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1. Introduction

Ideal flow past a rigid sphere of radius a is a
textbook boundary-value problem (BVP). It can
be solved exactly using separation of variables.
However, this method is not immediately appli-
cable when the sphere is perturbed so that the
new boundary is given by

S : r = a(1 + ε f(θ, ϕ)), 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π,

where (r, θ, ϕ) are spherical polar coordinates, f
is a given function and ε is a small parameter.
Nevertheless, such problems can be solved approx-
imately, exploiting the size of ε. Conventionally,
this is done by the ‘boundary perturbation tech-
nique’ [4], in which the boundary condition on S
is Taylor-expanded about the unperturbed bound-
ary r = a. Then, an expansion of the potential as

φ = φ0 + εφ1 + ε2φ2 + · · ·

leads to a sequence of BVPs for φn in the unper-
turbed domain (r > a); φ0 is the unperturbed
solution and subsequent φn are forced by φm

with m < n.
The idea behind the boundary perturbation

technique is old and familiar. For example, it is
used in the theory of small-amplitude water waves,
wherein the nonlinear boundary conditions on the
(unknown) free surface z = F (x, y) are ‘linearized’
about the mean free surface z = 0. The work
of G.H. Darwin is also of interest. He wrote five
papers in 1879 on the motions of an incompress-
ible viscous fluid inside a perturbed sphere He
neglected the inertia terms in the Navier–Stokes
equations (Stokes approximation) giving a linear
interior BVP, which he solved for ‘small deviations
from sphericity’, to first order in ε. He argued
that one could take account of these deviations
by imposing certain tractions on r = a, and then
solved the corresponding BVP inside the sphere.
His method is applicable to any f although he was
mainly interested in spheroidal surfaces.

In this paper, we describe an alternative
method. First, we reduce the BVP to a bound-
ary integral equation (BIE) over S. We rewrite
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this equation by projecting onto the unperturbed
(reference) surface. At this stage, we have an ex-
act reformulation of the original BVP. Next, we
introduce perturbation expansions, leading to a
sequence of BIEs, Lφn = bn, n = 0, 1, 2, . . .. Each
BIE involves the same operator L but different
forcing functions bn; L corresponds to the unper-
turbed BVP. Any convenient method can be used
to invert L.

Our development is concerned with problems
where the obstacle is thin. Thus, we replace the
closed surface S by an open surface Ω. We suppose
that Ω is a non-planar perturbation of a circular
disc D. Incomplete analyses of related problems
have been published [1, 5].

In one sense, we can view the perturbation
as a singular perturbation: the place where φ is
singular (namely the edge) has moved, and so this
makes perturbing the BVP itself somewhat diffi-
cult. But in another sense, the perturbation is
regular: the potential on Ω will not be too differ-
ent from the potential at nearby points on D. This
means that it will be relatively straightforward to
work with the associated BIEs.

So, we proceed by reducing the exact BVP
to a hypersingular integral equation for [φ], the
discontinuity in the potential across Ω. After pro-
jection, we obtain a sequence of hypersingular in-
tegral equations of the form Hwn = bn where Ω is
given by

Ω : z = ε f(x, y), (x, y) ∈ D,

[φ] = w0 + εw1 + ε2w2 + · · ·
and H corresponds to potential flow past a rigid
circular disc. We can derive an explicit closed-
form expression for the first-order correction w1.
Note that, for some problems (such as axial mo-
tion of an axially-perturbed disc), the first-order
correction to the added mass is identically zero.

To verify the method, we have derived ex-
plicit results for w0, w1 and w2 for two prob-
lems, namely, an inclined flat elliptical screen and
a spherical cap. In particular, we have calculated
the added mass for these flows, and find agreement
with known exact solutions. Moreover, our result
for uniform flow past a shallow spherical cap in
any direction interpolates between the known re-
sults for axial flow and flow perpendicular to the
axis of the cap.
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The use of hypersingular integral equations
leads to a simpler formulation than would fol-
low from the use of regularized integral equa-
tions. This advantage should make the treatment
of problems in Stokes’ flow and crack problems
in elasticity feasible. Xu, Bower and Ortiz [10]
have used a perturbation theory based on a regu-
larized integral equation for a dislocation density
(analogous to the tangential gradient of [φ]), but
they were only able to find the first-order correc-
tion (w1) for a semi-infinite crack. We are cur-
rently extending the method to non-planar per-
turbations of a penny-shaped crack. We have con-
sidered in-plane perturbations of a penny-shaped
crack elsewhere [6, 7].

