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1. Introduction

A fundamental solution (or Green’s function) is a singular solution of
a governing partial differential equation (PDE). They can be constructed
easily when the PDE has constant coefficients. They are useful for reduc-
ing boundary-value problems to boundary integral equations (BIEs). We
begin by describing simple properties of fundamental solutions, and then
comment on the use and construction of half-space Green’s functions.

We then move on to consider functionally graded materials (FGMs).
These are inhomogeneous materials: their properties vary with position.
Modelling FGMs leads to PDEs with variable coefficients, and this makes
the construction of fundamental solutions more difficult.

In this paper, we consider FGMs where the properties vary exponentially
in one prescribed direction; such ‘exponentially graded’ materials provide
a reasonable model of certain real situations. We discuss the construction
of fundamental solutions for steady-state heat conduction and for three-
dimensional elasticity. These solutions should be useful in the development
of boundary integral methods for FGMs.

2. What is a Fundamental Solution?

As a prototypical example, consider Laplace’s equation in three dimen-
sions, ∇2u = 0. A fundamental solution for this PDE is

G(P, P ′) = G(x,x′) = R−1,

where the points P and P ′ have position vectors x and x′, respectively,
with respect to an origin O, and R = |x − x′| is the distance between P
and P ′. Notice that ∇2

P G(P, P ′) = 0 and ∇2

P ′G(P, P ′) = 0 for P 6= P ′.
We can use G in order to reduce boundary-value problems to boundary

integral equations. For example, suppose that one wants to solve ∇2u =
0 inside a bounded region V with a Dirichlet condition, u = f , on the
boundary of V , S. A careful application of Green’s theorem in V to u(P )
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and G(P, P ′), with P ′ ∈ V , gives the integral representation

u(P ′) =
1

4π

∫

S

{

G(p, P ′)
∂u

∂n
− f(p)

∂G

∂np

}

dsp, P ′ ∈ V, (1)

where the unit normal to S points out of V . To obtain this well-known
formula, one has to excise a small sphere from V (of radius ε and centred
at P ′) prior to using Green’s theorem, and then lets the radius ε → 0.

The unknown boundary values of ∂u/∂n in (1) can then be found by
solving a BIE; such equations can be obtained by, for example, considering
the limit P ′ → p′ ∈ S in (1), or by calculating the normal derivative of (1)
at p′.

So far, we have used the simplest choice for G, namely G = R−1. In
fact, G could be modified in various ways. Thus, we could use

AR−1 + H(P, P ′),

where A is any constant or any function of P ′, and H is any non-singular
solution of ∇2

P H = 0 (at least in the neighbourhood of P ′). These modifi-
cations may sometimes be exploited to good effect.

As a second example, suppose that one wants to consider the radiation
of acoustic waves in the unbounded region outside S, with a Neumann
condition, ∂u/∂n = g, on S. The governing PDE is the three-dimensional
Helmholtz equation, (∇2 + k2)u = 0. In order to have a unique solution,
we impose the Sommerfeld radiation condition at infinity; this implies that

u ∼ r−1 eikr f(θ, φ) as r → ∞,

where r, θ and φ are spherical polar coordinates and f is the (unknown)
far-field pattern.

For the three-dimensional Helmholtz equation, a fundamental solution
is

cos kR

R
∼

1

R
as R → 0.

Another is

A
cos kR

R
+ B

sin kR

R
.

Usually, we want a fundamental solution that also satisfies the radiation
condition, so we can take A = 1 and B = i, giving

G(P, P ′) =
eikR

R
.

We can use G to obtain a BIE for u on S; the standard equation is

2πu(p) −

∫

S

u(q)
∂G

∂nq

dsq = −

∫

S

g(q)G(q, p) dsq, p ∈ S.

