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Complex Analysis
P. A. Martin

1 Introduction

All calculus textbooks start with f(x): f is a func-

tion of one (real) variable x. Topics covered include

limits, continuity, differentiation, and integration, with

the associated notation, such as df/dx = f ′(x) and∫ b
a f(x)dx. It is also usual to include a discussion of

infinite sequences and series. The rigorous treatment

of all these topics comprises real analysis.

Complex analysis starts with the following question.

What happens if we replace x by z = x + iy , where

x and y are two independent real variables and i =√−1? Answering this question leads to rich new fields

of mathematics: we shall be concerned with those parts

that are used in applied mathematics.

Let us begin with basic terminology and concepts. We

call z = x + iy a complex variable. The imaginary unit

i should be treated as a symbol that obeys all the usual

laws of algebra together with i2 = −1. We call x = Rez
the real part of z and y = Imz the imaginary part of z.

We can identify z = x+ iy with a point in the xy-plane

(known as the z-plane or the complex plane).

The complex conjugate of z is z̄ = x − iy : com-

plex conjugation is reflection in the x-axis. The abso-

lute value (or modulus or magnitude) of z is |z| =
+
√
x2 +y2, the distance from z to the origin. Given

w = u + iv , we define z + w = (x + u) + i(y + v).
Addition of complex quantities is therefore equivalent

to addition of two-dimensional vectors. For multiplica-

tion, zw = xu−yv+ i(xv+yu). Putting z = w shows

that Rez2 = x2−y2 ≠ x2 unless z is real (y = 0). Also,

zz̄ = |z|2 and z/w = zw̄/|w|2 when w ≠ 0.

Introducing plane polar coordinates, r and θ, we

have z = r cosθ + ir sinθ = reiθ by Euler’s formula.

Thus, r = |z|. The angle θ is called an argument of z,

denoted by argz or phz (for phase). Notice that argz
is not unique, as we can always add any integer multi-

ple of 2π ; this nonuniqueness is sometimes useful and

sometimes a nuisance.

If we let r → ∞, the point z recedes to infinity. It is

usual to state that there is a single “point at infinity,”

denoted by z = ∞, that is reached by letting r → ∞
in any direction, θ. Alternatively, we can state that the

formula z = 1/w takes the point w = 0 to the point

z = ∞.

2 Functions

A function of a complex variable, f(z), is a rule: given
z = x + iy in some set (the domain of f ), the rule pro-
vides a unique complex number denoted by f(z) =
u + iv , say, where u = Ref and v = Imf are real.
We write f(z) = u(x,y) + iv(x,y) to emphasize the
dependence on x and y .

Simple examples of functions are f(z) = z2 and
f(z) = z̄. Elementary functions are defined “natu-
rally”: for example, ez = ex+iy = exeiy and cosz =
1
2 (e

iz + e−iz). For powers and logarithms, we have the
formulas zα = rαeiαθ (α is real) and logz = log(reiθ) =
log r+iθ. Strictly, these do not define functions because
of the nonuniqueness of θ: changing θ by 2π does not
change z but it does change the values of zα (unless
α is an integer) and logz. One response to this phe-
nomenon is to say that logz, for example, is a mul-
tivalued “function”: increasing θ by 2π takes us onto
another branch or Riemann sheet of logz. However, in
practice, it is usually better to introduce a branch cut,
which, for logz, is any line from z = 0 to z = ∞. This cut
is regarded as an artificial barrier: we must not cross it.
Its presence prevents us from increasing θ by 2π . For
example, we could restrict θ to satisfy −π < θ < π
and put the cut on the negative x-axis. Once we have
restricted θ to lie in some interval of length 2π , logz
and zα become single-valued: they are now functions.
We shall have more to say about branches in section 4.

There are many other ways to define functions. For
example, f(z) = ∑∞

n=0 cnzn is a function provided the
power series converges at z: typically, power series con-
verge in disks, |z| < R, for some R > 0 (R is the radius
of convergence). The prototype power series is the geo-
metric series; it converges inside the unit disk where its
sum is known:

∞∑
n=0

zn = 1
1− z , |z| < 1. (1)

For another example, take

f(z) =
∫∞

0
g(t)e−zt dt. (2)

This defines the Laplace transform of g. Typically, such
integrals converge for Rez > A, where A is a constant
that depends on g. Another function defined by an
integral is Euler’s gamma function:

Γ (z) =
∫∞

0
tz−1e−t dt, Rez > 0. (3)

