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Abstract

Boundary value problems for linear elliptic partial differential
equations may be solved by constructing an exact Green's function
for the domain involved. Alternatively, an integral equation defined
on the boundary of the domain, with unprescribed boundary data as
an unknown, may be solved. It is easily argued that both approaches
must be equivalent in the broadest sense. In this paper, the precise
equivalence between an exact Green's function and the solution of
the boundary integral equation is made explicit.

Introduction

It is well known, e.g. Kellogg [1], Webster [2], that an exact Green's
function G* exists and may be used, in principle, to construct the
solution of a boundary value problem governed by a linear elliptic
partial differential equation. Alternatively, the solution of the
problem may be obtained via the boundary integral equation (BIE)
formalism, where the BIE employs only the free-space Green's
function G, or fundamental solution of the differential equation.
Since it is evident that both approaches to the solution must be
equivalent [3], one may conjecture that, using the BIE , one must
have done the equivalent of constructing the exact Green's function
G*.

Indeed, in this paper (see also [4],[5],[6]) it is explicitly shown
that G* and the unknown boundary variable in the BIE method
satisfy the same BIE, but with different right-hand sides. As a
consequence, the representation integral for the BIE solution of the
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boundary value problem may be written in a form which contains a
precise expression for G*. The equivalence between the BIE process
and constructing G * is thus made explicit.

A number of ingredients in the boundary element method
(BEM) may now be interpreted as numerical approximations to exact
Green's functions. Some strategies for creating a library of such
functions for repeated use are suggested.

Exact Green's Functions and the BIE Process

The essential aspects of the following arguments hold for linear
elliptic boundary value problems (BVP's); however, to fix ideas,
consider finding a time-harmonic acoustic field # which exists in
the region D exterior to a single finite volume V with closed surface
S. The field u satisfies the scalar wave (Helmholtz) equation in D
and satisfies a radiation condition for indefinitely large distance R
from V. On § we assume du/dn= f where f is a prescribed function.

A representation integral for ¥ may be written

J
2u(P) = G(g,P) - G(q,P)]d
u(P) _[[f(q) (@)= ug)7 ~Giq. P, (1)
wherein
_ kR
G(P.Q) = G(Q.P) = =—— + w(P,Q) (2)
2R

is a Green's function with R=|Q - P|, where P,Q are arbitrary points

in D and p,q are arbitrary points on §; k is the acoustic
wavenumber, w is an arbitrary regular solution to the wave
equation, and the normal n points into D at gq. Equation (1) is
readily obtained by inserting # and G into Green's reciprocal
identity.

Now suppose that G in eqn (1) is an exact Green's function G *
defined such that

% __ikR
IG*@P) o o O P
on on, 2R on

q

0 3)

whenever ¢ € S. Using G* instead of G, representation (1)
simplifies considerably to

2u(P) = f f(@)G* (g, P)dS, (4)
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which is now the explicit solution to the posed BVP rather than a
mere representation, if G* is assumed known, since unprescribed
u(q) does not appear in (4).

Note that finding G* is tantamount to finding w which
satisfies the wave equation subject to the boundary condition (3).
This task is comparable in difficulty to finding u itself subject to
dufon= f. This is why, no doubt, the idea of an exact Green's

function has not received more attention for practical problems.

Instead, the BIE/BEM has been the method of choice for many
problems of the present type, and the method, in essence, proceeds as
follows. Choose the simplest w in (2), namely w =0, and take the
limit in representation (1) as P — p. The familiar result is the BIE

u(p)+ f u(q)ﬂds f H@G(q.pds, . (5)

N
Symbolically, eqn (5) may be written
Au = Bf (6)

where A and B are the indicated integral operators. The unknown
function # on § may be obtained formally as the solution of the BIE,
namely

u=A"'Bf. (7)
Thus, using (7) we may write the solution for u(P) as

dG( q,P)

2u(P) f F(9)G(g,P)dS, f A Bf () 2L (8)

s U "

Comparing (8) with (4), we find two representations for the
solution to our boundary value problem; (8) explicitly involves the

inverse operator A™' acting upon the function Bf, whereas, (4)
explicitly involves the exact Green's function G*.

To more closely see the equivalence between (8) and (4), it is
instructive to reintroduce the integral form of the operator Bf into
(8), and in the process interchange the order of the inner
integration with the operation A™'. The result is
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1 IG(LP
2u(P) - ff(q)G(q,P)dS ff(q) fA'G(qJ) ¢ )dSJ}dS (9)

I

where [ € S. Next, factoring out a common f(q) we have

[
2u(P) ff(fI)TG(qP) A"G(Q l)aG(lP) Sy - (10)

I
N

Now if (10) and (4) are both correct, the term in brackets in (10)
must be G*.

To see that the term in brackets is, in fact, G*, apply Green's
reciprocal theorem to G and G*, to get

G(l,
2G*(P,0)-2G(P,Q)- [G*(, P)Mds (11)
N
where we recall that dG* ([,P)/dn=0. Next take the limit in (11) as
Q—s €5 to get (cf. Boley [5])

G*(P,s)+fG*(l,P) &C;(l S)dS 2G(P,s) (12)
n,
N
or symbolically
AG* =2G. (13)

From (12) (and (13)) and (6) (and (7)) we see that both ¥ and G*
satisfy the same BIE with different right hand sides. Solving (13) for
G* as (cf. Tewary [6])

G*=2A"'G (14)

and substituting under the integral sign in (11), we obtain, after
interchanging P with Q (or q)

1 dG(1,
G*(P.q)=G(P.q)- [ A G(,,q)%ﬁds,_ (15)

1
N

Expression (15) for G* is precisely that in brackets in equation (10)
such that (10) and (4) are identical.

