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Abstract

Various problems involving the interaction of water waves with thin plates are reduced to hypersin-
gular boundary integral equations. Examples include scattering by submerged curved plates and
by surface-piercing plates, in two dimensions; trapping of waves by submerged plates; and scat-
tering by submerged flat plates in three dimensions. Each integral equation is solved numerically,
using an expansion-collocation method; this method is effective because it incorporates the known
edge behaviour of the solution and because it allows all hypersingular integrals to be evaluated
analytically.

1 Introduction

Many two-dimensional problems involving thin plates or cracks can be formulated as one-
dimensional hypersingular integral equations, or as systems of such equations. Examples are
potential flow past a rigid plate, acoustic scattering by a hard strip, water-wave interaction
with thin impermeable barriers, and stress fields around cracks. In general, the crack or plate
will be curved. If we parametrise the curve, we find that scalar problems can be reduced to
an equation of the form

×
∫ 1

−1

{
1

(x− t)2
+M(x, t)

}
f(t) dt = p(x) for −1 < x < 1, (1)

supplemented by two boundary conditions, which are often f(−1) = f(1) = 0. Here, f is
the unknown function, p is prescribed and the kernel M is known. The cross on the integral

1



sign indicates that it is to be interpreted as a two-sided finite-part integral of order two; the
definition is given below by eqn (19).

Most of this paper is concerned with the derivation and solution of eqn (1), in the
context of water-wave scattering by immersed thin impermeable plates. Such problems (in
two dimensions) are also considered elsewhere in this volume; but our methods are quite
independent of the geometry. We also describe some of our recent work in three dimensions;
here, the simplest problem is scattering by a submerged flat circular plate.

We start with a brief survey of the literature on scattering by thin plates, in two dimen-
sions. Previous work on this topic can be classified according to whether the depth of water
is finite or infinite, and whether the plate is completely submerged or pierces the free surface.
Moreover, most previous work assumes that the plate is flat.

The derivation of the basic integral equation is outlined in section 4. We start with the
simpler problem of scattering by a submerged cylinder whose cross-section has a non-zero
area (section 3). We use Green’s theorem and an appropriate fundamental solution, G, to
obtain an integral representation for the velocity potential, φ; standard boundary integral
equations (amenable to numerical solution via a boundary element method) are then easily
obtained. When the cross-sectional area shrinks to zero, so that the cylinder degenerates into
a thin plate, the integral equation degenerates too: this leads naturally to the introduction
of a hypersingular integral equation. Actually, this is a boundary integral equation over
the plate for [φ], the discontinuity in φ across the plate. Once the cross-sectional curve is
parametrised, the equation reduces to the standard form eqn (1).

This approach has several advantages over other methods mentioned in section 2. For
instance, the radiation condition is automatically satisfied by the choice of G. Similarly,
the behaviour of [φ] at each edge of the plate, where there are square-root zeros, can be
easily enforced. Moreover, the method is applicable to curved plates as well as to flat plates.
In fact, apart from some simple quadratures, the only approximation required is that of
a bounded function defined on a finite interval. We do this by choosing an appropriate
set of orthogonal polynomials, namely Chebyshev polynomials of the second kind, and then
using a collocation method on the governing integral equation. Similar expansion-collocation
methods have been used by Frenkel [1] and by Kaya & Erdogan [2]. It is also known that
these methods are convergent; see Golberg [3], [4] and Ervin & Stephan [5]. Having computed
an approximation to [φ], the reflection and transmission coefficients can then be calculated
directly. Several applications, published elsewhere, are described in section 9: scattering
by submerged plates (both flat and curved) and by surface-piercing plates; and trapping of
waves by submerged plates of various shapes.

We conclude with a description of how expansion-collocation methods can be developed
for certain three-dimensional problems. An appropriate set of expansion functions is iden-
tified by studying the problem of potential flow past a flat circular disc. This leads to a
good numerical method for the interaction of water waves with submerged circular plates.
For non-circular plates, we map the plate onto a circular domain and then use the previous
expansion-collocation method: it is essential to use a conformal mapping; this trick is amus-
ing, because it is widely believed that conformal mappings are only useful for two-dimensional
problems! This method is currently under development.
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2 Literature survey: two dimensions

The two-dimensional scattering of linear water waves by thin rigid plates has been treated in
several ways by many authors. One reason for this attention is that thin plates have been used
as simple models for certain floating breakwaters; Sobhani et al. [6] discuss this application
and give further references. Another reason is that thin plates can lead to boundary-value
problems that can be solved exactly; this is very unusual in linear hydrodynamics, but is
also very valuable in that such solutions provide benchmarks against which approximate
solutions can be assessed. In what follows, we only refer to previous work on scattering by
a single plate of finite length.

2.1 Infinite depth

Ursell [7] solved the problem of wave scattering by a fixed, surface-piercing, vertical plate.
He constructed the potential on each side of the plate by using an expansion theorem due
to Havelock [8]. Continuity of motion across the plane of the plate gave him an integral
equation for the horizontal velocity, which he solved exactly. The reflection and transmission
coefficients were obtained from the limiting forms of the potential at large distances from
the plate.

John [9] considered surface-piercing plates making an angle of π/2n to the horizontal,
where n is an integer. He showed that this problem can be solved by complex function
techniques. However, as n increases, the method quickly becomes unwieldy; in fact, it seems
that even the case n = 2 has not been worked out in detail.

Evans [10] considered the scattering of surface waves by a fixed, vertical plate, submerged
beneath the free surface. His method of solution is similar to that used by John, whereby
a complex potential is introduced, from which a reduced potential may be defined. The
choice of reduced potential ensures that the boundary conditions on the free surface and on
the plate take the same form for this new problem. This simplification allows the reduced
potential problem to be solved, from which the desired result follows by integration.

Burke [11] treated the problem of scattering by a fixed, submerged, horizontal plate,
using the Wiener–Hopf technique. Unfortunately, no numerical results were given.

Shaw [12] has considered the problem of scattering by a surface-piercing plate, whose
orientation is altered slightly from the vertical, and whose shape is slightly altered from
being flat. Using perturbation techniques, Shaw found that to first order, the problem is
the same as that solved by Ursell [7]. A new second-order correction is found, however,
with corresponding corrections to the reflection and transmission coefficients. See also [13]
and [14].

2.2 Finite depth

For water of constant finite depth, it is conventional to divide the fluid domain into three,
namely a finite (rectangular) domain containing the plate, and two semi-infinite domains. In
the latter, the velocity potential can be written as a series of eigenfunctions (with unknown
coefficients). In the finite domain, different methods have been used. Thus, Patarapanich [15]
used the finite element method and calculated the reflection and transmission coefficients
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for a submerged horizontal plate. The main disadvantage of this method is that it does
not readily account for the inevitable singularities at the two edges of the plate, where
inviscid theory predicts infinite velocities. Moreover, care must be taken in matching with
the eigenfunction expansions in the two semi-infinite domains, so as to satisfy the radiation
conditions and to avoid spurious reflections. Finite elements have also been used by Sobhani
et al. [6] in their study of inclined, surface-piercing plates, wherein the plate is hinged at the
sea-floor and the effects of a mooring line are also included.

