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1 Introduction

This chapter is concerned with cracks . Real cracks in solids are complicated: they are thin
cavities, their two faces may touch, and the faces may be rough. We consider ideal cracks.
By definition, such a crack is modelled by a smooth open surface Ω (such as a disc or a
spherical cap); the elastic displacement is discontinuous across Ω, and the traction vanishes
on both sides of Ω (so that the crack is seen as a cavity of zero volume).

We suppose that we have one crack with a smooth edge, ∂Ω, embedded in an infinite,
unbounded, three-dimensional solid. Extensions to multiple cracks, to cracks in two dimen-
sions, to cracks in half-spaces or in bounded domains, or to cracks with less smoothness may
be made, with varying degrees of difficulty. For a variety of applications, see the book by
Zhang and Gross [16].

In fact, to keep the analysis relatively simple, we shall focus on analogous scalar problems
coming from acoustics. Thus, we suppose that Ω is a thin screen in a compressible fluid.
The screen is hard (or rigid), which means that we have a Neumann boundary condition.
See Section 2 for details.

We are interested in scattering time-harmonic waves by the screen. Much is known about
how to calculate scattering from objects of non-zero volume [9]. Except in a few special cases
(such as scattering by a sphere), it is usual to derive and solve (numerically) a boundary
integral equation over the boundary of the scatterer. However, special methods are needed
for zero-volume obstacles such as cracks and screens. In particular, the Neumann boundary
condition means that it is inevitable that we shall encounter hypersingular boundary integral
equations over the screen. These equations can be tackled directly (using boundary elements,
perhaps), or they may be recast into other equivalent forms. For example, if the screen is
flat, various simplifications can be made. Integral equations can also be used as the basis
for various approximation schemes.

After formulating our scattering problem in the next section, we give the governing hyper-
singular integral equation in Section 3. This equation is solved approximately for long waves
(low-frequency scattering) in Section 4. The approach used is elevated to a well-known
‘strategy’ in Section 5 prior to further applications.

∗This appeared as Chapter 5 in Elastic Waves at High Frequencies by J. G. Harris, Cambridge University
Press, 2010, pp. 81–95.
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For flat cracks and screens, we can simplify the governing hypersingular integral equation.
This is done in Section 6. Alternatively, we can use a direct approach, using Fourier trans-
forms; see Section 7. Methods for solving the resulting equations are discussed in Section 8.
The final section is concerned with curved cracks and screens. Results for cracks that are
almost flat are described.

2 Formulation

We consider acoustic scattering by a thin rigid screen Ω surrounded by a compressible fluid;
we model the screen as a smooth simply-connected bounded surface with a smooth edge ∂Ω.
We write the scattered field as Re {usc e−iωt}, where ω is the circular frequency. Then, usc

solves the Helmholtz equation in three dimensions,

∇2usc + k2usc = 0, in the fluid, (1)

the Sommerfeld radiation condition at infinity, and the boundary condition

∂usc

∂n
+
∂uin

∂n
= 0 on Ω. (2)

In addition usc is required to be bounded everywhere: we do not permit sources on ∂Ω. Here,
k = ω/c, c is the constant speed of sound, uin is the given incident field and ∂/∂n denotes
normal differentiation. The total field is u = usc + uin so that (2) gives ∂u/∂n = 0 on Ω.

Denote the two sides of Ω by Ω+ and Ω−, and define the unit normal vector on Ω, n, to
point from Ω+ into the fluid. Then, define the discontinuity in u across Ω by

[u(q)] = lim
Q→q+

u(Q)− lim
Q→q−

u(Q)

where q ∈ Ω, q± ∈ Ω± and Q is a point in the fluid. Notice that [u] = [usc] as [uin] = 0.
The scattered field has the integral representation

usc(P ) =
1

4π

∫
Ω

[u(q)]
∂

∂nq
G(P, q) dSq, (3)

where
G(P, q) = R−1 exp (ikR) (4)

is the free-space Green’s function and R is the distance between P and q ∈ Ω.
To be more explicit, we introduce Cartesian coordinates Oxyz and suppose that the

surface Ω is given by
Ω : z = S(x, y), (x, y) ∈ D,

where D is a region in the xy-plane with edge ∂D. We define a normal vector to Ω by

N = (−∂S/∂x, −∂S/∂y, 1),

and then n = N/|N| is a unit normal vector.
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Also, if uin represents an incident plane wave, then

uin(x, y, z) = eik(xα1+yα2+zα3), (5)

where α2
1 + α2

2 + α2
3 = 1.

