-Nyquist)

e Goal: identify radar pulse descriptor words (PDWs)

RMPI

> >

receliver

discrete, low-rate,

radar pulses (analog) information-carrying
measurements

67



RMPI Architecture

l RFin InP RMPI 4 Channel Sampler

Tbuf ED1

SW Cap /—
COTS

Integrator H T/H Obu
N\ ADC

Sel A
i E
l

RD 2 S COTS

. ADC

RD 3 /COTS

=~ ADC

RD 4 /S COTS

> ADC

PRBS1-4 SEL1-4 CLK1-4

PN/Timing Generator
CLKin SYNC =

. -




Single-Pixel Camera
[Baraniuk and Kelly, et al.]

single photon

detector )>>
PD — Y

random pattern
' |I-|I=-|'| on DMD array
-




Single-Pixel Camera — Results

N = 4096 pixels
M = 1600 measurements
(40%)

true color low-light imaging

256 x 256 image with 10:1
compression
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Data-Poor Situations in the Wild

* Incomplete measurements arise naturally
— missing/corrupted sample streams
— missing seismic traces
— medical imaging

 Can try to use sparse models to fill in the blanks,
even if there was nothing random about the
sampling/measurement process.



Medical Imaging

e

gy \Wb\v\“ \
i li;\iii}m

Joe

Sl"paCif:E"h,:&Ziomain Fourier coefficients ////// :\\\\\\\\

256X256 256x256 /I;f/;/j/‘{,/,/’f%#

s |
il

Min. T\,s34.23dB

Backprej;29.00dB [Candes, Romberg]




low resolution .
Sampling

x10

random unde_rﬁsgglggl};n_’g_ﬂ -

zero-fill w/dc

CS- TV

R E R ' \
i Aokt iy {
S BT S
; v A, T f b 9 e .
1 7 oy v WX g
a I’r~ ?' " 158 ! 1
'ul } 8 i % . ]
N L
b "
; 1
! w
: i ! "
, i N,
\ A !

Contrast-enhanced
3D angiography

[Lustig, Donoho, Pauly]

73



3. How can we fill in
the blanks?



New Ways of Processing Samples

e Recall the two ingredients:
1. Model: “How is the sighal supposed to behave?”

2. Algorithm: “How can I fill in the blanks so that the
signal obeys the model?”

 We suppose that our signal is sparse in some
particular transform (e.g., Fourier or wavelets).

 We must fill in the blanks so that the signal obeys
this sparse model.



Don’t

e Don’t use smooth interpolation to fill in the
blanks between samples.

e This will fail to recover high-frequency features.



Recall: Signal with Sparse Spectrum
b
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Non-Uniform Samples (5x Sub-Nyquist)
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Non-Uniform Samples (5x Sub-Nyquist)
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Spectrum of Smooth Interpolation
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Do

Do search for a signal that

(1) agrees with the measurements that have been
collected, and

(2) is as sparse as possible.

2r ] [ | In this example:

| _
|1 1. ﬂ[ j 7 Find the signal that passes
l IH | through the red samples and has
| the sparsest possible frequency
al ’ . spectrum.

0 20 40 60 80 100
time (Nyquist rate samples)



Non-Uniform Samples (5x Sub-Nyquist)
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Perfect Recovery via Sparse Model
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Recovered Sparse Spectrum
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What About Aliasing?

When sampling below Nyquist, aliasing is always a risk.

There are infinitely many bandlimited signals that will
interpolate a set of sub-Nyquist samples.

a0y
V

However, there may only be one way to interpolate
random samples that has a sparse frequency spectrum.




Recovery from Generic Linear Measurements

= 3.2 % (pixel 1) — 2.7 x (pixel 2) 4 - -
= —8.1 % (pixel 1) 4 0.3 * (pixel 2) 4 - - -

= 4.2 % (pixel 1) + 1.7 * (pixel 2) + - --

generic linear measurements

Find the image that, if measured, would produce the
same set of measurements

y(1),4(2),...,y(M)

but has the smallest possible number of nonzero
wavelet coefficients. .



Difficulty

* Finding the solution with the smallest possible
number of nonzero wavelet coefficients is NP-
hard in general.

 The difficulty is that we s
don’t know in advance )
where to put the nonzero =
coefficients. 1°

0 0.1 0.2 03 04 0.5
digital frequency

e Searching over all possible sparse coefficient
patterns would be prohibitive.



Enter the L, Norm

* |dea: use the L, norm to measure the “sparsity” of the
signal’s coefficients

ladly = le(1)] + |e(2)[ + - - + [a(N)]

70
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A Rich History

e Sparse regularization in reflection seismology
— Claerbout and Muir (1973)
— Taylor, Banks, McCoy (1979)
— Santosa and Symes (1986)
— Donoho and Stark (1989)

e Other application areas

— engineering, signal processing, control, imaging,
portfolio optimization, convex optimization, ...