For submerged horizontal plates, one can also use eigenfunction expansions within the
finite domain. This leads to the method of matched eigenfunction expansions. It has been
used by McIver [16] for scattering by moored, horizontal plates, although she also computed
the reflection and transmission coefficients for a fixed plate.

Liu & Abbaspour [17] have used a simple boundary integral equation method within the
finite domain for inclined, surface-piercing plates. They partitioned the finite domain into
two by introducing an additional boundary, extending from the lower edge of the plate to
a point on the sea-floor. They then solved Laplace’s equation in each sub-domain using
Green’s theorem and a simple (logR) fundamental solution. Again, this method does not
account for the plate-edge singularities in a natural way: special elements are introduced so
as to incorporate the expected singular behaviour.

Finally, we mention that Hamilton [18] has given some experimental results for plates at
small inclinations to the horizontal.

3 Boundary integral equations: cylinders

A cartesian coordinate system is chosen, in which y is directed vertically downwards into the
fluid, the undisturbed free surface lying at y = 0. We choose the z-axis perpendicular to the
direction of propagation of the incident wavetrain. A cylinder, lying parallel to the incident
wavecrests, is introduced. For simplicity, we assume here that the cylinder is completely
submerged below the free surface of the fluid, its submergence being independent of z. The
problem is assumed two-dimensional, by considering the cylinder to be infinitely long in the
z-direction, and the motion is taken to be simple harmonic in time. We use the assumptions
of an inviscid, incompressible fluid, and an irrotational motion, to allow the introduction of
a velocity potential

Re
{
φ(x, y) e−iωt

}
to describe the small fluid motions. The conditions to be satisfied by φ(x, y) are(

∂2

∂x2
+

∂2

∂y2

)
φ(x, y) = 0 in the fluid, D,

along with the free-surface condition

Kφ+
∂φ

∂y
= 0 on y = 0,

where K = ω2/g and g is the acceleration due to gravity. On the surface of the cylinder, S,
the normal velocity vanishes, that is

∂φ

∂n
= 0 on S;
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in general, S is a simple, closed smooth curve. The choice of a linear theory of water waves
enables us to split the total potential φ into two parts,

φ = φsc + φinc, (2)

where φinc is the known incident potential and φsc is the scattered potential. Reformulated
in terms of φsc, the boundary-value problem becomes(

∂2

∂x2
+

∂2

∂y2

)
φsc = 0 in the fluid, (3)

Kφsc +
∂φsc

∂y
= 0 on y = 0, and (4)

∂φsc

∂n
= −∂φinc

∂n
on S. (5)

The fact that φsc is due to the presence of the cylinder indicates the need for a radiation
condition on φsc, that waves travel outwards towards infinity. Mathematically, this may be
written as

∂φsc

∂r
− iKφsc → 0 as r = (x2 + y2)

1
2 →∞. (6)

In the sequel, we use capital letters P , Q to denote points in the fluid, and lower-case
letters p, q to denote points on S.

Next, we reduce the boundary-value problem for φsc to a boundary integral equation
over S. To do this, we combine an appropriate fundamental solution with an application of
Green’s theorem. We use the fundamental solution

G(P,Q) ≡ G(x, y; ξ, η) = 1
2

log{(x− ξ)2 + (y − η)2}+G1(x− ξ, y + η), (7)

where

G1(X, Y ) = − 1
2

log (X2 + Y 2)− 2Φ0(X, Y ),

Φ0(X, Y ) = ∪
∫ ∞

0
e−kY cos kX

dk

k −K
. (8)

We note that Φ0 can be computed using an expansion derived by Yu & Ursell [19]:

Φ0(X, Y ) = −e−KY {(logKR− iπ + γ) cosKX + β sinKX}

+
∞∑
m=1

(−KR)m

m!

(
1

1
+

1

2
+ · · ·+ 1

m

)
cosmβ, (9)

where γ = 0.5772 . . . is Euler’s constant and β is defined by X = R sin β and Y = R cos β.
G satisfies eqn (3) and eqn (4), and G has a logarithmic source singularity at the point

(x, y) = (ξ, η); the integration path in eqn (8) is indented below the pole of the integrand at
k = K so that G also satisfies the radiation condition at infinity. Note that G1 is non-singular
everywhere in the fluid.
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Applying Green’s theorem to φsc(P ) and G(x, y; ξ, η) ≡ G(P,Q), we find

φsc(P ) =
1

2π

∫
S

{
G(P, q)

∂φsc

∂nq
− φsc(q)

∂G(P, q)

∂nq

}
dsq, (10)

where P is any point in D and ∂/∂nq denotes normal differentiation at q on S in the direction
from S into D. This is the familiar integral representation for φsc in the fluid in terms of φsc

and ∂φsc/∂n on S; the latter is known from the boundary condition (5), whence eqn (10)
becomes

φsc(P ) =
−1

2π

∫
S

{
G(P, q)

∂φinc

∂nq
+ φsc(q)

∂G(P, q)

∂nq

}
dsq. (11)

Letting P → p, a point on S, we obtain

πφsc(p) +
∫
S
φsc(q)

∂G(p, q)

∂nq
dsq = −

∫
S
G(p, q)

∂φinc

∂nq
dsq,

which is a well-known boundary integral equation for φsc on S. This equation is uniquely
solvable for all values of K. Once solved, φsc is given everywhere in the fluid by eqn (11).

4 Boundary integral equations: plates

Let the cross-section of the cylinder in the previous section shrink, so that the cylinder
degenerates into a thin rigid plate. Thus, S degenerates into Γ, a finite, simple, smooth arc.
Γ has two sides, Γ+ and Γ−. The boundary-value problem for φsc becomes: solve Laplace’s
equation (3) in D, subject to the free-surface condition (4), the radiation condition (6) and
the boundary condition

∂φsc

∂n±
= −∂φinc

∂n±
on Γ±, (12)

where ∂/∂n± denote normal differentiation at a point on Γ± in the direction from Γ± into D;
in addition, we require that φsc be bounded in the neighbourhood of the two ends of Γ.