Suppose that P has position vector r = (x0, y0, z0) and q ∈ Ω has position vector q =
(x, y, S(x, y)). Let

[u(q)] = w(x, y).

Then, we find that (3) becomes, exactly,

usc(x0, y0, z0) =
1

4π

∫
D

w(x, y) (N(q) ·R2)(1− ikR2) eikR2
dA

R3
2

where dA = dx dy, R2 = r− q and R2 = |R2|.
In the far field, we have

usc(P ) ∼ r−1eikr f(r̂) as r →∞,

where r = |r|, r̂ = r/r and

f(r̂) =
k

4πi

∫
Ω

[u(q)] {r̂ · n(q)} exp (−ikq · r̂) dSq (6)

=
k

4πi

∫
D

w(x, y) {r̂ ·N(q)} exp (−ikq · r̂) dA; (7)

f is the far-field pattern.
The formula (7) is exact. Although the integration is over a flat region, the geometry of

the screen enters through w, N and q. Thus, we can expect that reasonable approximations
to w will generate good approximations to f .

For example, in some applications, a static approximation to w (or [u]) could be used;
this idea, leading to low-frequency approximations, will be developed in Section 4.

For another example, we might be able to use high-frequency approximations for [u]. The
most popular of these is the Kirchhoff approximation, [u] ' uK, where uK(q) is the total
field at q when the incident field is reflected by an infinite flat plane perpendicular to n(q).
This approximation is used widely in models of ultrasonic nondestructive evaluation; see, for
example, [12, Chapter 10].

3 A hypersingular integral equation

Application of the boundary condition (2) to (3) gives

1

4π
×
∫

Ω

[u(q)]
∂2

∂np∂nq
G(p, q) dSq = −∂uin

∂np
, p ∈ Ω, (8)

where the integral must be interpreted in the finite-part sense. Equation (8) is the governing
hypersingular integral equation for [u]; it is to be solved subject to the edge condition

[u(q)] = 0 for all q ∈ ∂Ω. (9)
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Equation (8) could be solved numerically, using boundary elements combined with reg-
ularization techniques. Indeed, this is probably the only option if Ω has a complicated,
three-dimensional shape. As a sample, we cite a paper by Tada et al. [13], in which a for-
mulation for transient elastodynamics and non-planar cracks is developed. The literature on
methods for solving hypersingular equations, numerically, is extensive.

The right-hand side of (8) reduces to −ikuinα̂ · n(p) when uin is given by (5); here,

α̂ = (α1, α2, α3)

is a unit vector giving the direction in which the incident plane wave is propagating.
What does ‘hypersingular’ mean? This question can be answered precisely, using the

notion of pseudodifferential operators acting between function spaces. However, for many
purposes, it is enough to gain intuition through simple examples. Suppose we have an
expression Lf , where L is a linear operator and f is a function. If L is an integral operator
with a weakly-singular kernel, Lf will be smoother than f : we usually think of integration
as a smoothing process. If L is an integral operator defined by a Cauchy principal-value
integral (a singular integral operator), Lf will have the same smoothness as f : in some
sense, L is similar to the identity operator, I. Hypersingular operators coarsen. If L is such
an operator, Lf will have less smoothness than f : in some sense, L is similar to a differential
operator, and this operator will be of first order in our applications.