2. Formulation

We consider potential flow past a thin rigid
screen Ω. The problem is to solve Laplace’s equa-
tion in three dimensions, ∇2φ = 0, subject to

∂φ/∂n + ∂φ0/∂n = 0 on Ω (1)

and φ = O(r−1) as r → ∞, where r2 = x2+y2+z2,
∂/∂n denotes normal differentiation, and φ0 is the
velocity potential of the given ambient flow, which
we take to be uniform:

φ0(x, y, z) = U(x sin β − z cos β).

Denote the two sides of Ω by Ω+ and Ω−.
Define the unit normal vector on Ω to point from
Ω+ into the fluid, and define the discontinuity in φ
across Ω by

[φ(q)] = lim
Q→q+

φ(Q) − lim
Q→q−

φ(Q)

where q ∈ Ω, q± ∈ Ω± and Q is a point in the
fluid. Then the added mass is given by

M =
ρ

U2

∫

Ω

[φ]
∂φ0

∂n
dS,

where ρ is the fluid’s density. M is known explic-
itly for flat circular and elliptical discs, and for
spherical caps.

3. Governing integral equation

For a thin screen Ω, we can write the potential
at P as a distribution of normal dipoles:

φ(P ) =
1

4π

∫

Ω

[φ(q)]
∂

∂nq
G(P, q) dSq. (1)

Suppose that the surface Ω is given by

Ω : z = F (x, y), (x, y) ∈ D,

where D is the unit disc in the xy-plane. Define a
normal vector to Ω by

N = (−∂F/∂x,−∂F/∂y, 1) ,

and then n = N/|N| is a unit normal vector. Sup-
pose that P and q ∈ Ω are at (x0, y0, z0) and
(x, y, z), respectively. Let [φ(q)] = w(x, y). Then,
we find that (1) becomes

φ(x0, y0, z0) =
1

4π

∫

D

w(x, y)N(q) · R2
dA

R3
2

where R2 = (x0 − x, y0 − y, z0 − F (x, y)), R2 =
|R2| and dA = dx dy. This is what we mean by
‘projecting onto D’.

Application of the boundary condition (1)
to (1) gives

1

4π
×
∫

Ω

[φ(q)]
∂2

∂np∂nq
G(p, q) dSq = −∂φ0

∂np
(2)

for p ∈ Ω, where the integral must be interpreted
in the finite-part sense. Equation (2) is the govern-
ing hypersingular integral equation for [φ]; it is to
be solved subject to the edge condition [φ(q)] = 0
for all q ∈ ∂Ω, the edge of Ω.

Projecting onto D, (2) becomes

1

4π
×
∫

D

K(x0, y0;x, y)w(x, y) dA = b(x0, y0) (3)

for (x0, y0) ∈ D, where

K =
N(p) · N(q)

R3
1

− 3
(N(p) · R1) (N(q) · R1)

R5
1

,

R1 = (x − x0, y − y0, F (x, y) − F (x0, y0)), R1 =
|R1| and

b(x, y) = U (cos β + (∂F/∂x) sin β) .

Equation (3) is to be solved subject to the edge

condition w(x, y) = 0 for r =
√

x2 + y2 = 1.
Let

F1 = ∂F/∂x and F2 = ∂F/∂y (4)

evaluated at (x, y), with F 0
1 and F 0

2 being the
corresponding quantities at (x0, y0). Let R =
{(x − x0)

2 + (y − y0)
2}1/2 and Λ = {F (x, y) −

F (x0, y0)}/R. Also, define the angle Θ by

x − x0 = R cos Θ and y − y0 = R sinΘ,

whence R1 = R(cos Θ, sin Θ,Λ). Hence

K =
1

R3

{
1 + F1F

0
1 + F2F

0
2

(1 + Λ2)3/2
− 3Y Y 0

(1 + Λ2)5/2

}
.

where Y = F1 cos Θ + F2 sin Θ − Λ and Y 0 =
F 0

1 cos Θ + F 0
2 sin Θ − Λ. This formula is exact.

