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Abstract

The problem of scattering of spherical electromagnetic waves by a bounded chiral ob-
stacle is considered. General scattering theorems, relating the far–field patterns due to
scattering of waves from a point source put in any two different locations (the reciprocity
principle, the optical theorem, etc), and mixed scattering relations (relating the scattered
fields due to a point source and a plane wave) are established. Further, in the case of a
spherical chiral scatterer, the exact Green’s function and the electric far–field pattern of
the problem are constructed.

1 Introduction

The interaction of an incident wavefield with a bounded 3-dimensional obstacle is a classic
problem in scattering theory. The vast majority of the literature is concerned with incident
plane waves. However, in some recent papers Dassios and his co–workers, as well as three
and all of the present authors, see [1], [2], [3], [5], have studied incident waves generated by
a point source in the vicinity of the scatterer. Point sources have been used by Potthast [8]
to solve standard inverse problems. For related work by other authors see the bibliographies
of all the previous references. In this work we consider the problem of scattering of spherical
electromagnetic waves by a bounded chiral obstacle. General scattering theorems, relating
the far–field patterns due to scattering of waves from a point source put in any two different
locations (the reciprocity principle, the optical theorem, etc), and mixed scattering relations
(relating the scattered fields due to a point source and a plane wave) are established. Further,
in the case of a spherical chiral scatterer, the exact Green’s function and the electric far–field
pattern of the problem are constructed, using spherical vector wave functions. These results
generalize related properties of the problem where the scatterer is achiral [1], [3].

2 Formulation

Let Ωc be a bounded three–dimensional obstacle with a smooth closed boundary S, the scat-
terer. The exterior Ω is an infinite homogeneous isotropic achiral medium with electric per-
mittivity ε, magnetic permeability µ and conductivity σ = 0. The scatterer Ωc is filled with
a chiral homogeneous isotropic medium with corresponding electromagnetic parameters εc, µc
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and chirality measure βc. The parameters ε and µ are assumed to be real constants and εc, µc
and βc to be complex constants.

We consider an incident spherical electromagnetic wave due to a point source located at a
point with position vector a, with respect to the origin O. Suppressing the time dependence
e−iωt , ω being the angular frequency, the incident wave (Ei

a,H
i
a) has the form [1], [3]

Ei
a(r; p̂) =

a e−ika

ik
∇×

(
eik|r−a|

|r − a|
â× p̂

)
, H i

a(r; p̂) =
1

ikη
∇×Ei

a(r; p̂), (2.1)

where p̂ is a constant unit vector with p̂ ·a = 0, η =
√
µ/ε is the intrinsic impedance,

k = ω
√
εµ > 0 is the free–space wave number, and a = |a|. Physically (Ei

a,H
i
a) represents

the field generated by a magnetic dipole with dipole moment â× p̂; see p.163 of [4], or p.23 of
[5]. The coefficient a e−ika/(ik) in (2.1) assures that when the point source recedes to infinity
the spherical wave reduces to a plane electric wave with direction of propagation −â and
polarization p̂. The total exterior electric field Et

a is given by

Et
a(r; p̂) = Ei

a(r; p̂) + Es
a(r; p̂), r ∈ Ω \ {a}, (2.2)

where Es
a(r; p̂) is the scattered electric field, which is assumed to satisfy the Silver–Müller

radiation condition
lim
r→∞

(r̂ ×∇×Es
a + ikrEs

a) = 0, (2.3)

uniformly in all directions r̂ ∈ S2, where S2 is the unit sphere.
The behaviour of Es

a in the radiation zone is given by

Es
a(r) = h0(kr)ga(r̂) +O(r−2), r →∞, (2.4)

where h0(x) = eix/(ix) is the spherical Hankel function of the first kind and order zero, and
ga(r̂) is the electric far–field pattern.

The total exterior electric field solves the equation

∇×∇×Et
a − k2Et

a = 0 in Ω. (2.5)

We note that the incident electric field satisfies the radiation condition (2.3), and hence
the total electric field also satisfies (2.3).

The incident electromagnetic waves are transmitted into the chiral scatterer. Let Ec
a be

the total electric field in the interior. Then Ec
a satisfies [6]

∇×∇×Ec
a − 2βcγ

2∇×Ec
a − γ2Ec

a = 0 in Ωc , (2.6)

where γ2 = k2
c (1 − k2

cβ
2
c )−1 and k2

c = ω2εcµc. On the surface of the scatterer we have the
following transmission conditions:

n̂×Et
a = n̂×Ec

a

n̂×∇×Et
a = B1n̂×∇×Ec

a + B2n̂×Ec
a

}
on S (2.7)

where B1 = (µ/µc)k
2
c/γ

2 and B2 = −(µ/µc)βck
2
c .