For more information on BIEs for the Helmholtz equation, see [1].
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3. Half-Space Green’s Functions

It is common to construct (and use) fundamental solutions that also
satisfy an additional boundary condition (just as we selected a fundamental
solution that satisfied a radiation condition). To give a flavour of these,
we discuss briefly a few examples of half-space Green’s functions. These
are singular solutions of a PDE in a half-space y > 0, say, that also satisfy
a boundary condition on y = 0 (together with a condition at infinity).
They are used to derive BIEs when the half-space contains an obstacle
with boundary S; the result is a BIE over S.

The simplest examples of half-space Green’s functions are for Laplace’s
equation or the Helmholtz equation with the boundary condition u = 0 or
∂u/∂y = 0 on y = 0: such fundamental solutions are easily constructed by
the method of images.

If the half-space is filled with water, the governing PDE is Laplace’s
equation and the appropriate boundary condition on the free surface is the
Robin condition Ku + ∂u/∂y = 0, where K is a given positive constant.
Appropriate fundamental solutions are known [2]. Fundamental solutions
are also known when the PDE is the Helmholtz equation [3].

If the half-space is filled with a homogeneous isotropic elastic solid, with
a traction-free boundary, corresponding fundamental solutions are known:
the static solutions were obtained by Melan (two dimensions) and Mindlin
(three dimensions) in the 1930’s. Time-dependent solutions were obtained
by Lamb in 1904, and are discussed in books on elastic waves [4].

Finally, we mention a recent construction for a bi-material half-plane,
where two solid quarter-planes (made from different materials) are welded
together, and a point force acts inside one of them. This problem can be
solved using Mellin-transform techniques [5]. The solution can be used to
analyse cracks near the intersection of the interface and the traction-free
surface.

All these half-space Green’s functions are more complicated than the
corresponding ‘full-space’ Green’s functions. Thus, an issue arises: should
one use a simple full-space Green’s function, leading to a BIE over both
S and the half-space boundary; or should one use a half-space Green’s
function, leading to a BIE over S only? There is a trade-off here, which
can have computational repercussions. Little has been done by way of
comparison, but see reference [6] for some comparisons in time-harmonic
elastodynamics.

4. Steady-State Heat Conduction

Let us now consider inhomogeneous media. We begin with the problem
of steady-state heat conduction in an anisotropic inhomogeneous material.
This is a scalar problem. The governing PDE can be written as

∂

∂xi

(

kij(x)
∂u

∂xj

)

= 0, (2)



4 P. A. Martin

where the usual summation convention is employed and the conductivity
matrix k(x) with entries kij(x) is symmetric. Little can be done for ‘arbi-
trary’ k(x). To make progress, we assume that k(x) has a specific functional
form,

kij(x) = Kij exp (2b · x), (3)

where Kij = Kji are constants and b is a given constant vector. We
say that the material is exponentially graded , with b giving the grading
direction. This choice for k(x) is convenient mathematically, of course, but
it also gives a reasonable model for certain thermal barrier coatings; it is
also a good prototype for analogous elasticity problems.

Substitution of (3) in (2) gives

Kij

∂2u

∂xi∂xj

+ 2biKij

∂u

∂xj

= 0. (4)

We are going to transform this equation into a Helmholtz equation. First,
we remove the first-derivative terms by changing the dependent variable:
putting

u = v exp (−b · x)

gives

Kij

∂2v

∂xi∂xj

− bibjKijv = 0.

This is beginning to resemble a Helmholtz equation. To go further, we
change the independent variables to

yi = Ωijxj with ΩKΩT = I;

here, K = (Kij) and Ω = (Ωij). This gives

(∇2

y − κ2)v = 0 with κ2 = bT Kb.

The PDE for v is known as the modified Helmholtz equation. A typical
fundamental solution is

A
e−κR

R
,

where
R2 = (y − y′)T (y − y′) = (x − x′)T K−1(x − x′).

Reverting to the original variables, we find that a fundamental solution for
(4) is

A exp (−b · x)
e−κR

R
,

or, with symmetry,

B exp {−b · (x + x′)}
e−κR

R
.
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More details and information on thermal applications of FGMs can be
found in [7]. This paper also contains an alternative method, based on
the use of Fourier transforms. We will use this method for exponentially
graded elastic solids, because the ‘transformation method’ described above
for the scalar equation (4) does not extend to vector problems.