Of course, one can attempt to solve (3) numer-
ically, but here we are interested in asymptotic
approximations for almost-flat discs.
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4. Wrinkled discs

Suppose that

F (x, y) = ε f(x, y)

where ε is a small dimensionless parameter and f
is independent of ε. Setting

Λ = ελ with λ = {f(x, y) − f(x0, y0)}/R

we find that

K = R−3{1 + ε2K2 + O(ε4)} as ε → 0,

where

K2 = f1f
0
1 + f2f

0
2 − 3

2λ2 − 3YY0

Y = f1 cos Θ + f2 sin Θ − λ, Y0 = f0
1 cos Θ +

f0
2 sin Θ − λ and fj , f0

j are defined similarly to

Fj , F 0
j ; see (4).
We expand b similarly, obtaining

b(x, y) = b0 + ε b1(x, y)

where b0 = U cos β and b1 = Uf1 sin β.
Then, if we expand w as

w(x, y) = w0 + εw1 + ε2w2 + · · · ,

we find from (3) that

Hw0 = b0, Hw1 = b1, and Hw2 = −K2w0,

where

(Hw)(x0, y0) =
1

4π
×
∫

D

w(x, y)
dA

R3

is the basic hypersingular operator for potential
flow past a rigid circular disc and

(K2w)(x0, y0) =
1

4π
×
∫

D

K2(x, y;x0, y0)w(x, y)
dA

R3
.

As b0 is a constant, we can determine w0 im-
mediately by solving Hw0 = b0:

w0(x, y) = −(4/π)b0

√
1 − r2.

Next, we calculate w1 by solving Hw1 = b1.
General methods for solving Hw = b are avail-
able (see [7] for references), and these can be used
to solve for w1 for any ambient flow and any disc
perturbation f . Thus, introduce plane polar coor-
dinates on D, so that x = r cos θ and y = r sin θ,
and then expand b as

b(r, θ) = B0(r) +

∞∑

n=1

{
Bn(r) cos nθ + B̃n sinnθ

}
.

Then the solution of Hw = b is given by

w(r, θ) = W0 +

∞∑

n=1

{
Wn cos nθ + W̃n sinnθ

}

where

Wn(r) =
−4

π
rn

∫ 1

r

Qn(t)

t2n
√

t2 − r2
dt,

Qn(t) =

∫ t

0

Bn(s) sn+1

√
t2 − s2

ds,

with a similar relation between W̃n and B̃n. Re-
placing b by b1 gives the first-order correction w1.

For w2, we can foresee that the most difficult
part of the calculation will involve the evaluation
of K2w0. The simplest results obtain when f is a
polynomial. Some sample results will be described
below.

The added mass is given by

M = − ρ

U

∫

D

w(x, y) {cos β + F1 sin β} dA.

So, writing M = M0 + εM1 + ε2M2 + · · · gives

M0 = − ρ

U
cos β

∫

D

w0 dA = 8
3ρ cos2 β,

M1 = − ρ

U

∫

D

{w1 cos β + f1w0 sin β} dA,(1)

M2 = − ρ

U

∫

D

{w2 cos β + f1w1 sin β} dA.(2)

M0 is the added mass for a flat circular disc of
unit radius. Note that if the disc is wrinkled ax-
isymmetrically so that f = f(r), then M1 ≡ 0.

