
CHAPTER 164 

Water Wave Scattering by Rows of Circular Cylinders 

Robert A. Dalrymple1, M. ASCE, Seung Nam Seo2, Paul A. Martin3 

Abstract 

The scattering of waves by a finite number of rows of circular cylinders is examined. 
Reflection and transmission coefficients are obtained and compared to Kakuno's exper- 
imental data. Following Twersky (1962), the scattering from a single row of cylinders 
(or the single grating problem) is numerically solved. The wide-spacing approximation 
is used to find the effect of multiple gratings. 

Introduction 

The reflection and transmission of waves through rows of vertical cylinders, corresponding 
to the use of rows of piling as breakwaters (Wiegel, 1961), is examined. The physical 
situation also could represent the effects of piers and other pile supported structures on the 
wave environment. 

Hayashi et al. (1966) and Mei et al. (1974) have examined several methods to calculate 
the wave field in the vicinity of a single row of cylinders, taking into consideration the loss 
of energy by the flow between the closely spaced cylinder'-. Ozsoy (1977) has empirically 
examined the Mei et al. solution and finds reasonable agreement with the theory; however 
there is considerable scatter in the data. Spring and Monkmeyer (1975) assumed that the 
flow was potential and examined the pressures and forces on an infinite row of cylinders. 

Kakuno (1984,1986) has examined the same problem, and also the problem of a double 
row of vertical cylinders. He also considered potential flow with two assumptions: (1) the 
wave length is long compared with the pile spacing in each row, and (2) the wave length 
is short compared to the row spacing. Because of (1) he was able to give an analysis 
similar to Lamb (1898) for the analogous problem of acoustic waves passing through a 
row of cylinders. However, it is known that Lamb's method is deficient for this case: the 
exact solution is composed of an odd (dipole) part and an even (monopole) part, whereas 
Lamb's method only gives the odd part correctly. Recently Martin and Dalrymple (1988) 
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have shown how this deficiency can be rectified. Because of (2), Kakuno was able to use 
the "wide spacing approximation" for two rows of cylinders; see, e.g., Srokoscz and Evans 
(1979). 

In this paper, we eliminate assumption (1) by giving an (in principle) exact numerical 
solution for a single row of circular cylinders. (Note that the asymptotic methods of Lamb 
and of Martin and Dalrymple work for cylinders with any cross-section.) We combine these 
results with the wide-spacing approximation and give a comparison with Kakuno's data. 
Finally, scattering from several rows of cylinders is calculated. 

2      Scattering by a cylindrical grating 

We first consider scattering of water waves by an infinite grating of circular cylinders, 
located along the j/-axis. A plane wave of frequency u over a constant depth h is incident 
upon the grating with angle 90 (See Fig. 1). 

The velocity potential, which must satisfy the Laplace equation, can be written as 

$(x,y,z,t) = Re [<t>(x,y) cosh k(h + z)e~iu,t^ (1) 

where Re denotes the real part and k is the wave number, determined from the dispersion 
relationship, ui2 = gk tanh kh, which relates the angular frequency ui to the wave number, 
the water depth h, and the acceleration of gravity, g. Factoring out the time and depth 
dependency, the fluid motion is governed by the Helmholtz equation 

(V2 + k2)4> = 0 (2) 

On the wall of each cylinder in the grating, the no-flux condition should be fulfilled: 

K = 0 (3) 

where subscript n denotes the outward normal derivative. The scattered potential </>sc, 
defined as the total potential <f> minus the incident potential <^>m, must satisfy a radiation 
condition as | x \ —» oo. 

Twersky (1962) used the method of separation of variables for solving scattered waves 
by an infinite grating of equally spaced identical circular cylinders with spacing d. (See 

Fig. 1) The total velocity potential by an incident wave <j>m = e1*'* can be expressed in 
cylindrical coordinates as, 

oo 
^   =   ei*r «»(«-«„) +   £  em(0-W2) {AnHW(fcr) (4) 

n=—oo 
oo        oo 

5=1 m=—oo 

where J„ and rlj,' denote the Bessel function of first kind order n and the Hankel function 
of order re. The multiple scattering coefficient A„ can be obtained by imposing no-flux 
condition at the cylinder wall (r=a). 
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Figure 1: Schematic Diagram Showing Waves Incident on Two Rows of Cylinders 
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"A      /   v. m=—oo ) 
(5) 

where prime denotes differentiation. 