5. Exponentially Graded Elastic Solids

Consider an anisotropic inhomogeneous elastic solid: the stiffnesses cijkℓ

satisfy cijkℓ = cjikℓ = ckℓij . The Green’s function G(x;x′) is a 3×3 matrix
with entries Gij that satisfy

∂

∂xj

{

cijkℓ(x)
∂Gℓm

∂xk

}

= −δim δ(x − x′), i = 1, 2, 3, (5)

where δij is the Kronecker delta and δ(x) is the three-dimensional Dirac
delta. As usual, Gij(x;x′) gives the i-th component of the displacement
at x due to a point force acting in the j-th direction at x′. A standard
argument shows that G is symmetric,

Gij(x;x′) = Gji(x
′;x). (6)

Evaluating the left-hand side of (5) gives

cijkℓ(x)
∂2Gℓm

∂xj∂xk

+

(

∂

∂xj

cijkℓ(x)

)

∂Gℓm

∂xk

= −δim δ(x − x′). (7)

We consider a particular inhomogeneous material in which the stiffnesses
vary exponentially, so that

cijkℓ(x) = Cijkℓ exp(2b · x),

where b = (b1, b2, b3) and Cijkℓ and bi are given constants. Hence

(∂/∂xj)cijkℓ(x) = 2Cijkℓ bj exp(2b · x) = 2bj cijkℓ(x). (8)

Using (8), (7) becomes

Cijkℓ

∂2Gℓm

∂xj∂xk

+ 2bj Cijkℓ

∂Gℓm

∂xk

= −δim exp(−2b · x) δ(x − x′)

= −δim exp(−2b · x′) δ(x − x′) (9)

for i = 1, 2, 3. Note that we can replace the right-hand side of (9) by

−δim exp(−b · [px + p′x′]) δ(x − x′), (10)
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where p and p′ are any constants that satisfy the constraint p+p′ = 2; this
flexibility will be exploited soon.

Let us introduce G0, the Green’s function for a homogeneous solid with
constant stiffnesses Cijkℓ. It is defined by

Cijkℓ

∂2G0

ℓm

∂xj∂xk

= −δim δ(x − x′), i = 1, 2, 3. (11)

Comparing these equations with (9) suggests writing

G(x;x′) = exp(−2b · x′)
{

G0(x;x′) + G1(x;x′)
}

, (12)

whence G1 is found to satisfy

Cijkℓ

∂2G1

ℓm

∂xj∂xk

+ 2bj Cijkℓ

∂G1

ℓm

∂xk

= −2bj Cijkℓ

∂G0

ℓm

∂xk

(13)

for i = 1, 2, 3. Equation (13) is a system of three coupled second-order
PDEs, with constant coefficients. However, the decomposition (12) has a
disadvantage: the symmetry property (6) is not inherited by G1. Thus, we
change the right-hand side of (9), using (10) with p = p′ = 1, giving

Cijkℓ

∂2Gℓm

∂xj∂xk

+2bj Cijkℓ

∂Gℓm

∂xk

= −δim exp{−b · (x+x′)} δ(x−x′), (14)

and we replace (12) by

G(x;x′) = exp{−b · (x + x′)}
{

G0(x;x′) + Gg(x;x′)
}

, (15)

so that
Gg

ij(x;x′) = Gg
ji(x

′;x).

To find an equation for the grading term Gg, we simply substitute (15) in
(14), making use of (11); the result is

Cijkℓ

∂2Gg
ℓm

∂xj∂xk

+ Liℓ Gg
ℓm(x;x′) = −Liℓ G0

ℓm(x;x′) (16)

for i = 1, 2, 3, where the first-order differential operator Liℓ is defined by

Liℓ = (Cijkℓ − Cikjℓ)bj(∂/∂xk) − Cijkℓbjbk.