L, Norm Promotes Sparsity

two coefficient vectors: o; and «, same energy:

]’ ‘ Hoalllzz\Z\oq n)|2 = 2.012

5 10 15 20 lezll2 = \ 2 Z aa(n)]? = 2.012

different L, norms:

]’ _ N

O—0—0—0 00001900000 —60—=0 ||a1H1:Z‘a1(n)|:7_496

n 1

5 10 15 20
N ||a2|yl_Zya2 )| = 3.285



L, Minimization for Sparse Recovery

Do search for a signal that

(1) agrees with the measurements that have been

collected, and
(using the L, norm as

(2) is as sparse as possible. .
a proxy for sparsity)

2 0 0 ] In this example:
| |
|1 1. ﬂ[ j 7 Find the signal that passes

l IH | through the red samples and has
N | the-=sparsestpossibte frequency
2 : - spectrum.with the smallest

0 20 40 60 80 100 pOSSible |.1 norm

time (Nyquist rate samples)
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Recovery from Generic Linear Measurements

= 3.2 % (pixel 1) — 2.7 x (pixel 2) 4 - -
= —8.1 % (pixel 1) 4 0.3 * (pixel 2) 4 - - -

= 4.2 % (pixel 1) + 1.7 * (pixel 2) + - --

generic linear measurements

Find the image that, if measured, would produce the
same set of measurements

y(1),4(2),...,y(M)

but has the smallest possible rumber-ef-nrenzere-
wavelet coefficients. L, norm of its .



L, Minimization Algorithms

* L, minimization is a convex optimization problem

e Many general purpose solvers available
— CVX, SPGL1, NESTA, TFOCS, FISTA, YALL1, GPSR, FPC
— generally fast when the sparsifying transform is fast

* FFT, wavelets, curvelets

— complexity roughly “a few hundred” applications of the
forward/adjoint sparsifying transform and measurement
operator

e Can be extended to account for measurement noise



Iterative Hard Thresholding

[Blumensath and Davies]

measurement sparse

I adjoint
scaling operator transform

foctor operators

g T \ .
[ 1

. previous
. measurements .
hard thresholding coefficient

(keep K largest coefficients) estimate




4. How can we understand
this process?



The Miracle of CS

e Recall:

With incoherent measurements, for a signal of sparsity
level K, instead of collecting all /N Nyquist-rate samples,
it suffices to take roughly K log N measurements.

 Why is this possible?

e \WWhat are incoherent measurements?



Recall: Generic Linear Measurements

Nyquist-rate

z(2) z(3)
samples :c(l)\ ~ M}nﬂx(N)
(don’t record /
these directly)

32xx(l) —2.7+x(2)+---+8.1*xx(N)
—81%xx(1)4+03*xx(2)+---—0.4%x(N)

NNy
N N
N =
S e’
|

Generic linear

measurements :
y(M) = 42xxz(1)+1.7xx(2)+---+0.7xx(N)
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Introducing Matrix-Vector Notation

x(2)— N x 1

Nyquist-rate
signal
samples/pixels
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Introducing Matrix-Vector Notation

M x 1

measurements

Y x
v 2~ @ N x1
g O Nyquist-rate

signal
samples/pixels
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Introducing Matrix-Vector Notation

(2 X
e y(1) r(1l)—
Mx1 §g @ «2— 8 N x1
measurements [ Nyquist-rate
A= y(M) signal
samples/pixels
r(N)—
y(l) = 32xx(1)—2.7*xx(2)+---+81*xx(N)
y(2) = —81xxz(l)+03*xx(2)+---—0.4*z(N)

y(M) = 42xx(1)+1.7«xx(2)+---+0.7xz(N) 105



Introducing Matrix-Vector Notation

Y ¢
Mx1 B — N x 1
measurements [ Nyquist-rate
- signal
M x N samples/pixels
y(1l) = 32xx2(1)—2.7xx(2)+---+81*xx(N)
y(2) = —81xxz(l)+03*xx(2)+---—0.4*z(N)

y(M) = 42xx(1)+1.7«xx(2)+---+0.7xz(N) 103



Introducing Matrix-Vector Notation

M x 1

measurements

<
—~~
DO
~— ~—
|-

=
<

~—
||

N X 1

LITTTTTTICE

—8.1%x(1) + 0.3 * x(2

Nyquist-rate
signal
samples/pixels

e

|

<
Y
¥
B
=

42xx(1)+1.7*xx(2)+---+0.7Txz(N) 104



CS Recovery: An Inverse Problem

e Given y, have infinitely many candidates for x

— Since M < N, underdetermined set of linear equations y = ®x

 Search among these for the one that most closely agrees with
our model for how z should behave