2



3 The general scattering theorem

In the sequel, for an incident time–harmonic spherical wave Ei
a(r; p̂) due to a point source

located at a, we will denote the total field in Ω, the scattered field and the far–field pattern
by writing Et

a(r; p̂), Es
a(r; p̂) and ga(r̂; p̂), respectively, indicating the dependence on the

position a of the point source and the polarization p̂. Also, the total electric field in Ωc will
be denoted by Ec

a(r; p̂).
We are interested in relations between these fields. We consider a point source at a with

polarization p̂1 and another point source at b with polarization p̂2. For a shorthand notation,
we use {

E,E′
}
S

=

∫
S

[
(n̂×E) · (∇×E′)− (n̂×E′) · (∇×E)

]
ds,

where the overbar denotes complex conjugation.
Let Sr denote a large sphere of radius r, surrounding the points a and b, and let Sa,ε =

{r ∈ R3 : |a−r| = ε} surrounding the point a. Then we have the following Lemma from [1].

Lemma 1 Let Ei
a(r; p̂1) be a point source at a. Let Ei

b(r; p̂2) be a point source at b, with
corresponding scattered field Es

b(r; p̂2) and far–field pattern gb(r̂; p̂2). Then

lim
ε→0

{
Ei
a( · ; p̂1),Es

b( · ; p̂2)
}
Sa,ε
− lim
r→∞

{
Ei
a( · ; p̂1),Es

b( · ; p̂2)
}
Sr

=
4πa

ik
p̂1 ·Gb(a; p̂2),

where

Gb(a; p̂2) = eikaa×
[
∇×Es

b(a; p̂2)− ik

2π

∫
S2

r̂ × gb(r̂; p̂2) eikr̂·ads(r̂)

]
(3.1)

is a spherical far–field pattern generator.

Now, the general scattering theorem, [1], for spherical electric waves scattered by a chiral
obstacle is formulated as follows.

Theorem 2 For any two point–source locations in Ω, a and b, and for any polarizations, p̂1

and p̂2, we have

p̂1 ·Gb(a; p̂2) + p̂2 ·Ga(b; p̂1) +
1

2π

∫
S2

gb(r̂; p̂2) ·ga(r̂; p̂1) ds(r̂) = Ea,b(p̂1; p̂2) (3.2)

where

Ea,b(p̂1; p̂2) =
k

2π

{
Im (B1)

∫
Ωc

(∇×Ea(r; p̂1)) · (∇×Eb(r; p̂2)) dv

− Im (B1γ
2)

∫
Ωc

Ea(r; p̂1) ·Eb(r; p̂2) dv

+ i[βcγ
2B1 + Re (B2)]

∫
Ωc

Ea(r; p̂1) · (∇×Eb(r; p̂2)) dv

− i[βcγ2B1 + Re (B2)]

∫
Ωc

Eb(r; p̂2) · (∇×Ea(r; p̂1)) dv

}
. (3.3)
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Proof. In view of the relations Et
α = Ei

α + Es
α, α = a, b, we have

{Et
a,E

t
b} = {Ei

a,E
i
b}+ {Ei

a,E
s
b}+ {Es

a,E
i
b}+ {Es

a,E
s
b}. (3.4)

We use the transmission conditions (2.7) and apply the divergence theorem in Ωc; this gives

{Et
a,E

t
b} =

4πi

k
Ea,b(p̂1; p̂2). (3.5)

Since Ei
a and Ei

b are entire solutions of (2.5), the vector Green’s second theorem gives

{Ei
a,E

i
b} = 0. (3.6)

For the other terms in (3.4), we consider two small spheres, Sa,ε1 and Sb,ε2 , centred at a and
b with radii ε1 and ε2, respectively, with Sa,ε1 ∩ Sb,ε2 = ∅, as well as a large sphere SR centred
at the origin, surrounding the whole system of the scatterer and the two small spheres. Since

Ei
a and Es

b are solutions of (2.5) for r 6= a,b, the vector Green’s second theorem gives

{Ei
a,E

s
b} = {Ei

a,E
s
b}SR − {E

i
a,E

s
b}Sa,ε1 − {E

i
a,E

s
b}Sb,ε2 . (3.7)