Much is known about the properties of Γ . For example,
Γ (n) = (n − 1)! when n is any positive integer. There
is more on this in section 13 below.
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3 Analytic Functions

The notions of limit, continuity, and derivative are
defined exactly as in real-variable calculus. In partic-
ular, the derivative of f at z is defined by

f ′(z) = df
dz

= lim
h→0

f(z + h)− f(z)
h

, (4)

provided the limit exists. Here, h is allowed to be com-
plex: the point z + h must be able to approach the
point z in any direction, and the limit must be the
same. As a consequence, if f(z) = u(x,y) + iv(x,y)
has a derivative, f ′(z), at z, then u and v satisfy the
Cauchy–Riemann equations:

∂u
∂x

= ∂v
∂y

and
∂u
∂y

= −∂v
∂x
. (5)

If these are not both satisfied, then f ′(z) does not
exist. Two examples: f(z) = z̄ is not differentiable for
any z; and any real-valued function f(z) = u(x,y)
is not differentiable unless u is a constant. If both
Cauchy–Riemann equations (5) are satisfied and the
partial derivatives in (5) are continuous functions, then
f ′ exists.

Using (5), if f ′ exists, then

f ′(z) = ∂u
∂x

+ i
∂v
∂x

= ∂v
∂y

− i
∂u
∂y

= ∂u
∂x

− i
∂u
∂y

= ∂v
∂y

+ i
∂v
∂x
.

The first equality follows by takingh to be real in (4) and
the second by taking h to be purely imaginary. The four
formulas for f ′ show that we can calculate f ′ from Ref
or Imf , or by differentiating with respect to x or y .

Differentiability is a local property, defined at a point
z. Usually, we are interested in functions that are differ-
entiable at all points in their domains. Such functions
are called analytic or holomorphic. Points at which a
function is not differentiable are called singularities.

Derivatives of higher order (such as f ′′(z)) are
defined in the natural way. One surprising fact is that a
differentiable function can be differentiated any num-
ber of times: once differentiable implies infinitely dif-
ferentiable (see (13) below for an indication of a proof).
This result is certainly not true for real functions.

If we eliminate v from (5), we obtain

∂2u
∂x2

+ ∂2u
∂y2

= 0. (6)

Thus, the real part of an analytic function, u(x,y), sat-
isfies laplace’s equation [??] (6). The imaginary part,
v(x,y), satisfies the same partial differential equation

(PDE). This reveals a close connection between ana-
lytic functions and solutions of one particular PDE. As
Laplace’s equation arises in the modeling of many phys-
ical phenomena, this connection has been exploited
extensively.

4 More on Branches

Let us return to log, which we can define as a (single-
valued) function by

logz = log r + iθ, r > 0, −π < θ < π, (7)

with z = reiθ . There is a branch cut along the nega-
tive x-axis, with a branch point at z = 0 and a branch
point at z = ∞. Thus, our domain of definition for
logz is the cut plane, i.e., the whole complex plane with
the cut removed. Then, logz is analytic: it is differen-
tiable at all points in its domain of definition. Moreover,
(d/dz) logz = z−1.

According to (7), logz is not defined on the negative
x-axis. Some authors regard this as unacceptable, and
so they replace the (open) interval −π < θ < π in
(7) by −π < θ � π or −π � θ < π . The first choice
gives, for example, log (−1) = iπ and the second gives
log (−1) = −iπ . Either choice enlarges the domain of
definition to the whole plane with z = 0 removed. How-
ever, we lose analyticity: logz is not differentiable on
the line θ = π (first choice) because points on that
line are not accessible in all directions (as they must
be if one wants to compute limits, as in the definition
of derivative) without leaving the domain of definition.
For some applications this may be acceptable but, in
practice, it is usual to simply move the cut. We can
therefore replace −π < θ < π in (7) by another open
interval, θ0 < θ < 2π + θ0, implying a cut along the
straight half-line θ = θ0, r � 0. (In fact, the cut need
not be straight: any line connecting the branch point at
z = 0 to z = ∞ may be used.) Then logz is analytic in
a new cut plane.

Once we define a function such as logz or z1/2 with
a specified range for θ, we can say that we have defined
a principal value of that function. Certain choices (such
as −π < θ < π or −π < θ � π ) are common, but the
reader should not overlook the option of moving cuts
when it is convenient to do so.