M x 1

measurements

N x 1

Nyquist-rate

LITTTTTTICE

signal
samples/pixels
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Recovery of Sparse Signals (2004 )

e Ifxis K-sparse, need M =~ K log N random measurements to
guarantee (with high probability) stable and robust recovery

* Measurements should be incoherent with sparse dictionary

Y X
i N x 1
M x 1 — H
sparse
measurements n .
M signal
: K
M~ KIlogN <« N -  nonzero
[Candeés, Romberg, Tao; Donoho] - entries
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Sparsifying Transform

&) n o s, N
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Sparse Signal Recovery

y: M x1

O MIMMIITT M ImMTII]

a = arg min ||a’||;
a/

subject to y = ®Wo/

then set T = Yo
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L, Minimization for Sparse Recovery
a = argmin ||a’||; subject to y = dWa’
a/

N\

N

> la’(i)]

1=1
then set ¥ = Yo

e Convex optimization problem known as Basis Pursuit

— many general purpose solvers available

e Returns a good approximation to x if original signal
is not perfectly sparse



Robust L, Minimization

a = argmin ||a/ || Basis Pursuit
o’ De-Noising
subject to ||y — ®Wa'||s < ¢ (BPDN)
o~ 1 /|2 /
a:argm{n§\\y—q)\11a |5+ A||a'||1 LAsso
87

e Both are convex optimization problems
e Robust to measurement noise



FISTA: Fast Iterative Shrinkage-Thresholding Algorithm
(2009) [Beck and Teboulle]

o = Sy, (25 + 7U*P* (y — dU2F))

ft hT holdi output
soft-thresholding /

/ input

k

—1 _
P =1+ VIHAR?)/2 A =l + T (af — o )

e Gradient descent with sparse regularization
e Objective function converges as 1/k?

e See also: SpaRSA [Wright et al.], FASTA [Goldstein et al.]



Greedy Algorithms

e Suppose that x contains K nonzero entries
— sparsity transform W= identity matrix

HEE EEEEE BN EERS

e |dea: find columns of ® most correlated with y
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OMP: Orthogonal Matching Pursuit (1994)

[Davis, Mallat, and Zhang; Tropp and Gilbert]

1. Choose column most
correlated with y.

. Orthogonalize y with respect to
previously chosen columns.

3. Repeat until residual
sufficiently small.

HEE EEEEE BN EEls
N

4. Recover x using least-squares
on chosen columns.

 See also: CoSaMP (2009) [Needell and Tropp] .



Recall: Iterative Hard Thresholding

[Blumensath and Davies]

measurement sparse

adjoint
operator transform

scaling
operators

factor

Q" = YU P*(y — dTQ"))
[ \

. previous
. measurements .
hard thresholding coefficient

(keep K largest coefficients) estimate




Case Study: Non-uniform Sampling

L
4 WM

Sample/retain only a random subset
of the Nyquist samples
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Matrix-vector Formulation

M x 1

samples

N
—

<
N\

Ny
N

N

AN TN TN N
o

o S e S NS

8
 —

=
)

~J

8

e e N
@)
e N N N

D X

nt-an N x 1

.H u Nyquist-rate
M x N samples

sampling pattern
matrix

"

LITTTTTTICR

__ sampling pattern
encodes which samples to collect/keep




Sparse Signal Recovery

- u -
= .'l-. -
! s ]
y: M x1 ®: M xN .
B
a = arg min ||a’||; (;)
a/
subject to y = ®Wo/ Y
x: N x1

then set T = Yo
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Incoherence

e Measurements should be incoherent with sparse transform

— if sparse in time domain, cannot randomly sample in time domain

U: NxN

e Rows of sensing matrix @ should have small correlation (dot
product) with columns of sparsity basis W

— i.e., sparse basis functions cannot be “spiky”
118



Incoherence: Good and Bad

Assuming ® = Non-uniform sampling in time

Good: W= discrete Fourier transform

— signal has a sparse spectrum

— number of samples M proportional to sparsity of spectrum
— can use smooth windowing to reduce ringing in spectrum

Medium: W = discrete wavelet transform
— signal is piecewise smooth
— need to oversample compared to sparsity of wavelet transform

Bad: W= identity matrix
— signal is spiky in the time domain
— cannot merely take # samples = # spikes



Geometric Intuition

 Think of signals as points in some space

e Example: Two-dimensional signals

A

® =z=(2,1)

z=(-11,-29) @




Where are the Signhals?

concise models <~ low-dimensional geometry
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Linear Subspace Models