The last term in (3.7) is zero because Ei
a and Es

b are regular solutions of (2.5) in the interior
of Sb,ε2 . Then letting R→∞ and ε1 → 0, using Lemma 1, we obtain

{Ei
a,E

s
b} =

4πi

k
p̂1 ·Gb(a; p̂2). (3.8)

As {Es
a,E

i
b} = −{Ei

a,E
s
b}, we easily deduce that

{Es
a,E

i
b} =

4πi

k
p̂2 ·Ga(b; p̂1). (3.9)

Finally, in view of the regularity of Es
a and Es

b in the region exterior to S, we have

{Es
a,E

s
b} = {Es

a,E
s
b}SR . (3.10)

Then, letting R→∞, we pass to the radiation zone and thus using (2.4) we get

{Es
a,E

s
b} =

2i

k

∫
S2

ga(r̂; p̂1) ·gb(r̂; p̂2) ds(r̂). (3.11)

Substituting (3.5), (3.6), (3.8), (3.9), and (3.11) in (3.7) gives (3.3), and the theorem is proved.

4 Reciprocity

In [5] a reciprocity relation for spherical waves scattered by an achiral obstacle has been proved.
The same relation also holds for a penetrable chiral scatterer.

Theorem 3 For any two point–source locations in Ω, a and b, for any polarizations, p̂1 and
p̂2, and for a penetrable chiral scatterer, we have

h0(ka) (b̂× p̂2) ·
(
∇×Es

a(b̂; p̂1)
)

= h0(kb) (â× p̂1) · (∇×Es
b(â; p̂2)) . (4.1)

Proof. Using the transmission conditions (2.7) and applying the divergence theorem in

Ωc, we obtain {Et
a,E

t
b}S = 0. Also, using some asymptotics we get {Es

a,E
s
b}S = 0. Now

{Ei
a,E

s
b}S = 0, since the corresponding integral on the large sphere SR vanishes due to

the asymptotic form (2.4) and Ei
a(r̂; p̂1) = h0(kr)gi

a(r̂; p̂1) + O(r−2) as r → ∞, where

gi
a(r̂; p̂1) = ikae−ika(1+r̂·a) (r̂ × (a× p̂1)) . Combining the above we finally obtain (4.1).
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5 The optical theorem

We define the scattering and absorption cross–sections due to a point source at a, [5], as

σs
a =

1

k2

∫
S2
|ga(r̂; p̂)|2 ds(r̂) and σa

a =
1

k
Im

∫
S
n̂ · (Et

a ×∇×Et
a) ds,

respectively, and the extinction cross–section by σe
a = σs

a+σa
a. If we put a = b and p̂1 = p̂2 = p̂

in Theorem 2, we obtain

σs
a = −4πk−2 Re [p̂ ·Ga(a; p̂)] + 2πk−2Ea,a(p̂; p̂). (5.1)

From the above definitions and (3.3) we have

σa
a = −2πk−2Ea,a(p̂; p̂). (5.2)

Hence, adding (5.1) and (5.2), the definition (3.1) gives

σe
a = −4πk−2 Re [p̂ ·Ga(a; p̂)] . (5.3)

The value of Ea,a(p̂; p̂) is given in Theorem 2; it depends on the scatterer’s properties.

6 Mixed scattering relations

Let Ei(r; d̂, p̂) = p̂ exp{ikd̂ ·r} be an incident time–harmonic plane electric wave, where the

unit vector d̂ describes the direction of propagation and the unit vector p̂ gives the polarization.
We will indicate the dependence of the total field in Ω, the total field in Ωc, the scattered field
and the electric far–field pattern on the incident direction d̂ and the polarization p̂ by writing
Et(r; d̂, p̂), E−(r; d̂, p̂), Es(r; d̂, p̂) and g(r̂; d̂, p̂), respectively.

Here, we consider mixed situations, and relate fields due to one spherical electric wave
Ei
a(r; p̂1) and one plane electric wave Ei(r;−b̂, p̂2); we do this by letting b → ∞ in our

previous results.
Using the asymptotic forms |r − a| = r − r̂ ·a + O(r−1) and |r − a|−1 = r−1 + O(r−2),

we can easily show that for the spherical electric wave (2.1) we have limb→∞Ei
b(r; p̂) =

Ei(r;−b̂, p̂), that is the spherical electric wave, when the point source goes to infinity, reduces

to a plane electric wave with direction of propagation −b̂ and polarization p̂. Similarly, we have
Et
b(r; p̂)→ Et(r;−b̂, p̂), Es

b(r; p̂)→ Es(r;−b̂, p̂) and gb(r̂; p̂)→ g(r̂;−b̂, p̂) as b→∞.
Next, let b→∞ in Lemma 1 to give the following result.