It is explicit, therefore, that in using the BIE method to solve a
given boundary value problem for the scalar wave equation, one has
in fact constructed the Green's function for the domain. The key
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ingredient in both methods is the solution to essentially the same BIE,
which is expressible as A™.

Some Approximate Forms and Solution Strategies

From the observations above, the boundary element method may be
thought of as a systematic way of approximating the BIE (6) by
systems of algebraic equations. In so doing, A and B may be
interpreted as (square) matrix approximations to the integral
operators based on a discretization of the domain surface §, with u
and f familiar (column matrix) numerical approximations to the

continuous boundary variables.

Therefore, it is clear that for a given discretization, we may
form and invert a matrix A, and via (14), we would have an
approximate representation for G*(q,,P) for a given choice of

surface nodes q,. To use this G *(gy, P) to get the solution u(P) based
on (4), it would be necessary to get representations for G *(q,,P) at
Gaussian quadrature points ¢g., in order to do the quadrature

indicated in (4) numerically. That quadrature is expressible in the
form

2u(P) =G *(P.45)f(q5)- (16)

In (16) f(q;) is a column of discrete values of f at the Gauss points
g, on S and G*(P,q;) is a row matrix of values of Gauss-weighted
G* evaluated at the same g, for chosen P. How to best provide the
mentioned representations for G*(P,q,;),based on G*(q,,P), with

sufficient accuracy for a given f and §, is an interesting study in

itself. Some studies like this are underway, and preliminary findings
will be reported at the conference.

As a more familiar alternative to (16), we have the

approximate form of (1) that comes directly from the BEM as usually
coded, i. e.,

2u(P) = G(P,q;) f(45) - G"(P.q5)u(q;) (17)

where the superscript n indicates the normal derivative of G and,
wherein,

u(qy) = A"Bf(qy). (18)



-

] | T .
" Transactions on Modelling and Simulation vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-355X

24 Boundary Elements XVII

In (17) function values at g, are given in terms of values at g, via
the shape functions. Thus, it is possible to factor out f in (17), to
write

2u(P) = {G(P.q,) - G"(P,q;)CA™BC" } (q5) (19)

where C and C7 are rectangular matrices dependent upon the shape
functions and coordinates g,, and where we can identify an

approximate form of G* as the term in brackets in (19) , as we did
with the comparable analytical expressions.

The bracket-term in (19) is equivalent in character to G* in
(16), but there is an important strategic difference: to get G* values
at g, (for chosen P) in (16) requires some kind of approximate

representation of G* over S, as mentioned above; whereas
comparable G* values via (19) or (17) require no such
representation. Indeed, since both G and G" in (19) and (17) have
analytical form, each may readily be evaluated anywhere.
Specifically, since with the conventional BEM, u(q,)is obtained via

(18), only u(q,) need be expressed as usual, with standard shape

functions, in terms of nodal values. Thus (17) rather than (19) is
usually used by the BEM community to get u(P).

To exploit the apparent simplicity of (16), with its need for
perhaps special representations of G*, versus the more complicated
(17) or (19), emanating from the standard BIE with no such need,
deserves more study. Either way, it is possible, with today's
technology, to take the following somewhat radical point of view.

The Library Idea

The key and most computationally-intensive ingredient in the
usual BEM solution of a BVP of the present type is the construction of
A”'. This requires a mesh, a code to form A and B, and then the
effort to find A™ (or, equivalently, the LU decomposition of A). The
rest of the solution process involves mainly matrix multiplications
based on formulas for numerical quadrature. Therefore, why not
consider forming and storing at least A™', and possibly B (depending
on the tradeoff on using (16) versus (17) or (19)), for common and/or
important shapes §? In effect, why not create a library of
numerical approximations to exact Green's functions for repeated
use? Modern technology for storage of massive amounts of data, on
CDs or on central storage, accessible via networks, would suggest that
at least some heavy computing could be 'done in advance', the results
of which could be made available to non expert users.

Some details for the formation of a Green's function library
may be found in [4] and [7]. Also, one of us (LP) has constructed a
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library of A™' matrices for elastodynamic scattering [8] from families
of oblate-spheroidal voids, of various eccentricities, for waves of
different frequencies. With this library, the elastodynamic scattered
field at arbitrary points, from shapes and frequencies in the library,
due to arbitrary incident waves, is just a matter of matrix
multiplications. Library entries for other scatterers, e.g., cracks,
inclusions, are already in existence or are being formed - all of
which find use by physicists engaged in nondestructive evaluation
at lowa State University. Partially-exact Green's functions, which
model only (a common or especially complicated) part of a surface
are also being formed, for repeated use, for acoustic and
electromagnetic field problems. Much unnecessary duplication in
computing can be avoided in this way.

Finally, one of us (DZ), is working on the capability [9] to
compute not only elastic fields, but also the sensitivities of these
fields to changes in a geometric (e.g., shape) parameter. This is
being done for both conventional and hypersingular BIE's. With this
capability, fewer entries in a library would be needed, to cover a
spectrum of geometrical shapes, since a given A™' could provide not
only the field, but also its sensitivity with respect to a change in
shape closer to the next library entry. More significantly, with the
hypersingular capability, which is totally new, sensitivities for
problems with cracks and cracklike shapes may be addressed, quite
apart from any library use.
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