P

o

e.g., bandlimited signals in a Fourier basis



Many Signal Families are Highly Nonlinear




Sparse Models: Unions of Subspaces

YN RY

e.g., natural images in a wavelet basis

(N

K) ~ N such K-dimensional subspaces in RY

124



Geometry: Embedding in RM




lllustrative Example
Y b x

N = 3: signal length
K = 1: sparsity
M = 2: measurements
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Restricted Isometry Property (RIP)

[Candes, Romberg, Tao]

* Sensing matrix @ has Y b T
RIP of order K with N
isometry constant 0 if — H

=
2 _
|25 g

holds for all K-sparse signals .
 Does not hold for K>M; may hold for smaller K.

 |mplications: tractable, stable, robust recovery

127



Geometric Interpretation of RIP
* RIP of order 2K requires: for all K-sparse z, and =,
|Pz1 — Paa|3

1 —90) <
( ) < |21 — x2||5

< (1+9)

K-planes

e Stable embedding of the sparse signal family

128



Implications of RIP

[Foucart; Candes]

RIP of order 2K with 0 < 0.47 implies:
1. Exact recovery:

All K-sparse x are perfectly recovered via L, minimization.
2. Robust and stable recovery:

Measure y = Px + e with ||e]|2 < ¢, and recover

T =argmin||z’||1 s.t. |ly — Pz'||o < e.

Then for any x € RY,

o — 2k

’\/E a

I|£l?w§||2 < (1 (re



Random Matrices Satisfy the RIP

[Mendelson, Pajor, Tomczak-Jaegermann; Davenport, DeVore, Baraniuk, Wakin]
e Suppose @D is drawn randomly ﬁ m
with Gaussian entries and that H

M = O(Klog N).

(I) . M X N
Then with high probability, @ satisfies the RIP.

\/%%

ﬂk

M

K-planes



Random Matrices — Other Choices

Random Gaussian matrices
Random Bernoulli (+/- 1) matrices

Random subgaussian matrices

b: M xN

Entries are independent and identically distributed (i.i.d.)
M = O(K log N) suffices with probability 1-O(e %)

All of these constructions are universal in that they work
for any fixed choice of the sparsifying transform V.
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Subsampling Incoherent Matrices

[Rudelson and Vershynin; Candes, Romberg, Tao; Rauhut]

e Start with two square matrices (each orthonormal)

U: NxN

e Define coherence between matrices

p= N -max; ; |{u;, ;)
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Subsampling Incoherent Matrices

e Coherence between matrices

p= VN -max; j |(u;, ;)

e Choose M rows from U to populate sensing matrix @
e RIP satisfied with high probability if A/ = O(K 2 log* N)

133



Incoherence: Good

e U =identity matrix, ¥ = discrete Fourier transform

U: NxXN v: NxXN
po= VN -max;;|[(us, ;)| =1
M = O(Kp?log* N) = O(K log* N)

* Signals that are sparse in the frequency domain can be
efficiently sampled in the time domain (and vice versa).
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Incoherence: Bad

= "Ea

I
B II
I H B

W
L =
U: NxN U: NN

p= VN -max;;|(ui, ;)| = VN

M =N

e The sampling domain must be different from the sparsity
domain.
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Fast Measurement Operators

 Subsampled identity, subsampled Fourier transform

"

S

&t

b: M x N

b: M xN

e Fast JL transforms [Ailon and Chazelle; see also Krahmer and Ward]

— ingredients: random sign flips, Hadamard transforms, sparse

Gaussian matrices, etc.

— useful in applications where random compression is applied in
software, after x is sampled conventionally
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The Geometry of L, Recovery

RN

HE EEEEE BN EEES

N x 1
signal

K

nonzero
entries



The Geometry of L, Recovery

L
n RV
l! iiééggggg;;;géégigi II
N
| °
B X
M x 1 N
measurements Il
N x 1
signal
K
nonzero

entries
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The Geometry of L, Recovery

XL
~ RV
H
n :
M x 1 - ‘
measurements !
N x 1
signal {ZC’ : Yy — CDCC,}
K

nonzero
entries
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The Geometry of L, Recovery

Y X
~ RV
! 0
- @
— L
M x 1 u
measurements ]
Nx1 L
signal {CU . Y — Py }
K null space of @
nonzero translated to 2

entries
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The Geometry of L, Recovery

Y X
~ RV
! 0
- @
— L
M x 1 u
measurements ]
Nx1 L
signal {CU . Y — Py }
K null space of @
nonzero translated to 2
entries

random orientation
dimension N-M
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Why L, Doesn’t Work

&g\
N
S8)

/ . S /
least squares, {x/: y= P’}
minimum L, solution
is almost never sparse



Why L, Works

RV
r = arg min ||2'||1 .
y=>oa L
minimum L, solution {x' . y= dz'}

is exactly correct if
M~KIlogN <« N



Why L, Works

T = arg min ||z'||1
y=>x’