There is another consequence of insisting on hav-
ing (single-valued) functions: some standard identities,
such as log (z2) = 2 logz, may no longer hold. For
example, with z = −1+ i and the definition (7), we find
log (z2) = log 2− 1

2 iπ but 2 logz = log 2+ 3
2 iπ .
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Summarizing, functions with branches are very com-
mon (for another example, see the article on the lam-
bert W -function [??]) but their presence often leads
to complications, subtle difficulties, and calculational
errors: care is always required.

5 Infinite Series

A power series about the point z0 has the form
∞∑
n=0

cn(z − z0)n, (8)

where the coefficients cn are complex numbers. The
series (8) converges for |z − z0| < R and diverges for
|z − z0| > R, where the radius of convergence, R, may
be finite or infinite. (It may happen that (8) converges
at z = z0 only, with sum c0.) When the series does con-
verge, we denote its sum by S(z). For an example, see
the geometric series (1).

The sum S(z) is analytic for |z−z0| < R: power series
define analytic functions.

Now we turn this around. We take an analytic func-
tion, f(z), and we try to write it as a power series. Doing
this is familiar from calculus, and the result is Taylor’s
theorem:

f(z) =
∞∑
n=0

f (n)(z0)
n!

(z − z0)n,

where f (n) is the nth derivative of f . The series is
known as the Taylor expansion of f(z) about z0. It con-
verges for |z − z0| < R, where R is the distance from
z0 to the nearest singularity of f(z). A Taylor expan-
sion about the origin (z0 = 0) is known as a Maclaurin
expansion. All these expansions are the same as those
occurring in the calculus of functions of one real vari-
able. For example, (1) gives the Maclaurin expansion
of 1/(1 − z). Another familiar Maclaurin expansion is
ez =∑∞

n=0 zn/n!, which is convergent for all z.
A generalization of Taylor’s theorem, Laurent’s the-

orem, will be given in section 8.
Not all infinite series are power series. A famous

series is the Riemann zeta function, which is defined
by

ζ(z) =
∞∑
n=1

1
nz

for Rez > 1, (9)

which is intimately connected with the distribution of
the prime numbers.

It is possible to develop the theory of analytic func-
tions by starting with power series: this approach,
which goes back to Weierstrass, has a constructive fla-
vor. We started with the notion of differentiability: this

approach, which goes back to Riemann and Cauchy, is
closer to real-variable calculus. The two approaches are
equivalent: power series define analytic functions and
analytic functions have power-series expansions.

6 Contour Integrals

In the calculus of functions of two real variables x and
y , double integrals over regions of the xy-plane and
line integrals along curves in the xy-plane are defined.
In complex analysis, we are mainly concerned with inte-
grals along curves in the z-plane. They are defined sim-
ilarly to line integrals. Thus, suppose that points on a
curve C are located by a parametrization,

C : z(t) = x(t)+ iy(t), a � t � b,

where a and b are constants and x(t) and y(t) are real
functions of the real variable t. As t increases from a to
b, z(t) moves from z(a) to z(b): the parametrization
induces a direction or orientation on C . The curve C
is smooth if x′(t) and y′(t) exist and are continuous.
Then, if f(z) is defined for all points z on a smooth
curve C , ∫

C
f(z)dz =

∫ b
a
f(z(t))z′(t)dt, (10)

where z′(t) = x′(t) + iy′(t). In (10), the right-hand
side defines the expression on the left-hand side as an
integration with respect to the parameter t. More gen-
erally, suppose that C is a contour, defined as a continu-
ous curve made from smooth pieces joined at corners.
Then, to define

∫
C f dz, we parametrize each smooth

piece separately, and then sum the contributions from
each piece, ensuring that the parametrizations are such
that z moves continuously along C .

If Co is the same curve as C but traversed in the oppo-
site direction (from z(b) to z(a)), then

∫
Co
f(z)dz =

− ∫C f(z)dz: changing the direction changes the sign.

7 Cauchy’s Theorem

A contour C is closed if z(a) = z(b), and it is simple
if it has no self-intersections. Cauchy’s theorem can be
stated as follows. Suppose that f(z) is analytic inside
a simple closed contour C and continuous on C . Then∫

C
f(z)dz = 0. (11)

It is worth emphasizing the hypotheses. First, we do not
need to know anything about f(z) outside C : Cauchy
assumed stronger conditions but these were later weak-
ened by Goursat. Second, C is a contour, so corners
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are allowed. Third, by requiring that “f is analytic
inside C ,” we mean that f(z) must be differentiable
at all points z inside C : singularities (including branch
points) are not allowed (although they may be present
outside C).