We usually identify hypersingular operators in one of two ways. One is as in (8): the
integral operator is defined in terms of a finite-part integral (and does not exist as an improper
integral or as a Cauchy principal-value integral). The second way involves Fourier transforms.
Roughly, we can write (locally) Lf = F−1{σF{f}}, where σ is called the symbol and F
denotes Fourier transformation. Then, if σ is a linear function of the transform variable(s), L
is a first-order differential operator; if σ is linear for large values of the transform variable(s),
then L will be identified as one of our hypersingular operators — we will see examples in
Section 7.

Returning to (8), let us project onto D (as in Section 2), giving

1

4π
×
∫
D

K(x0, y0; x, y)w(x, y) dA = b(x0, y0), (x0, y0) ∈ D, (10)

where

K = R−3
1 (1− ikR1) eikR1{N(p) ·N(q)}
−R−5

1 (3− 3ikR1 − k2R2
1) eikR1(N(p) ·R1)(N(q) ·R1),

R1 = (x− x0, y − y0, S(x, y)− S(x0, y0)), R1 = |R1| and

b(x, y) = −∂uin/∂N = −ikN · α̂ exp (ikq · α̂) (11)

when uin is given by (5). Notice that K(x0, y0; x, y) = K(x, y; x0, y0).
Equation (10) is to be solved subject to the edge condition

w(x, y) = 0 for all points (x, y) on ∂D. (12)
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Let
S1 = ∂S/∂x and S2 = ∂S/∂y evaluated at (x, y), (13)

with S0
1 and S0

2 being the corresponding quantities at (x0, y0). Then N(q) = (−S1,−S2, 1)
and N(p) = (−S0

1 ,−S0
2 , 1). Let

R = {(x− x0)2 + (y − y0)2}1/2 (14)

and Λ = {S(x, y)− S(x0, y0)}/R. Also, define the angle Θ by

x− x0 = R cos Θ and y − y0 = R sin Θ,

whence R1 = R(cos Θ, sin Θ, Λ). Hence

K =
eikRX

R3

{
1− ikRX

X3
(1 + S1S

0
1 + S2S

0
2)− Y

X5
(3− 3ikRX − (kRX)2)

}
, (15)

where X =
√

1 + Λ2 and

Y = (S1 cos Θ + S2 sin Θ− Λ)(S0
1 cos Θ + S0

2 sin Θ− Λ).

This formula for K is exact. If we expand K for small R about p, we find that

K ∼ R−3σ(p; Θ) (16)

where

σ(p; Θ) =
1 + (S0

1)2 + (S0
2)2

1 + (S0
1 cos Θ + S0

2 sin Θ)2
.

In particular, σ ≡ 1 when S is constant. Equation (16) exhibits the strong singularity in the
kernel K, and is typical of hypersingular operators defined over surfaces.

4 Low-frequency scattering

Before the advent of computers, it was traditional to obtain approximate solutions of scat-
tering problems, assuming that the frequency is low, so that the crack is assumed to be
small compared to the wavelength of the incident field. These approximations are still useful
today. In three dimensions, it is known that the scattered field is an analytic function of k:
it has a Maclaurin expansion with respect to k. Thus, associated static problems (where
k = 0) feature.

The basic static problem is as follows. Let φa denote the velocity potential of a given
ambient flow. Then, we seek another potential φ, where φ is a bounded solution of ∇2φ = 0
in the fluid, with

∂φ

∂n
+
∂φa

∂n
= 0 on Ω

and φ = O(r−1) as r →∞. For a uniform ambient flow, we have

φa(x, y, z) = xα1 + yα2 + zα3. (17)
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In general, we can find φ by solving a hypersingular integral equation analogous to (8),
namely

1

4π
×
∫

Ω

[φ(q)]
∂2

∂np∂nq
G0(p, q) dSq = −∂φa

∂np
, p ∈ Ω, (18)

with [φ(q)] = 0 for all q ∈ ∂Ω. Here, G0 = R−1 is the static free-space Green’s function;
see (4). The right-hand side of (18) reduces to −α̂ · n(p) when φa is given by (17).