&)

| —

Criterion for success:

Ensure with high probability that

a randomly oriented (N-M)-plane, {z/ 1 y= D'}
anchored on a K-face of the L, o dorm orientation
ball, will not intersect the ball. dimension N-/

This holds when M ~ K Iog(N) [Donoho, Tanner]



5. What (else) can we do
with these ideas?



Non-uniform Sampler

[with Northrop Grumman, Caltech, Georgia Tech]

 Underclock a standard ADC to capture spectrally sparse signals

*l' NUS Sampler IC
active channels HU
‘7 \ MSH SSH
W/ / '

Timing
:C[I\'
candidate channels '
(e.g., 200kHz GSM bins)

* Prototype system:

- captures 1.2GHz+ bandwidth (800MHz to 2GHz) with 400MHz
ADC underclocked to 236 MHz (10x sub-Nyquist)

- up to 100MHz total occupied spectrum



Non-uniform Sampler — Sensing Matrix

m




Non-uniform Sampler - Results

e Successful decoding of GSM signal among 100MHz of clutter

/ * RBW 500 kH=z Marker 1 [T1 |
VBW 2 MHs 2 =16.99
Ref 0 dBm

0

-10 &

Ny

>

-30

-40

-50

-60

=70

-80

-90

700MHz 2.1GHz
frequency 148



Random Modulation Pre-Integrator (RMPI)

[with Northrop Grumman, Caltech, Georgia Tech]

e RMPI receiver
- four parallel “random demodulator” channels
- effective instantaneous bandwidth spanning 100MHz—2.5GHz
- 385 MHz measurement rate (13x sub-Nyquist)

e Goal: identify radar pulse descriptor words (PDWs)

RMPI

> >

receliver

discrete, low-rate,
radar pulses (analog) information-carrying

measurements
149



RMPI Architecture

Four parallel random demodulator (RD) channels

InP RMPI 4 Channel Sampler

RD1

5

SW Cap
Integrator

Sel

> pH

RD 3

RD 4

PRBS1-4

PN/Timing Generator

CLKin

SEL1-4

CLK1-4

SYNC

-—>

v
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Random Demodulator — Sensing Matrix
[Kirolos et al., Tropp et al.]

O: Mx N

151



Wireless Sensor Networks
[with Rubin and Camp]

external sensor connectors seismic sensors & geophysical signal processing hardware
(e.g., self-potential) (e.g., filters, ADC, up-sampling)

antenna

micro-processor and
900mHz wireless module

connectors for resistivity

Passive seismic data from Davos, Switzerland ampitude «e)

200 - . [\ % -100
F4-120
~ 150} -
< Helicopter
> ' Snowcat 140
=
(7} e Airplane 2
m. 100 | L 1160
o
L
-180
50 . ~
: -200
Avalanche [}
0 1 g 1 L 1 1 k " 1
0 5 10 15 20 25 30 35 40

Time (minutes)

CS superior to standard compression
algorithms on resource constrained motes 152



Single-Pixel Camera
[Baraniuk and Kelly, et al.]

single photon

detector )>>
PD — Y

random pattern
' |I-|I=-|'| on DMD array
-




Single-Pixel Camera — Sensing Matrix

b: M x N



Single-Pixel Camera — Results

N = 4096 pixels
M = 1600 measurements
(40%)

true color low-light imaging

256 x 256 image with 10:1
compression
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Analog
Memory

Analog
Memory

Analog Imager

[Robucci and Hasler, et al.]

External DACs :: Analog
—_ — WM
N - =N
g‘“ cew Pixel Array (P) = (Bl
S¢lection -
" :. { W W ) -"F *I.. .-l r
- — S, a0 e = e
o o n E ffnssi-fiddE = = VMM
T TS |- 3| e
L H
Selection = Colomn  HHAHH “
i M e
‘ Readout Control
Compressive
Dhgital Control Bidirectional
[-%'s

¥

Transformed Image

156



Coded Aperture Imaging

[Marcia and Willett; Rivenson et al.; Romberg]

Aperture Observation

Signal

|

. .
—
) Ideal
reconstruction
-

Y= (I-) th'ue) H Gest Y* Hremn

Gt rue
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Down-range(m)

Radar Imaging

e Ground penetrating radar [Gurbuz et al.]