Lemma 4 Let Ei
a(r; p̂1) be an incident spherical electric wave and let Ei(r;−b̂, p̂2) be an

incident plane electric wave. Then

lim
ε→0

{
Ei
a( · ; p̂1),Es( · ;−b̂, p̂2)

}
Sa,ε
− lim
r→∞

{
Ei
a( · ; p̂1),Es( · ;−b̂, p̂2)

}
Sr

=
4πa

ik
p̂1 ·G(a;−b̂, p̂2)

where

G(a;−b̂, p̂2) = lim
b→∞

Gb(a; p̂2)

= eikaa×
[
∇×Es(a;−b̂, p̂2)− ik

2π

∫
S2

r̂ × g(r̂;−b̂, p̂2) eikr̂·ads(r̂)
]

is a plane far–field pattern generator.
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For the generators Gb(a; p̂2) and G(a;−b̂, p̂2) we have the following limiting values [8].

Theorem 5 For two incident point–source electric waves, Ei
a(r; p̂1) and Ei

b(r; p̂2), we have

lim
a→∞

Gb(a; p̂2) = gb(−â; p̂2) (6.1)

and
lim
a→∞

G(a;−b̂, p̂2) = g(−â;−b̂, p̂2). (6.2)

We can now let b → ∞ in the general scattering theorem, Theorem 1. The proof of the
following result is similar to that of Theorem 2 and is omitted for the sake of brevity.

Theorem 6 Let Ei
a(r; p̂1) be an incident spherical electric wave and let Ei(r;−b̂, p̂2) be an

incident plane electric wave. Then

p̂1 ·G(a;−b̂, p̂2) + p̂2 ·ga(b̂; p̂1) +
1

2π

∫
S2

g(r̂;−b̂, p̂2) ·ga(r̂; p̂1) ds(r̂) =Ma(−b̂; p̂1, p̂2),

where

Ma(−b̂; p̂1, p̂2) = lim
b→∞

Ea,b(p̂1; p̂2)

=
k

2π

{
Im (B1)

∫
Ωc

(∇×Ea(r; p̂1)) · (∇×E(r;−b̂, p̂2)) dv

− Im (γ2B1)

∫
Ωc

Ea(r; p̂1) ·E(r;−b̂, p̂2) dv

+ i[βcγ
2 + Re (B2)]

∫
Ωc

Ea(r; p̂1) · (∇×E(r;−b̂, p̂2)) dv

− i[βcγ2B1 + Re (B2)]

∫
Ωc

(∇×Ea(r; p̂1)) ·E(r;−b̂, p̂2) dv

}
. (6.3)

To conclude, we note that we also have

lim
a→∞

lim
b→∞

Gb(a; p̂2) = lim
b→∞

lim
a→∞

Gb(a; p̂2) = g(−â;−b̂, p̂2). (6.4)

This can be used to verify that the known scattering relations for plane–wave incidence [4], [5]
are recovered when a → ∞ and b → ∞. Furthermore, (6.2) and the reciprocity principle for
plane waves [5] give the following limiting property:

lim
a→∞

p̂1 ·G(a;−b̂, p̂2) = lim
b→∞

p̂2 ·G(−b; â, p̂1). (6.5)

7 Exact Green’s function for a chiral dielectric sphere

Consider a spherical scatterer of radius a. Take spherical polar coordinates (r, θ, φ) with the
origin at the centre of the sphere, so that the point source is at r = r0, θ = 0, and so that the
polarization vector p̂ is in the x–direction. Thus, r0 = r0ẑ and b̂ = x̂, where x̂ and ẑ are
unit vectors in the x and z directions, respectively.
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Using spherical vector wave functions, and in particular (13.3.68), (13.3.69), (13.3.70) of
[7] we obtain the following expansion for the incident field, see [3]

Einc
r0

(r; x̂) =
i

h0(kr0)

∞∑
n=1

2n+ 1

n(n+ 1)

{
hn(kr0)N 1

e1n(r)− h̃n(kr0)M 1
o1n(r)

}
(7.1)

for r < r0, where hn ≡ h
(1)
n is a spherical Hankel function, h̃n(x) = x−1hn(x) + h′n(x) =

x−1[xhn(x)]′, and M 1
σ1n and N 1

σ1n, for n = 1, 2, . . . and σ = e or o are the spherical vector
wave functions of the first kind.