The velocity potential is discontinuous across Γ: define

[φ(p)] = φ(p+)− φ(p−),

where p± are corresponding points on Γ±. However, the potential of the incident wave is
continuous across the plate, so that

[φ(p)] = [φsc(p)]. (13)

Hence, the integral representation (11) reduces to

φsc(P ) =
−1

2π

∫
Γ
[φ(q)]

∂G(P, q)

∂n+
q

dsq. (14)

This equation states that φsc(P ) can be represented as a double-layer potential, that is, as
a distribution of normal dipoles over Γ. Note that the incident potential does not appear
explicitly in eqn (14).
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To use the integral representation (14), we have to find [φ]. If we adopt the standard
approach, that is, we let P go to p+ and p− in turn, and subtract the result, we obtain the
nugatory result (13). Instead, we impose the boundary condition (12) on Γ+, giving

1

2π

∂

∂n+
p

∫
Γ
[φ(q)]

∂G(p+, q)

∂n+
q

dsq =
∂φinc

∂n+
p

, p+ ∈ Γ+.

A similar equation is obtained if we apply the boundary condition on Γ−; henceforth, we
shall delete the superscript +, whence

1

2π

∂

∂np

∫
Γ
[φ(q)]

∂G(p, q)

∂nq
dsq =

∂φinc

∂np
, p ∈ Γ. (15)

This is an integro-differential equation for [φ(q)], q ∈ Γ. It is to be solved subject to the
conditions

[φ] = 0 at the two edges of Γ; (16)

physically, because the plate is completely submerged, we require that the discontinuity in
pressure across the plate tends to zero as we approach each edge of the plate.

It is tempting simply to take the normal derivative at p in eqn (15) under the integral
sign, but this leads to a non-integrable integrand. The conventional way of dealing with this
difficulty is to regularize eqn (15); various possibilities are described in [20, 21]. Instead,
we adopt a more direct approach. Thus, it can be proved [20] that interchanging the order
of integration and normal differentiation at p in eqn (15) is legitimate, provided that the
integral is then interpreted as a finite-part integral. By adopting this procedure, we find

1

2π
×
∫

Γ
[φ(q)]

∂2

∂np∂nq
G(p, q) dsq =

∂φinc

∂np
, p ∈ Γ, (17)

which is to be solved for [φ], subject to eqn (16). The cross on the integral sign indicates
that it is to be interpreted as a two-sided finite-part integral of order two. We digress in the
next section, so as to discuss such integrals.

5 Finite-part integrals

Let f be a function of single variable, so that f(t) is defined for a ≤ t ≤ b. We shall define
the Cauchy principal-value integral and the Hadamard finite-part integral. Related integrals
and references are given in [20].

5.1 Cauchy principal-value integral

Assume that f is a Hölder-continuous function, f ∈ C0,β (such functions are smoother
than merely continuous functions, but they need not be differentiable). Then, the Cauchy
principal-value integral of f is defined by

−
∫ b

a

f(t)

x− t
dt = lim

ε→0

{∫ x−ε

a

f(t)

x− t
dt+

∫ b

x+ε

f(t)

x− t
dt

}
.
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If we suppose that f is smoother, so that f ′ is continuous, the Cauchy principal-value integral
can be regularized:

−
∫ b

a

f(t)

x− t
dt = f(a) log (x− a)− f(b) log (b− x) +

∫ b

a
f ′(t) log |x− t| dt.

If f is smoother still, so that f ′ ∈ C0,β, the Cauchy principal-value integral can be differen-
tiated:

d

dx
−
∫ b

a

f(t)

x− t
dt =

f(a)

x− a
+

f(b)

b− x
+ −
∫ b

a

f ′(t)

x− t
dt. (18)

5.2 Hadamard finite-part integral

Assume that f ′ ∈ C0,β, that is, f ∈ C1,β. Then, the two-sided Hadamard finite-part integral
of order two is defined by

×
∫ b

a

f(t)

(x− t)2
dt = lim

ε→0

{∫ x−ε

a

f(t)

(x− t)2
dt+

∫ b

x+ε

f(t)

(x− t)2
dt− 2f(x)

ε

}
. (19)

Again, this integral can be regularized:

×
∫ b

a

f(t)

(x− t)2
dt = − f(a)

x− a
− f(b)

b− x
− −
∫ b

a

f ′(t)

x− t
dt. (20)

Comparing eqn (18) and eqn (20), we obtain

d

dx
−
∫ b

a

f(t)

x− t
dt = −×

∫ b

a

f(t)

(x− t)2
dt; (21)

thus, the differentiation can be taken under the integral. Note that one could take eqn (21)
as the definition of the finite-part integral on the right-hand side.

Finite-part integrals have some unexpected behaviour. For example, by taking f ≡ 1,
a = −1, b = 1 and x = 0, we find (from eqn (20)) that

×
∫ 1

−1

dt

t2
= −2;

the integrand is positive but the integral is negative!

6 The hypersingular integral equation

Hypersingular integral equations, such as eqn (17), are unfamiliar. However, they arise nat-
urally for many problems involving thin bodies upon which a Neumann boundary condition
is imposed. They can be treated directly, or they can be rewritten in a more familiar form
by a process of regularization; this may lead to a different integro-differential equation or
to an equation involving tangential derivatives of [φ] (which are singular at the edges of Γ).
However, the hypersingular integral equation (17) is quite general: it is valid for water of
constant finite depth and in three dimensions, with an appropriate choice for G. Therefore, it
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is worthwhile to develop general methods for their treatment, rather than relying on special
methods that only work for special geometries.

Before developing such a method, it is convenient to first find a general expression for
the kernel in our particular equation (17). This can then be used for any choice of Γ. Denote
the unit normals at p and q ∈ Γ by n(p) = (np1, n

p
2) and n(q) = (nq1, n

q
2), respectively. Then,

apply the formula

∂2G

∂np∂nq
= np1n

q
1

∂2G

∂x∂ξ
+ np1n

q
2

∂2G

∂x∂η
+ np2n

q
1

∂2G

∂y∂ξ
+ np2n

q
2

∂2G

∂y∂η
.

After differentiating, and rearranging, we find that

∂2G

∂np∂nq
= −N

R2
+

2Θ

R4
+

∂2G1

∂np∂nq
(22)

where

∂2G1

∂np∂nq
= 2(np1n

q
2 − n

p
2n

q
1)

{
K
∂Φ0

∂X
− XY

(X2 + Y 2)2

}
−NK(X, Y ),

K(X, Y ) =
Y 2 −X2

(X2 + Y 2)2 +
2KY

X2 + Y 2
+ 2K2Φ0(X, Y ), (23)

Φ0 is defined by eqn (8), X = x− ξ, Y = y + η, N = n(p) · n(q), Θ = (n(p) · R)(n(q) · R),
R = (x− ξ, y − η) and R = |R|.