 Through-the-wall radar [Ahmad et al., Zhu and Wakin]

Down-range(m)
Down-range(m)

-0.5 0 0.5 1 15 - -1.5 -1 -0.5 0 0.5 1 1.5 2 - -1.5 -1 -0.5 0 0.5
Cross-range(m) Cross-range(m) Cross-range(m)

four behind-wall backprojection L, recovery
targets



Medical Imaging

e

gy \Wb\v\“ \
i li;\iii}m

Joe

Sl"paCif:E"h,:&Ziomain Fourier coefficients ////// :\\\\\\\\

256X256 256x256 /I;f/;/j/‘{,/,/’f%#

s |
il

Min. T\,s34.23dB

Backprej;29.00dB [Candes, Romberg]




MRI — Sensing Matrix

\E

b: M xN

N x N DFT matrix



low resolution . randomundersampling
Sampling zero-fill w/dc CS- TV

_— TR n B Contrast-enhanced
x10 / “ SRR\ 3D angiography

[Lustig, Donoho, Pauly]

x10
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Subsampling Seismic Surveys

[Herrmann et al.], [Andrade de Almeida et al.]

Offset (m)

Offset (m) Offset (m)
2000 —-2000 4] 2000

-2000 0 2000 -2000 0

Time (s)
Time (s)
Time (s)

original 80% subsampled curvelet-based
reconstruction

Also:

 random jittering of source locations for airgun arrays
[Mansour et al.; Wason and Herrmann]

* |Jow-rank matrix models for trace interpolation [Aravkin et al.] o



Weave Sampling

[Naghizadeh]
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e Sparse reconstruction of 5D data cube
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Simultaneous Random Sources

[Neelamani et al.]

e Activate multiple sources simultaneously

- randomly weighted impulses or noise-like waveforms
e Separate responses from random source waveforms

- regularize using sparsity of Green’s function

Useful in field
acquisition or
forward modeling

Also:

Full-waveform inversion
[Herrmann et al.]

Deblending via sparsity
[Abma et al.]

(a) Estimated (b) Estimation error
(16x faster, SNR=11.3 dB). (Figure 2b minus 5a)
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Field Testing

[Mosher et al.]

A
g

Okm 12km

200

Os

6s

dual source single source
non-uniform uniform

NRMS difference

“Initial results from field trials show that shooting time can be reduced in half
when two vessels are used, with data quality that meets or exceeds the

165
quality of uniform shooting.”



System ldentification

 Characterize behavior of a system by providing an input

a and observing the output y

— control complexity by keeping a and y short

System

A

.
:% > Yy = a*xr + U

e Some systems (such as multipath wireless channels) are
high-dimensional but have a sparse description

il
\J7 %N —
s\ —

/
&

=

)~

A



System ldentification

e Suppose we let a be a random probe signal. We can write

Y A T
Mx1 g N x1
measurements [ — channel
0 response
- K
nonzero
entries

where each row of the Toeplitz matrix A is a shifted copy of a.

e With M on the order of K, this matrix will be favorable for CS.

— applications in seismic imaging, wireless communications, etc.
— [Rauhut, Romberg, Tropp; Nowak et al.; Sanandaji, Vincent, Wakin]
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Super-Resolution

* Goal: resolve impulses from low-frequency, non-random
measurements

[\ 1[\ /]\ A fa [ A /}\UIA\ /
TRAY Uwvv\/vvv AN AN AR ARSI
* |dea: solve continuous analog to L; minimization

 Guarantee: perfect resolution if no two spikes are
separated by less than 2/ f. [Candés and Fernandez-Granda]



Structured Sparsity

* New signal models: AARY @

— block sparse structure

— connectedness in wavelet tree

— sparsity in redundant dictionaries
— analysis vs. synthesis sparsity

e Goals:
— capture structure in as few parameters as possible

— develop reconstruction algorithms to exploit these
models (e.g., “Model-Based CS” [Baraniuk et al.])



Beyond Sparsity

e Suppose that all uncertainty about a signal can be
captured in a set of K parameters

K-dimensional
manifold

 Geometrically, the set of all possible signals under
this model forms a K-dimensional manifold within
the N-dimensional signal space



Manifolds Are Stably Embedded

[with Baraniuk, Eftekhari]

RN
. D
1 L2
K-dimensional manifold -
condition number 1/t Dxq Ddxo
volume V

M =0 (Klog(NVT_l))



Compressive-Domain Parameter Estimation
RN P S RM

= ‘\-\ \‘\ A N \ \\'\
\ .,\I \\ \
\ \ ﬁ \ \ ’ )
\\ . \\I ‘I\‘ ‘ \\‘ 0 —
| - . | | ]

,;." g L 9 !,"‘I_,.,./ @ X 9

Do we really need to recover the full signal?

— Signal recovery can be demanding in high-
bandwidth/high-resolution problems.