There are many consequences of Cauchy’s theorem.
One is known as deforming the contour. Suppose that
C1 and C2 are simple closed contours, both traversed
in the same direction, with C1 enclosed by C2. Suppose
that f(z) is analytic in the region between C1 and C2

and that it is continuous on C1 and C2. (Note that f
may have singularities inside the smaller contour C1

or outside the larger contour C2.) Then,
∫
C1
f(z)dz =∫

C2
f(z)dz: one contour can be deformed into another

without changing the value of the integral, provided the
integrand is analytic between the contours. The same
result is true when C1 and C2 are two contours with the
same endpoints, provided f is analytic between C1 and
C2. These results are useful because they may allow us
to deform a complicated contour into a simpler contour
(such as a circle or a straight line).

Another consequence of Cauchy’s theorem is the
Cauchy integral formula. Under the same conditions,
we have

f(z0) = 1
2π i

∫
C

f(z)
z − z0

dz, (12)

where z0 is an arbitrary point inside C , and C is
traversed counterclockwise. This shows that we can
recover the values of an analytic function inside C from
its values on C .

More generally, and again under the same conditions,
we have

f (n)(z0) = n!
2π i

∫
C

f(z)
(z − z0)n+1

dz. (13)

Formally, this can be seen as the nth derivative of the
Cauchy integral formula (12), but it is deeper: it can
be used to prove the existence of f (n), for n = 2,3, . . . ,
assuming that f ′ exists. This is done using an inductive
argument. We have (compare with (4))

f (n+1)(z0) = lim
h→0

f (n)(z0 + h)− f (n)(z0)
h

,

provided the limit exists. Now, on the right-hand side,
use (13) twice; the limit can then be taken.

Formula (13) with n = 1 can be used to prove Liou-
ville’s theorem. Suppose that f(z) is analytic every-
where in the z-plane (that is, there are no singulari-
ties): such a function is called entire. Suppose further
that |f(z)| < M for some constant M and for all z: we
say that f is bounded. Liouville’s theorem states that
a bounded entire function is necessarily constant. In

other words, (nonconstant) entire functions must be
large somewhere in the complex plane. For example,

|cosz|2 = cosz cosz = 1
4 (e

iz + e−iz)(eiz̄ + e−iz̄)

= 1
4 (e

2ix + e−2ix + e2y + e−2y)

= 1
2 (cos 2x + cosh 2y) = cos2 x + cosh2y − 1

using z + z̄ = 2x and z − z̄ = 2iy . Thus, |cosz| grows
rapidly as we move away from the real axis (where y =
0 and cosh 0 = 1).

8 Laurent’s Theorem

Suppose that f(z) is analytic inside an annulus, a <
|z−z0| < b, centered at z0. We say nothing about f(z)
when z is in the “hole” of radius a (|z − z0| < a) or
when z is outside the annulus (|z − z0| > b). We then
have the Laurent expansion

f(z) =
∞∑

n=−∞
cn(z − z0)n (14)

for all z in the annulus, where the coefficients are given
by contour integrals,

cn = 1
2π i

∫
C

f(z)
(z − z0)n+1

dz, (15)

in which C is a simple closed contour in the annulus
that encircles the hole (once) in the counterclockwise
direction. Note that the sum in (14) is over all n. It is
often convenient to split the sum, giving, for all z in the
annulus,

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

, (16)

where an = cn for n = 0,1,2, . . . and bn = c−n for
n = 1,2, . . . . In particular,

b1 = 1
2π i

∫
C
f(z)dz. (17)

Suppose that f(z) is also analytic in the hole, so
that f(z) is analytic in the disk |z − z0| < b. Then
bn = 0 (n = 1,2, . . . ) by Cauchy’s theorem and an =
f (n)(z0)/n! by (13): Taylor’s theorem is recovered. Note
that, in general, when f does have singularities in
the hole, we cannot use (13) to evaluate the contour
integrals defining an.

9 Singularities

A singularity is a point at which a function is not dif-
ferentiable. There are several kinds of singularities. A
point z0 is called an isolated singularity if there is an
annulus 0 < |z − z0| < b (a “punctured disk”) in which
there are no other singularities. In this annulus, we have
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a Laurent expansion, (16). The first part (the sum over

an) is a power series, and so it defines an analytic func-

tion on the whole disk. The singular behavior resides

in the second sum (over bn): it is called the principal

part, P(z). In practice, P(z) often has a finite number

of terms,

P(z) = b1

z − z0
+ b2

(z − z0)2
+ · · · + bm

(z − z0)m
, (18)

with bn = 0 for all n >m and bm ≠ 0. In this situation,

we say that f has a pole of order m at z0. A pole of

order 1 is called a simple pole and a pole of order 2 is

called a double pole. For example, all the following have

simple poles at z = 0:

1
z
,

1+ z
z

,
ez

z
,

sinz
z2

,
π

sinπz
; (19)

the last in this list also has simple poles at z =
±1,±2, . . . . All the following have double poles at z = 0:

1
z2
,

1+ z
z2

,
1

z sinz
,

cosz
z2

,
1

sin2πz
. (20)

If the principal part of the Laurent expansion con-

tains an infinite number of nonzero terms, z0 is called

an isolated essential singularity. For example, exp(1/z)
has such a singularity at z = 0.