The third term on the right-hand side of eqn (22) comes from differentiating G1 in eqn (7),
and so is non-singular. The first two terms on the right-hand side of eqn (22) come from
differentiating the basic singularity, logR:

∂2

∂np∂nq
logR = − N

R2
+

2Θ

R4

= − 1

R2
+

n(p) · (n(p)− n(q))

R2

−
(
∂

∂np
logR

)(
∂

∂nq
logR

)
;

only the term −1/R2 is singular — it displays the characteristic hypersingularity in two
dimensions; the other terms are continuous for twice-differentiable curves Γ. To see this,
and to convert our hypersingular integral equation (17) into the standard form (1), we
parametrise the curve Γ.

Assume that Γ is defined by

Γ = {(x, y) : x = x(s), y = y(s), −1 ≤ s ≤ 1} .

Thus, the point p ≡ (x, y) on Γ is parametrised with the parameter s whilst q ≡ (ξ, η) has
parameter t. Then,

n(q) = (−y′(t), x′(t))/v(t)
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where v = {(x′)2 + (y′)2}1/2, and

R = {(x(t)− x(s))2 + (y(t)− y(s))2}1/2

∼ |t− s| v as |t− s| → 0.

Expanding for small |t− s|, we find that

∂

∂np
logR ∼ x′y′′ − x′′y′

2v3
,

n(p)− n(q) ∼ (t− s)v−3(x′y′′ − x′′y′) (x′, y′).

The first of these results is well known from classical potential theory (see, for example,
Smirnov [22, p. 595]); the second shows that

n(p) · (n(p)− n(q)) = O((s− t)2) as |t− s| → 0.

As dsq = v(t) dt, we can write eqn (17) as

×
∫ 1

−1

f(t)

(s− t)2
dt+

∫ 1

−1
f(t)M(s, t) dt = p(s), −1 < s < 1, (24)

where f(t) = [φ(q(t))] is our new unknown function representing the discontinuity in φ across
the plate at the point q,

M(s, t) = − 1

(s− t)2
+ v(t) v(s)

{
N
R2
− 2Θ

R4
− ∂2G1

∂np∂nq

}
(25)

and

p(s) = −2πv(s)
∂φinc

∂np
. (26)

Note that we have isolated the hypersingular part in the first term on the left-hand side of
eqn (24); the other term is an ordinary non-singular integral. For submerged plates, the
equation (24) is to be solved subject to

f(±1) = 0. (27)

7 Method of solution

In order to solve the hypersingular integral equation (24), numerically, we use an expansion-
collocation method. In such a method, one expands the unknown function as

f(t) = w(t)
N∑
n=0

anfn(t) (28)

where w is a prescribed weight function, {fn} is a set of expansion (basis) functions, and
an are unknown coefficients; one then substitutes eqn (28) into the integral equation and
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determines the coefficients by collocating at N + 1 points in the interval −1 < s < 1. It
remains to choose these points, the weight function and the expansion functions.

Now, it can be shown [23] that any solution of eqn (24) that satisfies eqn (27) actually
behaves as f(t) ∼

√
1∓ t f± as t → ±1, where f± are constants. We build this into our

numerical procedure for solving eqn (24) by choosing

w(t) =
√

1− t2.

This ensures that the edge conditions are satisfied for any bounded functions fn.
Next, consider the hypersingular part of eqn (24). Thus, consider

1

π
×
∫ 1

−1

g(t)

(x− t)2
dt = h(x), −1 < x < 1 (29)

(the factor 1/π is inserted for convenience). This is known as the dominant equation. Its
general solution (for sufficiently smooth h) is given in [24] as

g(x) =
1

π

∫ 1

−1
h(t) log

 |x− t|
1− xt+

√
(1− x2)(1− t2)

 dt+
A+Bx√

1− x2
, (30)

where A and B are arbitrary constants. The first term on the right-hand side of eqn (30) is
a particular solution of eqn (29), for the given function h. The second term is the general
solution of the homogeneous form of eqn (29) (that is, with h ≡ 0). Thus, for a unique
solution of eqn (29), we need two supplementary conditions on g; these are often taken to
be eqn (27) whence A = B = 0 in eqn (30).

Let us take g(t) =
√

1− t2 Un(t), where Un is a Chebyshev polynomial of the second
kind, defined by

Un(cos θ) =
sin(n+ 1)θ

sin θ
.

If we combine formula (22.13.4) from Abramowitz & Stegun [25], namely

−
∫ 1

−1

√
1− t2 Un(t)

x− t
dt = π Tn+1(x)

(where Tn is a Chebyshev polynomial of the first kind), with eqn (21), we obtain

1

π
×
∫ 1

−1

√
1− t2 Un(t)

(x− t)2
dt = −(n+ 1)Un(x), (31)

whereby g(t) =
√

1− t2 Un(t) is the exact bounded solution of eqn (29) when h(x) = −(n+
1)Un(x), subject to the edge conditions (27).

Since the Chebyshev polynomials of the second kind form a complete set over the interval
[−1, 1], they are a good choice for the expansion functions fn. Thus, we approximate f(t)
as follows:

f(t) ∼=
√

1− t2
N∑
n=0

an Un(t) ≡ fN(t), (32)
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say, where N is finite and the unknown coefficients an are to be found. Substituting eqn (32)
into eqn (24), we find

N∑
n=0

anAn(s) = p(s), −1 < s < 1, (33)

where p(s) is defined by eqn (26) and

An(s) = −π(n+ 1)Un(s) +
∫ 1

−1

√
1− t2 Un(t)M(s, t) dt.

To find the unknown coefficients, we choose a family of functions ψj(s), where j = 0, 1, . . . , N ,
called trial functions. Multiplying both sides of eqn (33) by ψj(s) and integrating from −1
to 1 leads to the Petrov–Galerkin system

N∑
n=0

Ajnan = pj, j = 0, 1, . . . , N,

where

Ajn =
∫ 1

−1
An(s)ψj(s) ds and pj =

∫ 1

−1
p(s)ψj(s) ds.

One choice for ψj(s) is
√

1− s2 Uj(s), leading to a classical Galerkin method; Golberg [3],
[4] has analysed the convergence of this method. A more pragmatic choice, which avoids
double integrals, is ψj(s) = δ(s − sj), where sj (j = 0, 1, . . . , N) are points with |sj| < 1.
This yields

N∑
n=0

anAn(sj) = p(sj), j = 0, 1, . . . , N, (34)

which is a straightforward collocation scheme, with collocation points sj. A suitable set of
collocation points is

sj = cos

(
(j + 1)π

N + 2

)
, j = 0, 1, . . . , N ; (35)

these are the zeros of UN+1(s). This is expected to be a good choice, since, if the coefficients an
are decaying rapidly, the error in eqn (32) is roughly proportional to UN+1(s); see [26, p. 228].
Another possible choice is

sj = cos

(
(2j + 1)π

2N + 2

)
, j = 0, 1, . . . , N ; (36)

these are the zeros of TN+1(s). Golberg [3], [4] has shown that eqn (35) and eqn (36) are
both good choices: he has proved that they both yield uniformly-convergent methods,

max
−1≤t≤1

|f(t)− fN(t)|√
1− t2

→ 0 as N →∞;

see also [5]. The rate of convergence depends on the smoothness of the kernel M in eqn (24),
which depends in turn on the smoothness of the plate. If the plate is infinitely smooth and
completely submerged, the convergence is exponential, since M is infinitely differentiable.
In all of our numerical computations, we have used the set (36).