The scattered field due to a chiral sphere does not have the same φ–dependence as the
incident wave, so it has the following general form, [6], p. 394,

Es
r0

(r; x̂)=
i

h0(kr0)

∞∑
n=1

2n+ 1

n(n+ 1)

{
anN

3
e1n(r)− bnM 3

o1n(r) + cnM
3
e1n(r)− dnN 3

o1n(r)
}
,

for r > a. In order to evaluate the electric field in the interior of the chiral sphere, we consider
the Bohren decomposition, [6]

Ec(r) = QL(r)−
√
µc/εcQR(r) and Hc(r) = −i

√
εc/µcQL(r) + QR(r), r ∈ Ωc,

where QL(r) and QR(r) are Beltrami fields, satisfying ∇ × QL = γLQL and ∇ × QR =
−γRQR. We employ the following expansions for the Beltrami fields, [6], p.395

QL(r) =
i

h0(kr0)

∞∑
n=1

2n+ 1

n(n+ 1)

{
An

[
M 1

o1n(r) + N 1
o1n(r)

]
+Bn

[
M 1

e1n(r) + N 1
e1n(r)

]}

QR(r) =
i

h0(kr0)

∞∑
n=1

2n+ 1

n(n+ 1)

{
Cn

[
M 1

o1n(r)−N 1
o1n(r)

]
+Dn

[
M 1

e1n(r)−N 1
e1n(r)

]}
Using the transmission conditions on r = a, we obtain

an =
SnLWnR + SnRWnL

VnLWnR + VnRWnL
, bn =

TnLVnR + TnRVnL
VnLWnR + VnRWnL

cn = − h̃n(kr0)

hn(kr0)
dn =

h̃n(kr0)

hn(kr0)

SnLVnR − SnRVnL
VnLWnR + VnRWnL

where, for A = L,R,

WnA = h̃n(ka)jn(γAa)− (η/ηc)hn(ka)j̃n(γAa)

VnA = hn(ka)j̃n(γAa)− (η/ηc) h̃n(ka)jn(γAa)

SnA = hn(kr0)
[
jn(ka)j̃n(γAa)− (η/ηc) j̃n(ka)jn(γAa)

]
TnA = h̃n(kr0)

[
(η/ηc) jn(ka)j̃n(γAa)− j̃n(ka)jn(γAa)

]
,

j̃n(x) = x−1jn(x) + j′n(x) = x−1 [xjn(x)]′,

An =
1

2jn(γLa)

{
−hn(ka)

[
ηc
η
cn + bn

]
− h̃n(kr0)jn(ka)

}
(7.2)
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Bn =
1

2jn(γLa)

{
hn(ka)

[
ηc
η
an + cn

]
+
ηc
η
hn(kr0)jn(ka)

}
(7.3)

Cn =
1

2iηcjn(γRa)

{
hn(ka)

[
−ηc
η
dn + bn

]
+ h̃n(kr0)jn(ka)

}
(7.4)

Dn =
1

2iηcjn(γRa)

{
hn(ka)

[
ηc
η
an − cn

]
+
ηc
η
hn(kr0)jn(ka)

}
(7.5)

and ηc =
√
µc/εc is the interior intrinsic impedance.

Let us calculate the electric far–field pattern. Since hn(x) ∼ (−i)nh0(x) and h′n(x) ∼
(−i)n−1h0(x) as x→∞, and using (13.3.68) and (13.3.69) of [7] we find that

M 3
σ1n(r) =

√
n(n+ 1)hn(kr)Cσ1n(r̂)

∼
√
n(n+ 1) (−i)n h0(kr)Cσ1n(r̂) (7.6)

and

N 3
σ1n(r) = n(n+ 1) (kr)−1 hn(kr)P σe1n(r̂) +

√
n(n+ 1) h̃n(kr)Bσ1n(r̂)

∼
√
n(n+ 1) (−i)n−1 h0(kr)Bσ1n(r̂) (7.7)

as kr →∞, where Cσ1n(r̂), P σ1n(r̂) and Bσ1n(r̂) can be found e.g. in the Appendix of [3].
Therefore for the electric far–field pattern, we have

gr0
(r; x̂) = − 1

h0(kr0)

∞∑
n=1

(2n+ 1)(−i)n√
n(n+ 1)

{
anBe1n(r̂) + ibnCo1n(r̂) +

icnCe1n(r̂) + dnBo1n(r̂)

}
. (7.8)
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