The coefficient b1 (given by (17)) will play a special

role later; it is called the residue of f at the isolated

singularity, z0, and it is denoted by Res[f ;z0].
There are also nonisolated singularities. The most

common of these occur at branch points. For example,

f(z) = z1/2 has a branch-point singularity at z = 0.

Note that any disk centered at z = 0 will include a piece

of the branch cut emanating from the branch point: f
is discontinuous across the cut so it is certainly not dif-

ferentiable there, implying that z = 0 is not an isolated

singularity.

10 Cauchy’s Residue Theorem

If we want to evaluate I = ∫C f(z)dz, the basic method

is to parametrize each smooth piece of C and then use

the definition (10). In principle, this works for any f
and for any C . However, in practice, C is often closed

and f is analytic apart from some singularities. In these

happy situations, we can calculate I efficiently by using

Cauchy’s residue theorem. Thus, suppose that f(z) is

analytic inside the simple closed contour C (and con-

tinuous on C) apart from isolated singularities at zj ,
j = 1,2, . . . , n. (Note that f may have other singulari-

ties, including branch points, outside C , but these are

of no interest here.) Then∫
C
f(z)dz = 2π i

n∑
j=1

Res[f ;zj], (21)

where C is traversed counterclockwise. This important
result is remembered as “2π i times the sum of the res-
idues at the isolated singularities inside the contour.”
If there are no singularities inside, we recover Cauchy’s
theorem (11).

To prove the theorem, we start with the case n = 1.
There is a Laurent expansion about the sole singularity
z1, convergent in a punctured disk 0 < |z−z1| < b. We
deform C into a smaller contour (enclosing z1) that is
inside the disk. Then we use (17). In the general case,
we deform C and “pinch off,” giving a sum of n contour
integrals, each one containing one singularity.

To understand the pinching-off process, suppose
that n = 2 and deform C into a dumbbell-shaped con-
tour, with two circles joined by two parallel straight
lines, L1 and L2, traversed in opposite directions. The
contributions from L1 and L2 cancel in the limit as
the lines go together, leaving the contributions from
disjoint closed contours around each singularity. This
process is readily extended to any (finite) number of
isolated singularities.

In order to exploit the residue theorem, we need
efficient methods for computing residues. Recall that
Res[f ;z0] is the coefficient b1 in the Laurent expansion
about z0 (see (18)). For simple poles, b1 is the only non-
trivial coefficient in the principal part; thus, at a simple
pole z0,

Res[f ;z0] = lim
z→z0

{(z − z0)f (z)}. (22)

Often, simple poles are characterized by writing f(z) =
p(z)/q(z) with q(z0) = 0, p(z0) ≠ 0, and q′(z0) ≠ 0.
Then

Res[f ;z0] = p(z0)/q′(z0). (23)

For a pole of order m, we can use

Res[f ;z0] = 1
m!

lim
z→z0

dm−1

dzm−1
{(z − z0)mf(z)}.

However, it is sometimes quicker to construct the Lau-
rent expansion directly, and then to pick off b1, the
coefficient of 1/(z − z0). Thus, almost by inspection,
all the simple-pole examples in (19) have Res[f ; 0] = 1.
The five double-pole examples in (20) have Res[f ; 0] =
0, 1, 0, 0, and 0, respectively.

11 Evaluation of Integrals

Cauchy’s residue theorem gives a powerful method for
evaluating integrals. We give a few examples.
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Let C be a circle of radius a centered at the origin
and traversed counterclockwise. The function ez/z has
a simple pole at z = 0 with residue = 1. Hence∫

C

ez

z
dz = 2π i. (24)

This result could have been obtained from the Cauchy
integral formula (12) with f(z) = ez and z0 = 0. Note
also that the value of the integral does not depend
on a; this is not surprising because we know that we
can deform C into a concentric circular contour (for
example) without changing the value of the integral.