In summary, the expansion (32) incorporates the known behaviour of f near the two ends
of the plate and it enables the dominant hypersingular integral to be evaluated analytically;
this leads to an effective numerical method.
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8 Reflection and transmission coefficients

When an incident wave is scattered by a fixed body, some of the wave energy will be trans-
mitted past the body, and some will be reflected back. To quantify this, we introduce the
complex numbers R and T , which are known as the reflection and transmission coefficients,
respectively. The magnitudes of R and T are related to the amplitude of the reflected and
transmitted waves, respectively. Similarly, the arguments of R and T correspond to a phase
shift in the scattered waves. For an incident wave travelling towards x = +∞, given by

φinc = e−Ky+iKx, (37)

R and T are defined by the asymptotic behaviour of φ as |x| → ∞. More precisely, we have

φ(x, y) ∼
{
T e−Ky+iKx as x→ +∞
e−Ky+iKx +R e−Ky−iKx as x→ −∞.

From eqn (2), we can define R and T solely in terms of the scattered potential,

φsc(x, y) ∼
{

(T − 1) e−Ky+iKx as x→ +∞
R e−Ky−iKx as x→ −∞. (38)

Now, φsc is given by eqn (14). Since

G(x, y; ξ, η) ∼ −2πi e−K(y+η)±iK(x−ξ) as x→ ±∞,

the integral representation eqn (14) gives

φsc(x, y) ∼ i e−Ky±iKx
∫

Γ
[φ(ξ, η)]

∂

∂nq
e−Kη∓iKξ dsq as x→ ±∞. (39)

Simple comparison of eqn (38) and eqn (39) now yields the formulae

R = i
∫

Γ
[φ(q)]

∂

∂nq
e−Kη+iKξ dsq,

T − 1 = i
∫

Γ
[φ(q)]

∂

∂nq
e−Kη−iKξ dsq.

From these formulae, we see that once the discontinuity in φ across the plate has been found,
the values of R and T may be found directly, without having to find φsc everywhere in the
fluid first. Thus, parametrising as before, we find that R and T are given by

R = K
∫ 1

−1
f(t) (y′(t)− ix′(t)) e−Ky(t)+iKx(t) dt, (40)

T − 1 = −K
∫ 1

−1
f(t) (y′(t) + ix′(t)) e−Ky(t)−iKx(t) dt; (41)

These formulae may simplify for particular geometries, once the expansion (32) has been
made for f .
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It is known that R and T satisfy certain relations, for any scatterer. Let R+ and T+

be the reflection and transmission coefficients when the incident wave propagates towards
x = +∞. Similarly, define R− and T− for incident waves propagating towards x = −∞.
Then

T+ = T− = T , say,

|R+| = |R−| = |R|, say,

|R|2 + |T |2 = 1 and T R+ + T R− = 0,

where the overbar denotes complex conjugation. These relationships are well known [27] and
can be used as an independent check on the method of solution employed.

9 Results

The method developed above has been used for several problems. Some of the results ob-
tained are described next.

9.1 Submerged flat plate

For a submerged flat plate of length 2a, inclined at an arbitrary angle α to the vertical, we
can take

x(t) = at sinα, y(t) = d+ at cosα, −1 ≤ t ≤ 1,

where |α| ≤ π/2; d is the submergence of the mid-point of the plate, and satisfies d >
a cosα to ensure that the plate is completely submerged. It follows that n(p) = n(q) =
(− cosα, sinα), and then eqn (25) simplifies to

M(s, t) = a2K(X, Y ),

where X = a(s− t) sinα and Y = a(s+ t) cosα + 2d. Moreover, if the incident potential is
given by eqn (37), then

p(s) = 2πiKa exp {−K(d+ as cosα) + i(Kas sinα− α)} .

The formulae for the reflection and transmission coefficients, eqn (40) and eqn (41),
respectively, simplify:

R = Ka e−Kd−iα
N∑
n=0

an
[
Ln − Ln+2

]
,

T − 1 = −Kae−Kd+iα
N∑
n=0

an [Ln − Ln+2] ,

where Ln = (π/2)(−1)nIn(Kaeiα) and In is a modified Bessel function.
In [28], we have computed |R| for a submerged vertical plate (using N = 15), and

compared our solution with the exact analytic solution obtained by Evans [10]. Excellent
agreement was found.
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We are not aware of any previous numerical results for a submerged horizontal plate, in
deep water. However, there are results for water of finite depth, due to Patarapanich [15]
and McIver [16]. Again, we found good agreement with their results when their water is
sufficiently deep [28]. We remark that the main feature of the results for horizontal plates is
the occurrence of zeros of the reflection coefficient as a function of frequency.

We have also obtained results for plates inclined at various angles [28]. In particular,
we have considered plates inclined at small angles to the horizontal, δ. We found that the
zeros of R for horizontal plates (δ = 0) disappear as soon as δ becomes positive. Thus, these
zeros for horizontal plates probably cannot be exploited in practice, for they are destroyed
by small changes in the angle of inclination.

9.2 Submerged curved plate

For a submerged curved plate, in the shape of a circular arc of radius b, we can take the
parametrisation as

x(t) = b sin tϑ, y(t) = d+ b− b cos tϑ, −1 ≤ t ≤ 1.

Thus, the plate length is 2a = 2bϑ, where |ϑ| < π, and d is the submergence of the mid-point
of the plate. It follows that

n(p) = (np1, n
p
2) = (− sin sϑ, cos sϑ) ,

n(q) = (nq1, n
q
2) = (− sin tϑ, cos tϑ) ,

X = b (sin sϑ− sin tϑ) , Y = 2d+ 2b− b (cos sϑ+ cos tϑ) ,

N = cos (s− t)ϑ, np1n
q
2 − n

p
2n

q
1 = − sin (s− t)ϑ,

R = b (sin sϑ− sin tϑ, cos tϑ− cos sϑ) ,

Θ = −b2 [1− cos (s− t)ϑ]2 , R2 = 2b2 [1− cos (s− t)ϑ] .