It remains to solve (16); we can do this using three-dimensional Fourier
transforms. Before doing that, it is instructive to review the known results
for G0, the so-called anisotropic Green’s function.
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6. The Anisotropic Green’s Function

Consider solving (11) by Fourier transforms, which we define by

F{u} = û(k) =

∫

u(x) exp (ik · x) dx,

where k is the vector of transform variables. When inverting the Fourier
transform to obtain G0, we have to integrate over k. The relevant integral
turns out to involve the vector r = x − x′, and it simplifies by choosing
spherical polar coordinates with r along the polar axis. Moreover, the
integrand contains [Q(k)]−1, where

Qim(k) = Cijℓmkjkℓ (17)

and Cijkℓ are the constant stiffnesses; thus, Q is homogeneous,

Q(tk) = t2Q(k) for any t 6= 0,

and this fact simplifies the calculation. Specifically, we have

G0 = (2π)−3

∫

[Q(k)]−1 exp(−ik · r) dk

= (2π)−3

∫∫

k−2[Q(k̂)]−1 cos(kr cos ϕ) k2 dk dk̂

where r = |r|, k = |k|, k = kk̂ and we have observed that both G0 and
Q are real. Using spherical polar coordinates (k, ϕ, χ), where ϕ = 0 is the

polar axis, we have dk̂ = sin ϕdϕdχ whence

G0 = (2π)−3 lim
X→∞

∫ π

0

S(ϕ)

∫ X

0

cos(kr cos ϕ) dk sinϕdϕ

=
1

8π3r
lim

X→∞

∫

1

−1

S(cos−1 µ)
sin (Xrµ)

µ
dµ,

where

S(ϕ) =

∫

2π

0

[Q(k̂)]−1 dχ.

Note that we have evaluated the integral over k and then put µ = cos ϕ.
The integral over µ is known as a Dirichlet integral ; its limiting value as
X → ∞ is πS(0) (see, for example, p. 365 of reference [8]), whence

G =
1

8π2r

∮

[Q(k̂)]−1 dχ,
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where the integral is taken around the unit circle, centred at the origin
and lying in the plane perpendicular to r. The remaining one-dimensional
integral must be evaluated numerically, in general.

The derivation given above can be found on p. 412 of the book by
Synge [9]; other derivations (involving divergent integrals and generalized
functions) are available.

7. Calculating the Graded Term

Recall that we have to solve (11) for Gg, using Fourier transforms. We
find that

Gg(x;x′) = (2π)−3

∫

E(b,k) exp (−ik · r) dk, (18)

where r = x − x′,

E(b,k) = −{Q(k) + B(b,k)}−1B(b,k) [Q(k)]−1,

Bim(b,k) = i(Cijℓm − Ciℓjm)bjkℓ + Cijℓmbjbℓ

and Q(k) is defined by (17). Note that, unlike Q(k), E(b,k) is not a
homogeneous function of k.

How should we evaluate (18)? The integrand involves three vectors,
namely r, b and k, where r and b may be regarded as fixed. Compare
this with the integral for G0, which involves two vectors, r and k: there,
we evaluated the integral by using spherical polar coordinates for k with r
along the polar axis. For Gg, it turns out to be better to choose spherical
polar coordinates for k with b along the polar axis.

We have not done these calculations in general, but only when the un-
derlying material is isotropic [10]. Thus, we suppose that the solid has
Lamé moduli given by

λ(x) = λ0 exp(2b · x) and µ(x) = µ0 exp(2b · x),

where λ0 and µ0 are constants. (Evidently, Poisson’s ratio is constant for
such a solid.) Then, G0 is known explicitly (it is the Kelvin solution) and E
can be calculated explicitly. The details are complicated. The result is that
the triple Fourier integral defining Gg, (18), can be reduced to the sum of
an explicit term, some finite single integrals of modified Bessel functions In

and some finite double integrals of elementary functions. As Gg is bounded
as |x − x′| → 0 (the singularity is contained within the Kelvin solution),
having it available only as a computable quantity is not an impediment for
a boundary integral implementation.
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