— |s there a simpler way to extract the salient information?
Perhaps with fewer measurements?

e Options for parameter estimation:

— nearest neighbor search, grid search, iterative Newton
method, Bayesian inference, specialized matched filters




A Variety of Stable Embeddings

() arbitrary K-sparse K-dimensional

signals signals manifold
ﬁk

RN - RN

— —e

|7
"Paxq b

M=0(og Q) M=0(KlogN) M= O0O(KIlogN)
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Multi-Signal Compressive Sensing

Measure data separately...
(in space or in time)

y1 1 xy

y; Py xy

..process jointly ,



Simultaneous Sparsity

S
 —
S
N

L J

EEEEEEEEEEEEEEE
3
o

[TTITTTTTTTTINTT]

J

* Greedy algorith IMS [Tropp et al.],[Gribonval et al.],[Duarte et al.]
e Convex optimization [Tropp],[Fornasier and Rauhut],[Eldar and Rauhut]
* Unions of subspaces and block sparsity

[Eldar and Mishali],[Baraniuk et al.],[Blumensath and Davies]



Example

e Light sensing in Intel Berkeley Lab

J =49 sensors
N =1024 samples

e M =400 random measurements of each signal

e Reconstruct using wavelets

recon. separately
SNR =21.6dB

recon. jointly
SNR =27.2dB
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From Signals to Matrices

 Many types of data naturally appear in matrix form
— signal ensembles
— distances between objects/sensor nodes
— pairwise comparisons
— user preferences (“Netflix problem”)

.--:'rll.

i i'-'--l'

X =
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Sketched SVD

[with Park and Gilbert]

e Consider a data matrix X ofsize N x J (N > J)

— each column represents a signal/document/time series/etc.
— recordings are distributed across J nodes or sensors

|
—

— length- [\ signals

="

[
)

\

!

J Sensors 178



Singular Value Decomposition (SVD)
Ux 2x

e
-

DI
m

orthonormal diagonal, ©rthonormal

columns positive rows
principal relative principal
column energies row

directions directions 179



Spectral Analysis

e SVD of X:
X =Ux2xVi

e Qurinterest: 2. xand Vx, from which we can obtain
— principal directions of rows of X (but not columns)
— KL transform: inter-signal correlations (but not intra-signal)
— stable, low-dimensional embedding of data vectors via 2. x V)C?

Challenge:
Obtaining X and computing SVD(X ) when NN is large.




Sketching

e Data matrix X ofsize N x J (N > J)
e Construct random M x N sketching matrix ®
e Collect a one-sided sketch ¥ = &.X

— can be obtained column-by-column (“sensor-by-sensor”)
— easily updated dynamically if X changes

% B

Y: MxJ b: M xN ilf
e

B N




Sketched SVD

e Sketched matrix of size M x J:

Y =X = dUxEx Vi

e We simply compute the SVD of Y:

Y = Uy Xy Vi

e SupposeX is rank R for some small R. If
M = O(Re™?)
then with high probability, >y ~ X x and Vy =~ Vx.



Sketched SVD

More formally, for 7 =1,2,..., R,

— singular values are preserved
[Magen and Zouzias]

(1 —6)1/2 < Oj(Y)

~ 0(X) < (1+97

— right singular vectors are preserved

V. — Vs evlte max \/ia,,;(X)aj(X)
[v;(X) — v;(Y)||2 < N (;éj CEIEEH{W(X) — o7 (X)- (l—l—ce)}}
/ |
roughly €

small if o;(X) is well separated
from other singular values of X



Related Work: Randomized Linear Algebra

e Compressive PCA [Fowler], [Qi and Hughes]
— interested in left singular vectors rather than right
— different aspect ratio for data matrix
— utilize different random projections for different columns

e Randomized techniques for low-rank matrix
approximation [Rokhlin et al.], [Feldman et al.], [Halko et al.]

— focused on subspaces and matrix approximations rather than
individual singular vectors

— can require multiple passes over data matrix
— theme: randomness to accelerate computation



Structural Health Monitoring

 Automated monitoring of buildings, bridges, etc.

=y s e

I-35W Mississippi River Bridge (2007)

* Wireless sensors
— acquire vibration data, transmit to central node
— goal: maximize battery life and accurately assess health
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CS for Modal Analysis

[with Park and Gilbert]

 Undersample or compress vibration recordings from sensors

1 2 3 9
@ N B =] = @ N o
Y Y ~ ~
N RN
-
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~ ~ ~
~ ~ -
A ~ ~ ~
~ ~ ~ Y
N A
Y AN
\\\ ~ ~
o N Nmom - - o mam a
10 18

e Estimate vibrational modes directly from compressed data—
without reconstruction

W“@m%

2.44 Hz 2.83 Hz 10.25 Hz
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CS for Modal Analysis - Results

e J=18 sensors recording vibration data

e 3 dominant mode shapes in this data set

NN = 3000 samples from each sensor

e M =50random Gaussian measurements per sensor

o - B

Y.50><18 <I> 50><3000

-_;|-..