In order to calculate transmission coefficient Kx and reflection coefficient KR, it is 
convenient to express the potential as a summation of plane wave modes in Cartesian, rather 
than polar coordinates. By Sommerfeld's integral representation of the Hankel functions 
and Poisson's summation formula, Twersky (1962) obtained the following representations: 
For the transmitted region (x > 0), 

„ oo oo 

<f>T = eik-5! + 2   J2   A«   Y,   e^CV ei^sin^+ifacos*,, (6) 
n=—OO fl=—00 

and for the reflected region (x < 0) 

_ oo oo 

n=—oo        ^=—00 

with 
c» = uh; ^\Ree,\<\ (8) 

and the directions of the planar wave modes are given by 

2JT 
sin0M = sin0o + — \i   for fi = 0,±1,±2,... (9) 

It can be seen from Eq. 7 that when |sinfl^| < 1, progressive waves exist, but when 
| sin 6^\ > 1 there are evanescent modes. If kd < IT, therefore, only one progressive wave 
exists. 

Introducing a multiple scattering amplitude G{0)1) = 2TE=-OO A„emS", reflection and 
transmission coefficients for a mode fi are 

KR, = 2C„G(?r - »„) (10) 

and 
KT„ = <W + 2C„G(0„) (11) 

where 6 denotes the Kronecker delta. From conservation of energy flux, we have 

?(lW + l^l')g = l (12) 
where 

kH 
/i-=£[-(l + sin^)^] (13) 

kd 
»+ = E[(i-^e0)^] (14) 

and E[x] stands for the integer value of x. 
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Slow convergence of the series in Eq. (5), which is a family of Schlomilch series, leads to 
a difficulty in evaluating the multiple scattering coefficients. Twersky (1961) found a way 
to accelerate the convergence of the series. In the present method, Shanks transformation 
was used to evaluate the infinite series in Twersky's representation. 

Scattering coefficients A„ were obtained by retaining up to the Mth harmonic in Eq. 
(5): 

A„ = -M^r | e~'m<l° +   £   Am f^En^m(skd) [e-»*<<»k». + (_i)»-•«,»*«"».] I 
n^       '   \ m=—M s=l J 

(15) 
for re = —M,...,M. (Care must be taken when Bessel function J„ is calculated using a 
recurrence formula, because of roundoff errors; see Abramowitz and Stegun, 1965, section 
9.12.) 

Twersky (1962) was able to get approximate solutions when there is only one propagat- 
ing mode. Present numerical solutions of KT and KR were compared to Twersky's results 
in Pigs. 2 and 3. The numerical solutions satisfied conservation of energy flux up to 10 
digits for all the cases tested. Twersky's solutions (Eqs. 127 and 144) are valid only if 
ka < a/d < 1. As shown in Fig. 3, Twersky's solution does not agree to the numerical so- 
lution. For a fixed radius, longer waves propagate through the grating more easily. Normal 
incidence waves to the grating axis are more reflective. 

3    Wide-spacing Approximation 

We now move to wave scattering problems by multi-row gratings, where more than one 
length scale is involved. We further assume that the distance between gratings is large 
enough, so that gratings interact with each other via the propagating waves only; hence 
we can neglect the evanescent modes. For a longer wave train, {kd < 7r), only one wave 
transmits through the grating with the given incident angle. 

In the case of two gratings, the interference can be explained physically. When an 
incident wave train, proportional to e,tx, where i = ksin60, strikes the first grating at 
x = 0, part of the wave train is transmitted and part is reflected. Upon seeing the grating 
at x = s, the transmitted wave undergoes the same scattering process; part of the wave is 
transmitted to x > s and part is back-reflected toward the first grating. This back and forth 
process of transmission and reflection is repeated infinitely. (See Fig. 4). Mathematically, 
we have 

KR   =   R1 + T\R2e
Ms + T}R1RlJ*u + T?RJR3

2J
6<S + • • • (16) 

R1 + R#?u'{I?-Rl) ,    , 
1 - RxRve*1' (    ' 
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Figure 2: Comparison of Numerical and Approximate Solutions for Two Angles of Incidence 
for Small ka. 
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Figure 3: Comparison of Numerical and Approximate Solutions for Two Angles of Incidence 

for Larger ka. 
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X = S 

Figure 4: Reflection and Transmission by Two Gratings 

KT TiT2 + TlT2RiR2eM!l + T1T2R\RleMs + • • 
TiT2 

1 - RtR2e
Ms 

(18) 

(19) 

where T; and R, (i =1,2) are the transmission coefficient and reflection coefficient of the ith 

grating, respectively. Stokes (1862) used this method to find light intensity in heterogeneous 
media. To generalize the formulation, we solve N-row grating problems using the wide- 
spacing approximation. Let the solution to scattering problem for the nth grating by an 
incident wave e1''*-1"' with / = kcosd0 be (j>n-. We define transmission and reflection 
coefficients, Tn_ and R„_, respectively, by 

eU(x-x„) + ijn_e-«(^-*»))   for x -+ -oo 

T    eK(*-*„) foraj-^oo (20) 