Now, starting from the result (24), suppose we para-
metrize C and then use (10); a suitable parametrization
is z(t) = aeit , −π � t � π . As z′(t) = iaeit = iz(t), we
obtain ∫ π

−π
exp (aeit)dt = 2π.

By Euler’s formula, eiθ = cosθ + i sinθ, the integrand
is ea cos t cos (a sin t) + iea cos t sin (a sin t). The second
term is an odd function of t and so it integrates to zero,
leaving ∫ π

0
ea cos t cos (a sin t)dt = π. (25)

Thus, from the known value of a fairly simple contour
integral, (24), we obtained the value of a complicated
real integral. Notice that the formula (25) was derived
by assuming that the parameter a is real and positive.
In fact, it is valid for arbitrary complex a; this is an
example of analytic continuation (see section 13).

We now consider doing the opposite: evaluating inte-
grals by converting them into contour integrals, fol-
lowed by use of the residue theorem.

For trigonometric integrals such as

I1 =
∫ 2π

0

dθ
5+ 4 cosθ

,

the substitution z = eiθ will convert I1 into a contour
integral around the unit circle, |z| = 1. Using dθ/dz =
1/(iz) and cosθ = 1

2 (z + z−1), we obtain

I1 = 1
2i

∫
|z|=1

dz
(z + 2)(z + 1

2 )
.

The integrand is analytic apart from simple poles at
z = −2 and z = − 1

2 . The latter is inside the contour; its
residue is 2

3 (use (22)). Cauchy’s residue theorem (21)
therefore gives I1 = 2

3π .

The method just described requires that the range of
integration for θ has length 2π and that the resulting
integrand has only isolated singularities (not branch
points) inside |z| = 1.

For a second example, consider

I2 =
∫∞
−∞
f(x)dx with f(x) = 1

x4 + 1
.

In order to use the residue theorem, we need a closed
contour C , so we try

∫
C f(z)dz with C consisting of

a piece of the real axis from z = −R to z = R and a
semicircle CR in the upper half-plane of radius R and
centered at z = 0. Then

∫ R
−R
f(x)dx +

∫
CR
f (z)dz = 2π i ×

⎧⎪⎨
⎪⎩

residues
at poles
inside C.

(26)

After calculation of the residues, we let R →∞, so that
the first integral → I2. We will see in a moment that the
second integral → 0 as R →∞.

Now, z4 + 1 = 0 at z = zn = exp (i(2n+ 1)π/4), n =
0,1,2,3. These are simple poles of f(z) with residue
1/(4z3

n) (use (23) with p = 1, q = z4 + 1). The poles z0

and z1 are in the upper half-plane. Hence the right-hand
side of (26) is π/

√
2, and this is I2.

For z ∈ CR we parametrize using z(t) = Reit , 0 � t �
π . We see that f(z) decays as R−4, whereas the length
of CR , πR, increases; overall,

∫
CR f dz decays as R−3.

This rough argument can be made precise.
If we replace f(z) by eikzf (z), we can evaluate

Fourier transforms such as

I3 =
∫∞
−∞

eikxf(x)dx with f(x) = 1
x2 + 1

,

where k is a real parameter. However, some care is
needed: as eikz = eikxe−ky , we have exponential decay
as y → ∞ when k > 0, but exponential growth when
k < 0. Therefore, we use CR when k > 0 but we close
using a semicircle in the lower half-plane when k < 0.
We find that I3 = πe−|k|.

Laplace transforms (2) can be inverted using

g(t) = 1
2π i

∫ c+i∞

c−i∞
f(z) ezt dz.

The contour (called the Bromwich contour ) is parallel
to the y-axis in the z-plane. The constant c is chosen
so that all the singularities of f(z) are to the left of
the contour. If f(z) has poles only, the integral can be
evaluated by closing the contour using a large semi-
circle on the left.