Hence, the kernel M is given by

M(s, t) =
ϑ2

4

(
1

sin2 [(s− t)ϑ/2]
− 4

(s− t)2 ϑ2

)

+ 2b2ϑ2

{
K
∂Φ0

∂X
− XY

(X2 + Y 2)2

}
sin [(s− t)ϑ]

+ b2ϑ2K(X, Y ) cos [(s− t)ϑ] .

If the incident potential is given by eqn (37), the function p on the right-hand side of the
integral equation (24) is given by

p(s) = 2πbϑKe−Kd+isϑ exp
[
−Kb

(
1− eisϑ

)]
.

In [29], we have computed |R| as a function of Ka for various ϑ. Comparisons with
our previous results for horizontal flat plates [28] (this corresponds to letting ϑ → 0 whilst
keeping a non-zero) showed that there can be abrupt changes in the value of |R| for small
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changes in ϑ. Increasing ϑ further (for the same value of d/a) enabled us to approach the
geometry of a closed circular cylinder; this corresponds to fixing the length of the plate and
then bending it until it forms a circle. We found that |R| almost vanished in this limit,
for all frequencies. This behaviour is expected, as Dean [30] first showed that R ≡ 0 for
a submerged circular cylinder at any frequency. This result was subsequently proved by
Ursell, [31] using a rigorous argument. We have also obtained results by fixing the radius b,
and then varying ϑ; thus, the plate length increases and also closes up to a circular cylinder
as ϑ is increased. Again, we observed the onset of zero reflection as the plate approaches a
complete circle.

9.3 Surface-piercing flat plate

This problem is more difficult, because of the free-surface intersection. It is still governed by
the same hypersingular integral equation for [φ], eqn (17), and [φ] has the same square-root
zero at the submerged end of the plate. However, where the plate meets the free surface,
there is more ambiguity. For example, it may be possible to permit [φ] to have a logarithmic
singularity at the free surface. This may be used as a model for wave breaking [32]. We shall
not pursue this course here, but will assume that [φ] approaches a constant as we approach
the free surface; this is in accord with the exact solution of Ursell [7] for a vertical plate. It
is worth remarking that similar difficulties arise in other fields, such as when a crack meets
the traction-free surface of an elastic solid [33].

We parametrise the geometry in a slightly different way, using

x(t) = a(2t− 1) sinα, y(t) = 2at cosα, 0 ≤ t ≤ 1,

where 2a is the length of the plate and α is the angle made by the plate to the vertical.
Thus, t = 0 corresponds to the point where the plate meets the free surface. We assume
that |α| < π/2, so that the plate does not lie in the free surface; the problem of scattering
by a plate lying in the free surface is known as the dock problem. With this parametrisation,
we find that eqn (17) can be written as

×
∫ 1

0

f(t)

(s− t)2
dt+ 4a2

∫ 1

0
f(t)K(X, Y ) dt = p(s), 0 < s < 1, (42)

where K is defined by eqn (23), X = 2a(s− t) sinα, Y = 2a(s+ t) cosα and

p(s) = 8πiKa exp [−2Kas cosα + i(Ka(2s− 1) sinα− α)] .

The kernel can be simplified [29]; the result is that eqn (42) can be rewritten as

×
∫ 1

0

f(t)

(s− t)2 dt +
e2iα

2

∫ 1

0

f(t)

(z + t)2 dt+
e−2iα

2

∫ 1

0

f(t)

(z + t)2 dt

+ 2Kaeiα
∫ 1

0

f(t)

z + t
dt+ 2Kae−iα

∫ 1

0

f(t)

z + t
dt

+ 8(Ka)2
∫ 1

0
f(t)Φ0 (X, Y ) dt = p(s), (43)
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where z = se2iα and z = se−2iα. In view of the restriction on α (|α| < π/2), we see that
−π < arg z < π. From eqn (43), we can see that as we collocate towards the free surface,
the four integrals involving z and z become singular; nevertheless, they can be calculated
accurately using certain recurrence relations given below. The singular behaviour at s = 0
should also be compared with the regular behaviour of p(s); the left-hand side of eqn (43)
will only be regular at s = 0 if f(t) has a certain particular behaviour as t→ 0. Thus, it is
known that, for a plate of unit length, f(t) has the asymptotic expansion [34]

f(t) ∼ f0(1−Kt secα) + fδt
δ + 1

4
f0K

2t2 sec2 α as t→ 0, (44)

where f0 and fδ are constants and δ = 2π/ (π + 2α). The approximation (44) was derived
for |α| < π/2, α 6= 0; for α = 0 (the vertical plate) we have [23]

f(t) ∼ f0 (1−Kt) + (2/π) (Kv0 + v1) t2 log t+ f2t
2 as t→ 0,

where f0, v0, v1 and f2 are all constants (the logarithmic term is absent for a regular incident
wave).

What is the best way of dealing with this problem? Is it possible to incorporate the
known behaviour of f(t), eqn (44), into the solution of the problem? This would give a set
of constraints to be imposed on the unknown coefficients in any Chebyshev expansion used.
However, this would also change the behaviour of the solution away from the point t = 0,
and as such may not be satisfactory. In practice, it was decided not to try and impose any
restriction on f(t), other than the square-root behaviour at t = 1 and the boundedness at
t = 0. It turns out that this approach is both simple and effective, probably because the
singularity is rather weak (its effects are captured adequately by the expansion-collocation
procedure). Thus, we used an identical expansion for the discontinuity in potential across
the plate as that used previously for submerged plates, namely eqn (32); at the free-surface
intersection point (t = 0), f has a constant value,

f(0) =
[N/2]∑
n=0

a2n (−1)n,

where [x] represents the integer part of x. Substituting the expansion for f(t) into eqn (42)
gives

N∑
n=0

anAn(s) = p(s), 0 < s < 1,

where

An(s) = Ln(s) + 1
2
e2iαLn(−z) + 1

2
e−2iαLn(−z)

− 2KaeiαIn(−z)− 2Kae−iαIn(−z)

+ 8(Ka)2
∫ 1

0

√
1− t2 Un(t)Φ0 (X, Y ) dt, (45)

In(z) = −
∫ 1

0

√
1− t2 Un(t)

z − t
dt (46)

Ln(z) = ×
∫ 1

0

√
1− t2 Un(t)

(z − t)2 dt; (47)
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We evaluate the integrals (46) and (47) using recurrence relations which are readily derived
from a known recurrence relation for Un(t). Thus,

In+1 = −In−1 + 2zIn −
(

1

n
+

1

n+ 2

)
sin

(
nπ

2

)
, for n ≥ 1,

where I1 = 2zI0 − 1
2
π and

I0 = 1 +
zπ

2
+
√

1− z2 log

(
z

1 +
√

1− z2

)
.