Returning to (8), we seek solutions in powers of k. We can write

G = G0 + kG1 + · · · and uin = u0
in + ku1

in + · · · ,

and then (8) implies that [u] has a similar expansion,

[u] = u0 + ku1 + · · · .

Substituting and collecting up powers of k, we obtain a sequence of equations from which uj
can be determined. The first two are

L0u0 = b0 and L0u1 = b1,

where

L0u =
1

4π
×
∫

Ω

u(q)
∂2

∂np∂nq
G0(p, q) dSq, b0(p) = −∂u

0
in

∂np
,

b1(p) = −∂u
1
in

∂np
− 1

4π
×
∫

Ω

u0(q)
∂2

∂np∂nq
G1(p, q) dSq

and uj = 0 on ∂Ω for j = 0, 1, 2, . . .. Thus, each uj is obtained by solving a certain static
problem. The problem itself could be solved by any convenient method, not necessarily via
the equation L0uj = bj.

For an incident plane wave, (5) gives

uin(x, y, z) = 1 + ik(xα1 + yα2 + zα3) + · · · .

Thus, u0
in ≡ 1 and b0 ≡ 0. As the equation L0uj = bj is uniquely solvable (subject to uj = 0

on ∂Ω), we obtain u0 ≡ 0. Then, the equation for u1 reduces to

L0u1 = −iα̂ · n(p).

Hence, comparison with (18) gives u1 = i[φ] and

[u] ' ik[φ] for small k.

This approximation can then be inserted in (6) to give a low-frequency approximation for
the far-field pattern.
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5 Some strategies

In general, we encounter equations, such as (10), that we can write in operator form as

Hw = b, (19)

where H is a linear operator, b is known and w is to be found. We write (19) as

(L0 + L1)w = b with L1 = H−L0, (20)

where L0 is another operator. If L0 is invertible, we obtain

(I +M)w = g with M = L−1
0 L1 and g = L−1

0 b. (21)

Several stategies for solving (19) follow this general pattern. To be effective, L−1
0 should be

available explicitly or it should be easier to compute than H−1.
For example, if L0 is H evaluated at k = 0, we obtain a method with two virtues. First,

the operator M will not be hypersingular: the operator H has been regularized. Second,
we have access to analytical approximations for low-frequency scattering, as discussed in
Section 4. This is because M is small in some norm, so that (I +M)w = g can be solved
by iteration.

For another example, if L0 is H evaluated for a simpler geometry, we obtain a method
for perturbed screens (such as wrinkled discs).

We shall see examples of these strategies later.

6 Flat cracks as a special case

Almost all the literature on scattering by three-dimensional screens (and cracks) assumes
that the screen is flat. Thus, we assume that S(x, y) ≡ 0 whence D ≡ Ω. From (10) and
(15), the governing hypersingular integral equation reduces to

1

4π
×
∫
D

(1− ikR)
eikR

R3
[u(x, y)] dA = b(x0, y0), (x0, y0) ∈ D, (22)

where R is defined by (14) and

b(x, y) = −∂uin/∂z evaluated on z = 0. (23)

Noticing that

1

R3
(1− ikR) eikR =

(
∂2

∂x2
+

∂2

∂y2
+ k2

)
eikR

R

=

(
∂2

∂x2
0

+
∂2

∂y2
0

+ k2

)
eikR

R
,

we can rewrite (22) as(
∂2

∂x2
0

+
∂2

∂y2
0

+ k2

)∫
D

[u(x, y)]
eikR

R
dA = 4πb(x0, y0), (x0, y0) ∈ D. (24)
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This can be regarded as a kind of regularization, because the finite-part integral has gone,
although it has been replaced by a differential operator.

For an incident plane wave, (23) gives

b(x, y) = −ikα3eik(xα1+yα2) =
1

ikα3

(
∂2

∂x2
+

∂2

∂y2
+ k2

)
eik(xα1+yα2)

(for α3 6= 0). Then, (24) can be integrated to give∫
D

[u(x, y)]
eikR

R
dA =

4π

ikα3

eik(x0α1+y0α2) + Ψ0(x0, y0), (x0, y0) ∈ D, (25)

where Ψ0(x, y) solves (
∂2

∂x2
+

∂2

∂y2
+ k2

)
Ψ0(x, y) = 0, (x, y) ∈ D.