There are many other applications of contour-
integral methods to the evaluation of integrals. They
can also be used to find the sums of infinite series.
Integrands containing branch points can also be con-
sidered. In all cases, one may need some ingenuity
in selecting an appropriate closed contour and/or the
function f(z).
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12 Conformal Mapping

Suppose that f(z) is analytic for z ∈ D. We can regard
f as a mapping, taking points z = x + iy to points
w = f(z) = u+ iv ; denote the set of such points in the
uv-plane for all points z ∈ D by R. Given f and D, we
can determine R. More interestingly, given the regions
D and R, can we find an analytic function f that maps
D onto R? The Riemann mapping theorem asserts that
any simply connected region D can be mapped to the
unit disk |w| < 1. (A region bounded by a simple closed
curve is simply connected if it does not contain any
holes.) The analytic function f effecting the mapping
is called a conformal mapping [??]: two small lines
meeting at a point z0 ∈ D will be mapped into two
small lines meeting at a point w0 = f(z0) ∈ R, and the
angles between the two pairs of lines will be equal. The
conformality property holds for all z0 ∈ D except for
critical points (where f ′(z0) = 0 or∞). Many conformal
mappings are known (there are dictionaries of them)
but constructing them for regions D with complicated
shapes or holes remains a challenge. Once a conformal
mapping is available, it can be used to solve boundary-
value problems for Laplace’s equation (6), for example.

13 Analytic Continuation

Return to the geometric series (1). Denote the infinite
series on the left-hand side by f(z), with domain D
(|z| < 1). Denote the sum on the right-hand side by
g(z) = 1/(1 − z), with domain D′ (z ≠ 1). We observe
that f(z) is analytic inD whereas g(z) is analytic in the
larger region D′. As f(z) = g(z) for z ∈ D we say that
g is the analytic continuation of f into D′. In practice,
we do not usually distinguish between f and g, we just
say that g(z) is analytic for z ∈ D′ and that it can be
defined for z ∈ D ⊂ D′ using f(z). This point of view
is surprisingly powerful.

There are several aspects to this, and it raises several
questions. To begin with, suppose we are given f and
D and we want to find g outside D. There are analyti-
cal and numerical methods available for doing so. For
example, we could use a chain of overlapping disks with
a Taylor expansion about each center. The result will
be locally unique (each step in the chain gives a unique
result) but, if g has a branch point, we could step onto
another branch and thus lose global uniqueness.

Often, we do not know D′: typical analytic continu-
ations will have singularities. For example, the gamma
function, Γ (z), is defined by the integral (3) for Rez > 0;
in this half-plane, Γ is analytic. If we continue Γ (z) into

Rez � 0, we find that there are simple poles at z = −N ,
N = 0,1,2, . . . (so that D′ is the whole complex plane
with the points z = −N removed). Explicitly, we can use
Hankel’s loop integral :

Γ (z) = 1
2i sin(πz)

∫
C
tz−1et dt.

This is a contour integral in the complex t-plane. There
is a cut along the negative real-t axis. The branch of tz

is chosen so that tz = exp(z log t) when t is real and
positive. The contour starts at Re t = −∞, below the cut,
goes once around t = 0, and then returns to Re t = −∞
above the cut.

There are also loop integrals for the Riemann zeta
function, ζ(z), defined initially for Rez > 1 by the
series (9). Thus, it turns out that ζ(z) can be analyt-
ically continued into the whole z-plane apart from a
simple pole at z = 1.

14 Differential Equations

We usually think of a differential equation as being
something to be solved for a real function of a real vari-
able. However, it can be advantageous to “complexify”
the problem. One good reason is that we may be able to
construct solutions using a power-series expansion (8),
and we know that the convergence of such a series is
governed by singularity locations. (More generally, we
could use the “method of Frobenius.”) For example, one
solution of Airy’s equation, w′′(z) = zw(z), is

w(z) = 1+ 1
3!
z3 + 1 · 4

6!
z6 + 1 · 4 · 7

9!
z9 + · · · ,

which defines an entire function of z.
We may be able to write solutions as contour inte-

grals, which then offers possibilities for further analy-
sis. For example, solutions of Airy’s equation can be
written (or sought) in the form

w(z) =
∫
C

e−zt+t
3/3 dt,

where C is a carefully chosen contour in the complex
t-plane.

The study of linear differential equations is a well-
established branch of complex analysis, especially in
the context of the classical special functions [??] (e.g.,
Bessel functions and hypergeometric functions). Non-
linear differential equations and their associated spe-
cial functions are also of interest. For example, there
are the six painlevé equations [??], the simplest being
w′′(z) = 6w2 + z; their solutions, known as Painlevé
transcendents, have a variety of physical applications
but their properties are not well-understood.
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15 Cauchy Integrals

Let C be a simple closed smooth contour. Denote the
interior of C by D+ and the exterior by D−. Define a
function F(z) by the Cauchy integral

F(z) = 1
2π i

∫
C

g(τ)
τ − z dτ, z �∈ C, (27)

where g(t) is defined for t ∈ C . For example, if g(t) =
1, t ∈ C , then

1
2π i

∫
C

dτ
τ − z =

⎧⎨
⎩

1, z ∈ D+,
0, z ∈ D−.