Similarly, let (j>   , solve the scattering problem for the nth grating by an incident wave from 
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the other direction, e ''(* x"\ and define T„. and Rn+ by 

e-u(*-°">) + Rn+(Jt(*-*<>),   for x -+00 
Tn.e-i/(ar-a,»), for x -^-oo ^    ^ 

Hence we can represent near field potential of the nth grating by 

<j>   =   C-<j>n-+Ci<j>n+ (22) 

(c-e-^-) eifa + (C-Rn^e^- + C+T„+e
ife») e~Ux,     for a; -> -oo 

(C-T„_e-ife" + C+il„+ e-ite») eife + (c+eife>) e"i&,   for x -* oo       (    ^ 

where the C* denote unknown complex constants to be determined. 

We now require that the near field solutions be joined smoothly in intermediate regions. 
For a region between the (n — l)th and nth gratings, we have 

[CB-_1(Tn_1)_e-
i*-> + CtiiRn-i)*'-"*-1] eU* + [Ct^"-1} ^ = (24) 

[c-e~iex"} eu* + [c-(i?„)_ei&" + C+(T„)+e1&"] e~u\    xn_x < x < xn (25) 

Hence 

C-_1(TB-1)_ei^-» + CtdRn-ihe•^ - C- = 0 (26) 

and 

C+_ie-MA— - C"(Ji„)_ - C+(T„)+ = 0 (27) 

where A„ = xn+i — £„. This near field matching gives 2(N-1) equations for n — 2,N. 

On the other hand, the total velocity potential due to all the gratings can be expressed 

e\lx _|_ /fflC-lfe)     for X —> — OO 

^Tje''27! for a: -> oo it* tnl. „ _ ^ (28) 

Noting that Xj = 0 and Cj = 1, and comparing Eqs. (23) and (28), we have 

•Ri. + CV+7V = KR (29) 

Since there is no wave incident on the Nth grating from the left, Cjjj must be zero. Com- 
paring Eqs. (23) and (28) gives 

Q(TW)_<^W = KT (30) 

Finally, we have 2N unknown coefficients: KR,CJ",CJ,C2V • • ,CN,KT.  Eqs.  (26), (27), 
(29) and (30) give 2N linear equations, enough to solve 2N unknowns. 

In Fig. 5, we tested the present method for two identical rows of cylinders against 
Kakuno's experimental data. In this case, T„_ = Tn+ and R„_ = R.„+ (n = 1,2) because 
depth is constant. We introduce two nondimensional parameters associated with the grating 
geometry; spacing parameter a = s/d and grating parameter /3 = 2a/d. In the wide- 
spacing approximation, we can expect a y/ 1 and shorter spacing between gratings increases 
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Figure 5: Comparison of Reflection and Transmission Coefficients with Kakuno's Data 



2226 COASTAL ENGINEERING—1988 

sp
ac

in
g QC 

-CM 

CD • 

va
ri
a
b

 
de

nc
e c_____ -•0 

o (__^^ </> 

of
 g

ra
tin

c 
N

or
m

al
 

i 

-~c\i c__ 
in 
d 

CD > 

Figure 6: Reflection and Transmission Coefficients for Five Rows of Cylinders: Equal and 
Variable Spacing 
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the effect of evanescent modes. Fig. 5a shows this effect, which produces less agreeable 
results. For some values of a, a significant amount of waves are reflected. Under this 
condition, the phases of the reflected waves are the same, so that the reflected waves 
interfere constructively and the total amplitude is consequently the larger. This is referred 
to as Bragg scattering. 

In Fig. 6, we presented KR and KT for five identical rows of cylinders. The interference 
of each grating is shown to be more complicated and total reflection can be observed for 
some values of a. In Fig. 6a, equally spaced gratings were used, while in Fig. 6b the 
spacing between the gratings increases from s for the first two gratings, by increments of 
1.5s, to 2.5s. It is also interesting to note that some arrangements of gratings are essentially 
transparent to the waves. 

4      Conclusion 

Numerical results of wave scattering by N-row gratings are presented. Accurate numerical 
solutions for a single grating are constructed following Twersky (1962) procedure. For 
long waves (ka « 1), Twersky solution is identical to the numerical solution, but, as 
ka increases, Twersky's solution shows considerable deviation form the numerical solution. 
Using the wide-spacing approximation, reflection and transmission coefficients of long waves 
through N-row gratings are obtained. 

For two identical rows of gratings, the present method shows good agreement with 
Kakuno's experimental data. Results for five rows of gratings are also presented. 
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