Similarly, Ln can be determined from In, using

Ln+1 = −Ln−1 + 2zLn − 2In, for n ≥ 1,

with L1 = 2zL0 − 2I0 and

L0 = −π
2

+
z√

1− z2
log

(
z

1 +
√

1− z2

)
− 1

z
.

The remaining integral in eqn (45) is well behaved as s→ 0, and is evaluated using the
expansion for Φ0(X, Y ), eqn (9).

It remains to specify the collocation points. Previously, we used the collocation points sj
defined by eqn (36); these points lie in the range −1 < sj < 1. Now, we require collocation
points in the range 0 < sj < 1. Therefore, we apply the simple transformation sj →
(sj + 1) /2 to eqn (36), giving us the points

sj =
1

2

{
cos

(
(2j + 1) π

2N + 2

)
+ 1

}
, j = 0, 1, . . . , N.

With this choice, we obtain the linear system of equations (34).
We have used the method outlined above to compute the reflection and transmission

coefficients, for various angles of inclination to the vertical, α [29]. We found excellent
agreement with Ursell’s exact solution for a vertical barrier (α = 0) [7].

We have also explored what happens as the plate becomes horizontal (α → π/2), so
that there is a narrow wedge-shaped region above the plate: we found that the graph of |R|
against Ka is composed of a series of spikes superimposed on an underlying smooth curve.
The latter was identified as the reflection coefficient for a finite dock (where the plate lies
in the free surface), whereas the spikes are clearly due to a resonance effect. (We solved
the dock problem, numerically, by solving a well-known Fredholm integral equation of the
second kind (with a logarithmic kernel) for the boundary values of φsc on the dock [34], [35].)
It should be possible to give an asymptotic analysis of this interesting phenomenon, but we
have not pursued this.

9.4 Trapping by submerged plates

Surface water waves can be trapped by a thin plate submerged in deep water. The corre-
sponding boundary-value problem is similar to that for scattering by the plate; the differences
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are: Laplace’s equation is replaced by the modified Helmholtz equation

∂2φ

∂x2
+
∂2φ

∂y2
− l2φ = 0, (48)

where l is a positive constant; the boundary condition on the plate is homogeneous,

∂φ

∂n
= 0 on Γ;

and φ is required to vanish (exponentially) as |x| → ∞. In general, this homogeneous prob-
lem has only the trivial solution. However, it does have non-trivial solutions for certain
choices of the parameters; in particular, it is necessary that l > K = ω2/g. The search for
these solutions can be reduced to finding non-trivial solutions of a homogeneous, hypersingu-
lar integral equation for [φ]. This equation is precisely eqn (17), except that the right-hand
side is identically zero and a different fundamental solution G is required; the appropriate
singular solution of eqn (48) is [36]

G(P,Q) ≡ G(x, y; ξ, η) = K0

(
l
√

(x− ξ)2 + (y − η)2

)
+G1(x− ξ, y + η)

where K0 is a modified Bessel function,

G1(X, Y ) = K0

(
l
√
X2 + Y 2

)
+ 2 cot β G(X, Y ),

G =
∫ ∞

0

sin β

coshµ− cos β
e−lY coshµ cos (lX sinhµ) dµ

and, since l > K, we have introduced a new variable β, defined by K = l cos β.
We have used the expansion-collocation method to solve the hypersingular integral equa-

tion, for plates of various shapes. The method yields a homogeneous matrix equation for the
unknown coefficients; a non-trivial solution is then implied by the vanishing of the determi-
nant. Our work [37] was motivated by a paper of Linton & Evans [38]. They considered
a submerged, horizontal, flat plate in water of finite depth, and used a numerical method
based on matched eigenfunction expansions. They found strong numerical evidence for the
existence of trapped modes above such a plate. In [37], we assumed deep water (this assump-
tion could be relaxed by using an appropriate G), but allowed the plate to have different
orientations; we also considered curved plates. We were able to confirm the results of Linton
& Evans [38] for horizontal flat plates; various modes were found. Then, we followed these
modes as the geometry was altered, either by rotating the plate or deforming the plate into
the arc of a circle. In particular, as the arc approached a complete circle, we found agree-
ment with the corresponding modes computed by McIver & Evans [39] for a circular cylinder
(they used a multipole method, as devised by Ursell [36]). This agreement at both limits
of the deformation (horizontal flat plate and solid circular cylinder), using three different
numerical methods, suggests that the numerical results obtained using the hypersingular
integral equation are correct.

We remark that the scattering problem for waves at oblique incidence to the plate can
be solved in a similar way; this problem has l < K.
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10 Three dimensions

Three-dimensional problems, in which water waves interact with thin plates, are also of
interest. The simplest problems involve circular discs. Dock problems, where the disc is in
the free surface, have been treated by a number of authors: [40]–[45]. Such problems can
be reduced to Fredholm integral equations of the second kind over the wetted surface of the
disc.

If the circular disc, Ω, is submerged, we can reduce the scattering or radiation problems
to hypersingular integral equations over Ω. To formulate the basic scattering problem, it is
convenient to introduce cartesian coordinates Oxyz, where z is directed vertically downwards
so that z = 0 is the mean free surface. Then, with a given incident potential φinc, the scattered
potential φsc must satisfy(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
φsc = 0 in the fluid,

Kφsc +
∂φsc

∂z
= 0 on z = 0, and

∂φsc

∂n
= −∂φinc

∂n
on Ω; (49)

in addition, φsc must satisfy a radiation condition and be bounded everywhere.
The basic ingredient is the three-dimensional wave source, defined by

G(P,Q) ≡ G(x, y, z; ξ, η, ζ) =
1√

R2 + (z − ζ)2
+G1(x− ξ, y − η, z + ζ),

where R =
√

(x− ξ)2 + (y − η)2,

G1 =
1√

R2 + (z + ζ)2
+ 2K ∪

∫ ∞
0

e−k(z+ζ) J0(kR)
dk

k −K

and J0 is a Bessel function. Then, an application of Green’s theorem gives the integral
representation

φsc(P ) =
1

4π

∫
Ω

[φ(q)]
∂G(P, q)

∂n+
q

dsq

for φsc as a distribution of normal dipoles over Ω. Application of the boundary condition (49)
yields

1

4π

∂

∂np

∫
Ω

[φ(q)]
∂G(p, q)

∂nq
dsq = − ∂φinc

∂np
, p ∈ Ω,

an integro-differential equation for [φ(q)], q ∈ Ω. It is to be solved subject to the edge
condition

[φ] = 0 on ∂Ω, (50)

where ∂Ω is the boundary of Ω.
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Proceeding as in the two-dimensional case, we interchange the order of normal differen-
tiation at p and integration over Ω to give

1

4π
×
∫

Ω
[φ(q)]

∂2

∂np∂nq
G(p, q) dsq = − ∂φinc

∂np
, p ∈ Ω, (51)

which is to be solved for [φ], subject to eqn (50). The integral is to be interpreted as a
finite-part integral.