Denote the left-hand side of (25) by S[u]; S is a single-layer operator. The equation
Sw = g arises when the analogous scattering problem for a sound-soft screen (Dirichlet
condition) is solved. It is known that, in general, the solution of Sw = g is infinite around ∂D,
whereas we want w to satisfy the edge condition (12). This condition can only be satisfied
by making an appropriate choice for Ψ0; it is not clear how to make this choice in practice.

It is known that S smooths by one order. Thus, the operator on the left-hand side of
(24) coarsens by one order.

7 Flat cracks: direct approach

Here, we assume from the outset that the crack or screen is flat and lying in the xy-plane.
To proceed, we use two-dimensional Fourier transforms. Thus, define

U(ξ, η, z) = F{usc} =

∫ ∞
−∞

∫ ∞
−∞

usc(x, y, z) ei(ξx+ηy) dx dy

with inverse

usc(x, y, z) = F−1{U} =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

U(ξ, η, z) e−i(ξx+ηy) dξ dη.

Transforming (1) gives (k2 − ξ2 − η2 + ∂2/∂z2)U = 0 with solution

U(ξ, η, z) = A±(ξ, η) e±γz for ±z > 0.

Here, A+ and A− are arbitrary functions, and γ is defined as follows:

γ =

{ √
s2 − k2, s > k,

−i
√
k2 − s2, 0 ≤ s < k,

with s =
√
ξ2 + η2.

This definition ensures that the radiation condition is satisfied.
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As ∂usc/∂z is continuous across z = 0 for all (x, y), we infer that A+ = −A−. This
implies that usc(x, y, z) is an odd function of z, usc(x, y,−z) = −usc(x, y, z), so we can now
assume that z ≥ 0 and write

usc(x, y, z) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

A(ξ, η) e−γz e−i(ξx+ηy) dξ dη, z > 0. (26)

Let us identify A in terms of [u]. From (26), we have

[u(x, y)] =
2

(2π)2

∫ ∞
−∞

∫ ∞
−∞

A(ξ, η) e−i(ξx+ηy) dξ dη = 2F−1{A},

so that 2A = F{[u]}. Explicitly, as [u(x, y)] = 0 for (x, y) 6∈ D, we have

2A(ξ, η) = F{[u]} =

∫
D

[u(x, y)] ei(ξx+ηy) dx dy. (27)

Then, application of the boundary condition (2) on z = 0+ yields

∂uin

∂z
=

1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

γA(ξ, η) e−i(ξx+ηy) dξ dη, (x, y) ∈ D,

or, more concisely,
−1

2
F−1 {γF{[u]}} = b(x, y), (x, y) ∈ D, (28)

where b is defined by (23). This is another equation for [u]; it should be compared with (22).
Once solved, usc is given by (26) with (27).

Equation (28) can be regarded as a hypersingular equation. This can be seen by noticing
that γ ∼ s as s→∞, so that the right-hand side of (28) is similar to a first derivative of [u].
For an extensive review of the use of (28) for scattering computations, see [2].

Write γ = s+ β(s) where β = γ − s. Then, we can write (28) as (20) with

L0w = −1
2
F−1{sF{w}}, L1w = −1

2
F−1{βF{w}}

and w = [u]. The operator L1 is similar to a single-layer operator: its symbol β ∼ −1
2
k2/s as

s→∞. The operator L0 is hypersingular but it does not depend on k: it is the corresponding
static operator. If D has a simple shape (such as a circular disc), L0 has an explicit inverse
(subject to the edge condition on ∂D) and this can be used in order to obtain the regularized
equation (21).