(28)

The integral in (27) is similar to that which appears
in Cauchy’s integral formula (12), except we are not
given any information about g(t) when t �∈ C . Never-
theless, under mild conditions on g, F(z) is analytic
for z ∈ D+ ∪ D−, and F(z) → 0 as z → ∞. What
are the values of F on C? The example (28) suggests
that we should expect F(z) to be discontinuous as z
crosses C . Therefore, we consider the limits of F(z) as
z approaches C (if they exist), and write

F±(t) = lim
z→t

F(z) with z ∈ D± and t ∈ C. (29)

For the example (28), F+(t) = 1 and F−(t) = 0.

Notice that we cannot simply put z = t ∈ C on the
right-hand side of (27): the resulting integral diverges.
However, if g is differentiable at t (in fact, Hölder
continuity is sufficient), we can define the Cauchy
principal-value integral

−
∫
C

g(τ)
τ − t dτ = lim

ε→0

∫
Cε

g(τ)
τ − t dτ, t ∈ C,

where Cε is obtained from C as follows: draw a little
circle of radius ε, centered at t ∈ C , and then remove
the piece of C inside the circle.

Using this definition, define

F(t) = 1
2π i

−
∫
C

g(τ)
τ − t dτ, t ∈ C.

This function is related to F±(t), defined by (29), by the
Sokhotski–Plemelj formula:

F±(t) = ± 1
2g(t)+ F(t), t ∈ C. (30)

This describes the “jump behavior” of the Cauchy
integral F(z) as z crosses C . In particular,

F+(t)− F−(t) = g(t), t ∈ C. (31)

One elegant consequence of (30) is that the solution,
w, of the singular integral equation

1
π i
−
∫
C

w(τ)
τ − t dτ = g(t), t ∈ C,

is given by the formula

w(t) = 1
π i
−
∫
C

g(τ)
τ − t dτ, t ∈ C.

16 The Riemann–Hilbert Problem

Let D± and C be as in section 15. Suppose that two

functions, G(t) and g(t), are given for t ∈ C . Then, the

basic Riemann–Hilbert problem is to find two functions

Φ+(z) and Φ−(z), with Φ± analytic in D±, that satisfy

Φ+(t) = G(t)Φ−(t)+ g(t), t ∈ C, (32)

where Φ+(t) and Φ−(t) are defined as in (29); condi-

tions on Φ−(z) as z → ∞ are usually imposed too.

(There is a variant whereC is not closed; in this case, the

behavior near the endpoints of C plays a major role.)

WhenG ≡ 1, we can solve (32) using a Cauchy integral

and (31). WhenG �≡ 1, we start with the following homo-

geneous problem (g ≡ 0).

Find functions K+ and K−, with K± analytic in D±,

that satisfy

K+(t) = G(t)K−(t), t ∈ C. (33)

Suppose we can find such functions and that they do

not vanish. Then, eliminating G from (32) gives

Φ+(t)
K+(t)

− Φ−(t)
K−(t)

= g(t)
K+(t)

, t ∈ C,

which, again, we can solve using a Cauchy integral

and (31).

The problem of finding K± is more delicate. At

first sight, we could take the logarithm of (33), giving

logK+ − logK− = logG. This looks similar to (31) but it

usually happens that logG(t) is not continuous for all

t ∈ C , which means that we cannot use (30). However,

this difficulty can be overcome.

The problem of finding K± such that (33) is satisfied

is also the key step in the Wiener–Hopf technique (a

method for solving linear PDEs with mixed boundary

conditions and semi-infinite geometries). In that con-

text, a typical problem would be: factor a given func-

tion L(z) as L(z) = L+(z)L−(z), where L+(z) is ana-

lytic in an upper half-plane, Imz > a, L−(z) is analytic

in a lower half-plane, Imz < b, and a < b so that the

two half-planes overlap. There are also related prob-

lems where L is a 2× 2 or 3× 3 matrix; it is not cur-

rently known how to solve such matrix Wiener–Hopf

problems except in some special cases.
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17 Closing Remarks

Complex analysis is a rich, deep, and broad subject
with a history going back to Cauchy in the 1820s.
Inevitably, we have omitted some important topics,
such as approximation theory in the complex plane and
analytic number theory. There are numerous fine text-
books, a few of which are listed below. However, do not
get the impression that complex analysis is a dead sub-
ject: it is not. In this article we have tried to cover the
basics, with some indications of where problems and
opportunities remain.
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