X : 3000 x 18

 Process measurements Y centrally to estimate mode shapes
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CS for Modal Analysis - Results

FDD: popular modal analysis algorithm
CS+FDD: reconstruct each signal, then pass through FDD
SVD(Y): proposed method

—FDD---CS+FDD-+-SVD(Y) —FDD---CS+FDD-+-SVD(Y)

—FDD---CS+FDD-+-SVD(Y)

0 5 10 5 2 o 5 10 s 20 0.5 ¢ 10 5 20
Koy —Avidlle ({2t —Aderlle [{s; — {3}z
CS+FDD=0.35 CS+FDD=0.96 CS+FDD=0.50

SVD(Y)=0.16 SVD(Y)=0.14 SVD(Y)=0.19
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Matrix Completion

 Many types of data naturally appear in matrix form
— signal ensembles
— distances between objects/sensor nodes
— pairwise comparisons
— user preferences (“Netflix problem”)

.--:'rll.

P i'-'--l'

X =
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Missing Data

e Often this data may be incomplete

ol
- —

I .I.Ilq.

e How can we fill in the blanks?



Low-Complexity Model

 Many large matrices obey concise models

o, e |

e Low-rank model:

r

| .Il.Elj

— columns live in a low-dimensional subspace

— any column can be written as a weighted sum of just a

few other columns

— can be factored into a product of smaller matrices



Low-Rank SVD

columns: diagonal:
left singular vectors  singular values
orthonormal positive

: R

X S :. ..r .H.: rojvs:

il
F ‘e A mm B - right singular vectors
:_ i |

= | orthonormal

rank(.X) = # of nonzero singular values
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Low-Rank Matrix Completion

e Ultimate goal

— find the matrix with the smallest rank
that agrees with the observed entries

e Difficulty
— this problem is NP-hard

e Solution

— find the matrix with the smallest nuclear norm that
agrees with the observed entries

— nuclear norm = L, norm of singular values
— convex optimization problem
— strong theory and algorithms [candes, Recht, Tao, Fazel, Ma, Gross, ...]



Theory for Low-Rank Matrix Completion

 Performance depends on coherence of matrix X

"] [ e
|
X N max column .
i norm squared max * N/rank(X)
= coherence u
<—— max row norm
squared

* Low coherence: u~1
— matrix entries well distributed
e High coherence: u ~ N/rank(X)

— matrix entries “spiky”



Sampling Complexity

e For N x N matrix with rank R and coherence pu,

# samples =~ uNRIog?(N)

— each column has = R degrees of freedom
— sampling requirement is =~ u R samples per column

e Conclusion:

— Low-rank matrices with low coherence can be
recovered from small numbers of random samples



Extension: Phase Retrieval

Suppose we collect measurements of the form
_ 2 _
Ym = [(Pm,2)|7, m=1,2,...,. M

where x is an unknown length-/N vector.

We observe only the magnitude of the linear
measurements, not the sign (or phase if complex).

— X-ray crystallography, diffraction imaging, microscopy

Difficult problem: quadratic system of equations.



Lifting Trick

e |dea: define a rank-1 matrix
*
X = xx
* Now, each quadratic measurement of x

Ym — ‘(Cbma >‘2 <¢m7 > <¢m7x>
— ¢:{n$$ ¢m
= P X = (X, omdy,)

is a linear measurement of X.



PhaselLift (2011)

[Candes, Strohmer, Voroninski]

minimize Trace(X)

subject to

ym:<X7Cbm§b:<n>, m:1,2,...

X 18 positive semidefinite

then factor X to retrieve x



Extension: Blind Deconvolution

e Recover two unknown vectors, w and x, from their
circular convolution [Ahmed, Recht, Romberg]

— assume that each vector belongs to a known subspace

e Recover spike train convolved with unknown PSF  [Chi]
— spikes are “off-grid”
— measurements are low-frequency
— assume PSF belongs to a known subspace

e Extension to non-stationary PSFs [with Yang and Tang]

— all PSFs belong to a known subspace



Conclusions

Concise models enable “filling in the blanks”
— collect less data and/or make the most of the available data

Many types of concise models

— bandlimitedness, sparsity, structured sparsity, manifolds, low-rank matrices

Algorithms must be tailored to model type

— L, minimization for sparse models

Random measurements
— incoherence ensures we don’t miss anything
— stable embedding thanks to low-dimensional geometry
— randomness convenient but not necessary

Extensions and applications

— sampling, imaging, sensor networks, accelerating computations, ...

mwakin@mines.edu mines.edu/~mwakin
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