8 Flat cracks: how to compute [u]

For a flat screen D, we found two equations for [u], the discontinuity in u across D, namely
(22) and (28); write these formally as H[u] = b. A familiar way to solve such equations is to
expand [u] with a set of basis functions, writing

[u(x, y)] =
∑
n

anun(x, y);

9



evidently, the functions un have to be selected and then the coefficients an have to be found.
Substitution in H[u] = b gives∑

n

an (Hun)(x, y) = b(x, y), (x, y) ∈ D,

and then various methods (such as collocation) immediately suggest themselves for the nu-
merical determination of an.

For the expansion functions, un, one option is radial basis functions. Thus, choose N
points (xn, yn) ∈ D, n = 1, 2, . . . , N , put

un(x, y) = χ
(√

(x− xn)2 + (y − yn)2
)

and then choose the function χ. Examples are χ(r) = e−r
2/c2 [15] and χ(r) = (1 −

r2/c2)αH(c − r) [4], where c and α are positive constants and H is the Heaviside unit
function. Other choices could be made but, to be effective, one should be able to compute
Hun efficiently if not analytically.

One virtue of radial basis functions is that they provide flexibility: the shape of D is
relatively unimportant. On the other hand, we know that [u] = 0 around the edge ∂D;
in fact, we know that [u] must vanish as the square-root of the distance from ∂D. This
knowledge could be incorporated by using special approximations near ∂D. However, if
D is simple in shape, such as circular, elliptical or rectangular, it is possible to construct
functions un with the correct square-root edge behaviour. As an example, we consider a
circular screen D of radius a. For this geometry, we have functions un satisfying L0un = bn,
where L0 is H at k = 0 and bn is known explicitly.

Introduce plane polar coordinates (r, θ) so that the crack occupies 0 ≤ r < a. For
simplicity, suppose that un(x, y) is an even function of x = r cos θ and put

un(x, y) = awn(r/a)H(a− r) cosnθ.

Then, a standard calculation (using the Jacobi expansion [9, p. 37] twice) gives

F−1 {γF{un}} = cosnθ

∫ ∞
0

a3γJn(rs)

∫ 1

0

wn(ρ) Jn(asρ) ρ dρ s ds,

where Jn is a Bessel function. This formula simplifies if we expand wn(ρ) in a series of
functions wnm(ρ), defined by

wnm(r) = rnC
n+1/2
2m+1 (

√
1− r2),

where Cλ
m is a Gegenbauer polynomial. Each function wnm(r) is equal to

√
1− r2 multiplied

by a polynomial in r; in particular, wn0 (r) = (2n+ 1)rn
√

1− r2. Hence [5]∫ 1

0

wnm(r) Jn(asr) r dr =
2 Γ(n+m+ 3/2)

Γ(n+ 1/2)m!

jn+2m+1(as)

as
,

where jn is a spherical Bessel function. Then, writing

[u(x, y)] = aH(a− r)
∑
n=0

∑
m=0

W n
mw

n
m(r/a) cosnθ, (29)
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we find that
(H[u])(r, θ) =

∑
n=0

∑
m=0

W n
mt

n
m(r/a) cosnθ, r < a,

where

tnm(r/a) = −Γ(n+m+ 3/2)

Γ(n+ 1/2)m!

∫ ∞
0

a2γJn(rs) jn+2m+1(as) ds.

The remaining integral must be evaluated numerically. However, in the static limit (replace
γ by s), we have [1]∫ ∞

0

a2sJn(rs) jn+2m+1(as) ds =
Γ(m+ 3/2) Γ(n+ 1/2)

(n+m)!