10.1 Finite-part integrals

The hypersingular integral in eqn (51) can be defined in several equivalent ways. Let Ω
be a bounded region in the xy-plane. Then, for a sufficiently smooth function w (we need
w ∈ C1,α), one natural definition in the context of boundary-value problems is

×
∫

Ω
w(ξ, η)

dΩ

R3
= lim

z→0

∂

∂z

∫
Ω
w(ξ, η)

lim
ζ→0

∂

∂ζ

 1√
R2 + (z − ζ)2

 dΩ,

where dΩ = dξ dη. Another (cf. eqn (19)) is

×
∫

Ω
w(ξ, η)

dΩ

R3
= lim

ε→0

{∫
Ω\Ωε

w(ξ, η)
dΩ

R3
− 2πw(x, y)

ε

}
,

where Ωε is a small disc of radius ε centred at the singular point (x, y). For more information
on hypersingular integrals over surfaces, see [46] and [47].

11 Potential flow past a flat circular disc

So far, we have not exploited the fact that Ω is a flat circular disc; indeed, the hypersingular
integral equation (51) is valid when Ω is any smooth open bounded surface. We could solve
the integral equation, numerically, using a boundary element method. However, motivated
by the efficacy of the expansion-collocation method for one-dimensional integral equations,
we seek to develop a similar method for two-dimensional equations.

We start by assuming that Ω is a circular disc of radius a. Moreover, we concentrate on
the hypersingularity by ignoring free-surface effects, so that, physically, we consider potential
flow past the disc. Thus, for a disc in the xy-plane, the governing equation is

1

4π
×
∫

Ω
w(ξ, η)

dΩ

R3
= p(x, y), (x, y) ∈ Ω,

where w = [φ] and p(x, y) is known; it is to be solved subject to w = 0 on ∂Ω. Introduce
plane polar coordinates (r, θ), so that x = r cos θ, y = r sin θ and

Ω = {(r, θ) : 0 ≤ r < a, −π ≤ θ < π}.

Suppose, for simplicity, that the incident flow is symmetric about θ = 0 so that we can write

p(x, y) =
∞∑
n=0

pn(r/a) cosnθ.
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Then, w has a similar expansion,

w(x, y) = a
∞∑
n=0

wn(r/a) cosnθ.

It is known that wn and pn are related by the formula

wn(r) = − 4

π
rn
∫ 1

r

1

t2n
√
t2 − r2

∫ t

0

pn(s) sn+1

√
t2 − s2

ds dt (52)

for n = 0, 1, 2, . . .; see [48]. This formula simplifies if we expand pn as

pn(r) = rn
∞∑
j=0

Snj
C
n+1/2
2j+1 (

√
1− r2)√

1− r2
,

where the coefficients Snj are known and Cλ
m(x) is a Gegenbauer polynomial of degree m and

index λ [49, §10.9]; these polynomials are orthogonal and satisfy∫ 1

0

r2m+1

√
1− r2

C
m+1/2
2j+1 (

√
1− r2)C

m+1/2
2k+1 (

√
1− r2) dr = hmj δjk,

where δij is the Kronecker delta and hmj is a known constant. It follows from eqn (52) that

wn(r) = rn
∞∑
j=0

W n
j C

n+1/2
2j+1 (

√
1− r2),

where the coefficients W n
j are given by

W n
j = −Snj

(n+ j)! j!

Γ(n+ j + 3/2) Γ(j + 3/2)
.

This result was obtained by Krenk [50]; see also [51]. It can also be expressed in terms
of associated Legendre functions or in terms of Jacobi polynomials; see [52] for further
references.

The formulae above suggest introducing the functions

Un
j (r, θ) = rnC

n+1/2
2j+1 (

√
1− r2) cosnθ.

These functions are orthogonal over the unit disc with respect to the weight (1 − r2)−1/2;
they also have square-root zeros at r = 1. Moreover, Krenk’s formulae show that

1

4π
×
∫

Ω
Un
j (ρ/a, ϕ)

dΩ

R3
= − Anj

Un
j (r/a, θ)
√
a2 − r2

, (53)

where ξ = ρ cosϕ, η = ρ sinϕ and

Anj =
Γ(n+ j + 3/2) Γ(j + 3/2)

(n+ j)! j!
.

Equation (53) can be viewed as the two-dimensional analogue of eqn (31); it permits the
analytical evaluation of the hypersingular integral on the left-hand side.
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12 Scattering by a submerged disc

Let us now return to a water-wave problem. We consider a circular disc, submerged beneath
the free surface of deep water. For simplicity, we assume that the disc is parallel to the free
surface (for water of finite depth, this problem can be solved using matched eigenfunction
expansions [53]). The governing integral equation is eqn (51), which we write as

1

4π
×
∫

Ω
w(ξ, η)

dξ dη

R3
+

1

4π

∫
Ω
w(ξ, η)M(x, y; ξ, η) dξ dη = p(x, y) (54)

for (x, y) ∈ Ω, where

p(x, y) = − ∂φinc

∂np
and M(x, y; ξ, η) =

∂2

∂np∂nq
G1(p, q).

Equation (54) is to be solved subject to w = 0 on r = a. To solve it, we expand w as

w(x, y) ∼= a
N∑
n=0

J∑
j=0

W n
j U

n
j (r/a, θ),

substitute into eqn (54), evaluate the hypersingular integral over Ω using eqn (53), and
then collocate at (N + 1)(J + 1) points on the disc; this gives an algebraic system for the
coefficients W n

j . This method has been used by Farina [54] to solve several problems involving
circular discs.

13 Scattering by arbitrary flat plates

The expansion-collocation method described above is only appropriate for flat circular discs.
This is in contradistinction to the situation in two-dimensions: there, a curved plate can
always be parametrised so as to give a one-dimensional integral equation over a finite interval.

In order to use an expansion-collocation method in three dimensions, we map the plate
onto a circular disc. However, we are not at liberty to choose any convenient mapping:
typically, the mapping will modify the hypersingularity in an essential way, and this will
prevent us from using the formula (53). We must use a conformal mapping of the plate onto
a disc. This preserves the structure of the hypersingularity, allowing the use of the Fourier-
Gegenbauer expansion method on the transformed integral equation. This new method is
described elsewhere [55], [56].

The method requires an appropriate conformal mapping; such mappings are catalogued
in [57]. In particular, the method could be applied to problems involving square plates;
the mapped integral equation will be over a circular domain but the kernel will have ‘fixed
singularities’ at four points on the circumference. One could also use a numerical method to
find the conformal mapping; for example, this can be achieved by solving a certain boundary
integral equation over ∂Ω [58].
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