4.1. Example 1: inclined ellipse. Suppose that
Ω is an ellipse on the plane z = x tan γ. Let X
and Y be Cartesian coordinates on this plane, so
that X = x cos γ+z sin γ, Y = y and Z = z cos γ−
x sin γ, where Z is a coordinate perpendicular to
the plane. Then, the ellipse Ω with ∂Ω given by

X2 cos2 γ + Y 2 = 1

can be specified by

z = F (x, y) = x tan γ, (x, y) ∈ D.

For small inclinations of the ellipse to the
plane z = 0, set ε = tan γ and f(x, y) = x,
whence K2 = 1

4 (1 − 3 cos 2Θ), b1 = U sin β,

w1 = −(4/π)b1

√
1 − r2 and

M1 = 8
3ρ sin 2β.

It turns out that [8] Hw2 = − 1
4b0 and so

w2 = − 1
4w0. Substituting into (2) then gives

M2 = ρ
(
1 − 5

3 cos 2β
)
.

Thus, we find that the added mass is given by

M = 8
3ρ

{
cos2 β + ε sin 2β

+ ε2
(

3
4 cos2 β − cos 2β

)}
+ O(ε3).

This agrees with the known exact solution.
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4.2. Example 2: spherical cap. Consider a sphe-
rical cap given by

z = F (x, y) = a −
√

a2 − x2 − y2, (x, y) ∈ D,

where a is the radius of the sphere. The cap sub-
tends a solid angle of 2π(1 − cos α) at the centre
of the sphere, where sinα = a−1.

We consider a shallow spherical cap, given ap-
proximately by z = ε f(x, y) with

f(x, y) = 1
2 (x2 + y2) and ε = a−1 = sin α.

This is an example of a rippled surface. We have
f1 = x, f2 = y, b1 = Ux sinβ and

w1(x, y) = − 8
3π−1Ux sinβ

√
1 − r2.

Thus, from (1),

M1 =
10

3π
ρ sin 2β

∫

D

x
√

1 − r2 dA = 0,

as expected. So, M = M0 + O(ε2), for all β.
The second-order correction is given by (2);

write it as
M2 = M

(1)
2 + M

(2)
2

where

M
(1)
2 = − ρ

U
sinβ

∫

D

f1w1 dA

= 16
45ρ sin2 β

and

M
(2)
2 = − ρ

U
cos β

∫

D

w2 dA. (3)

Next, we solve Hw2 = −K2w0 for w2. Direct
calculation gives [8]

K2 = P0 + Pc cos 2Θ + Ps sin 2Θ

where P0, Pc and Ps are quadratic polynomials:

P0 = 9
16 (x2 + y2 + x2

0 + y2
0) − 7

8 (xx0 + yy0),

Pc = − 3
16 (x2 − y2 + 2xx0 − 2yy0 + x2

0 − y2
0),

Ps = − 3
8 (xy + xy0 + yx0 + x0y0).

Next, we use known results for penny-shaped
cracks [6, 7] to evaluate K2w0; this gives

Hw2 = −K2w0 = 3
32b0(2 − x2

0 − y2
0).

Solving this equation then gives

w2(x, y) = − 1
6 (b0/π)(4 − r2)

√
1 − r2

for the second-order solution. Integrating over the
unit disc D, (3) gives

M
(2)
2 = 2

5ρ cos2 β.

Finally, we find that

M = ρ
{

8
3 cos2 β + ε2

(
16
45 sin2 β + 2

5 cos2 β
)}

,

correct to second order in ε. This formula agrees
with the known exact results for the axisymmetric
problem (β = 0) [2] and for flow perpendicular to
the axis of the cap (β = 1

2π) [3].

5. Conclusions

We have described a method for calculating
the added mass of wrinkled discs in potential flow.
The general methodology (reduce the BVP to a
BIE, project onto a reference surface—these are
both exact steps—and then introduce perturba-
tion expansions) has wider applicability: we are
currently using it for crack problems in elasticity
theory.

For axisymmetric problems, one can make
progress by performing the azimuthal integra-
tionin (3). As is well known for axisymmetric po-
tential theory, this leads to one-dimensional inte-
gral equations with kernels expressed in terms of
complete elliptic integrals. These equations can
then be solved as before. Some details are given
in [9].
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