wnm(r/a)√
1− r2/a2

,

a polynomial in r/a, and this gives the explicit evaluation of L0[u]. Also, if

b(r, θ) =
∑
n=0

∑
m=0

Bn
m

wnm(r/a)√
1− r2/a2

cosnθ,

then the solution of L0[u] = b is given by (29) with

W n
m = − (n+m)!Bn

m

Γ(n+m+ 3/2) Γ(m+ 3/2)
;

the coefficients Bn
m can be found using the orthogonality of the Gegenbauer polynomials,

which gives ∫ 1

0

wnl (r)wnm(r)
r dr√
1− r2

= hnmδlm,

where δij is the Kronecker delta and hnm is a known constant. Thus, in effect, L−1
0 is available,

and it can be used as in Section 5.
If D is flat but not circular, a possible strategy is the following. Find a conformal mapping

that maps the interior of D onto the interior of a disc. Use this mapping in the integral
equation (22); as it is a conformal mapping, it does not change the basic hypersingularity in
the kernel, and so the dominant operator is the static operator L0 for the disc. The operator
L1 will include some effects due to the mapping and some due to the dynamics. The details
have not been worked out, except for static problems [6].

9 Curved cracks

If the crack or screen is not flat, one may have to resort to solving (numerically) the hyper-
singular integral equation over the screen Ω, (8), or the version of this equation obtained
by projection onto the flat region D, (10). Obviously, care must be taken in handling the
hypersingularity and with the edge condition, (9) or (12).

The surface Ω is defined by z = S(x, y) for (x, y) ∈ D. For non-constant S, the singularity
in the kernel of the integral equation (10) is essentially different from that occurring in the
integral equation for constant S; this is revealed by the presence of σ in (16). This difference
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means that the equation over D, (10), cannot be regularized using known results for flat
screens. However, we can make analytical progress when Ω is almost flat.

Suppose that
S(x, y) = εf(x, y)

where ε is a small dimensionless parameter and f is independent of ε. Setting

Λ = ελ with λ = {f(x, y)− f(x0, y0)}/R, (30)

we find from (15) that

K = R−3eikR{1− ikR + ε2K2 +O(ε4)} as ε→ 0,

where

K2 = (1− ikR)(f1f
0
1 + f2f

0
2 − 3

2
λ2) + 1

2
λ2(kR)2

− 3(1− ikR− 1
3
(kR)2)(f1 cos Θ + f2 sin Θ− λ)(f 0

1 cos Θ + f 0
2 sin Θ− λ)

and fj, f
0
j are defined similarly to Sj; see (13).

We expand b similarly. For an incident plane wave, (11) gives

b(x, y) = ik{b0(x, y) + εb1(x, y) + · · · },

where, for example, b0(x, y) = −α3eik(xα1+yα2).
Then, if we expand w in (10) as

w(x, y) = ik(w0 + εw1 + ε2w2 + · · · ),

we find that
Hkw0 = b0, Hkw1 = b1 and Hkw2 = b2 −K2w0,

where

(Hkw)(x0, y0) =
1

4π
×
∫
D

(1− ikR)
eikR

R3
w(x, y) dA

is the basic hypersingular operator for acoustic scattering by a flat sound-hard screen D (see
(22)) and

(K2w)(x0, y0) =
1

4π
×
∫
D

K2(x, y; x0, y0)
eikR

R3
w(x, y) dA.

Thus, we have a sequence of hypersingular integral equations, Hkwn = fn, to solve.
When k = 0, w0, w1 and w2 have been found explicitly for particular geometries, namely

inclined elliptical discs and spherical caps [7]. The results obtained agree with known exact
results. Similar results for perturbed penny-shaped cracks have also been obtained [8].

For k > 0, we can see that w0 is simply the solution for a flat screen; however, the far-field
pattern will be different, it being given by (7) with w replaced by w0. It should be possible
to obtain w1 without too much difficulty, as f1 = b1 is simple. For higher-order terms, one
would have to evaluate K2w.

If it is assumed further that the incident waves are long compared to the diameter of the
scatterer, 2a, low-frequency approximations may be made. Then, each wn can be expanded

12



in powers of ka. This approach has been pursued for a shallow crack in the shape of a
spheroidal cap [10].

One difficulty with these approximation methods is that there are few results to compare
with. For acoustic scattering by spherical caps, see, for example, the papers by Thomas
[14] and Miles [11]. Numerical results for elastic-wave scattering by cracks in the shape of
spherical and spheroidal caps have been given by Boström and Olsson [3].
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