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Abstract Elastic waves in materials with cylindrical orthotropy are considered,
this being a plausible model for waves in wood. For time-harmonic
motions, the problem is reduced to some coupled ordinary differential
equations. Methods for solving these equations are discussed. These
include the method of Frobenius (power-series exapansions) and the use
of Neumann series (expansions in series of Bessel functions of various
orders).

1. INTRODUCTION

As children, we learn that we can determine the age of a sawn log or
tree by counting the annual rings visible at a sawn end. The presence of
these rings influences the mechanical properties of the wood, of course.
This observation leads to a constitutive model in which the wood is as-
sumed to be an elastic solid with cylindrical orthotropy. Thus, we assume
that the elastic stiffnesses are constants when referred to cylindrical po-
lar coordinates, r, θ, z. (In general, the material will be inhomogeneous
when described in Cartesian coordinates.)

We are interested in the propagation of elastic waves in wooden poles,
using the cylindrical-orthotropy model. One application is to understand
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the use of ultrasonic devices for determining whether wooden telegraph
poles have decayed internally [1]. Application of these techniques to
live trees has also been made [2]. We are also interested in methods
for inspecting wire ropes and overhead transmission lines; wire rope,
consisting of several helically wound strands, may be ‘homogenised’ [3],
giving a similar mathematical model for the material.

Further information on waves in wood can be found in the book by
Bucur [4].

In this paper, we begin by formulating the problem of wave propa-
gation in a material with cylindrical anisotropy, using matrix notation
where possible. We look for time-harmonic solutions, with a prescribed
dependence on θ and z, leading to a 3 × 3 system of coupled ordinary
differential equations in the radial direction. To simplify further, we
suppose that the material is cylindrically orthotropic. We review the
known exact solutions, corresponding to isotropy, axisymmetry (no de-
pendence on θ) or no dependence on z. We then discuss two methods
for solving the remaining situations. These are the method of Frobenius
(expansions in powers of r) and a generalization using Neumann series
(expansions in Bessel functions of various orders). The two methods are
compared and contrasted. The method based on Neumann series seems
to be better suited to problems involving wave propagation, and should
find further applications.

2. GOVERNING EQUATIONS

In the absence of body forces, the governing equations of motion are

∂

∂r
(rtr) +

∂

∂θ
tθ + Ktθ + r

∂

∂z
tz = ρr

∂2

∂t2
ũ, (1.1)

where ρ is the density,

tr =




τrr

τrθ

τrz


 , tθ =




τθr

τθθ

τθz


 , tz =




τzr

τzθ

τzz


 ,

K =




0 −1 0
1 0 0
0 0 0


 , ũ =




ur

uθ

uz




is the displacement vector and τij are the stress components. In what
follows, we generalise the matrix formulation of Ting [5] for static prob-
lems; he gives expressions for the traction vectors ti in terms of ũ.

We look for time-harmonic solutions of (1.1) in the form

ũ(r, θ, z, t) = Rei

{
um(r) ejmθ eiξze−iωt

}
,
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where i and j are two non-interacting complex units, m is an integer, ξ
is the axial wavenumber, ω is the radian frequency, and Rei denotes the
real part with respect to i. Use of ejmθ rather than cosmθ and sinmθ
allows us to retain the nice matrix notation in what follows. Thus, we
find that um(r) solves

rQ
(
ru′

m

)
′

+ rAu
′

m + Bum = 0, (1.2)

where

A = RKm + KmR
T + iξr(P + P

T ),

B = ρω2r2
I − ξ2r2

M + KmTKm + iξr(P + KmS + S
T
Km),

Q =




C11 C16 C15

C16 C66 C56

C15 C56 C55


 , R =




C16 C12 C14

C66 C26 C46

C56 C25 C45


 ,

T =




C66 C26 C46

C26 C22 C24

C46 C24 C44


 , P =




C15 C14 C13

C56 C46 C36

C55 C45 C35


 ,

M =




C55 C45 C35

C45 C44 C34

C35 C34 C33


 , S =




C56 C46 C36

C25 C24 C23

C45 C44 C34


 ,

I is the identity, Km = K + jmI, RT is the transpose of R, and we have
used the contracted notation Cαβ for the elastic stiffnesses. Note that
Q, T and M are symmetric matrices.

For two-dimensional motions independent of z (ξ = 0), we recover the
equations studied in [1]. If we also put m = 0 (axisymmetry) and ω = 0
(static), we obtain the equations solved by Ting [5].

Setting um = (um, vm, wm), (1.2) gives three coupled ordinary dif-
ferential equations for the three components of um. In general, these
equations do not decouple.

3. CYLINDRICAL ORTHOTROPY

For materials with cylindrical orthotropy, there are nine non-trivial
stiffnesses, namely C11, C12, C13, C22, C23, C33, C44, C55 and C66. The
matrices Q, R, T, P, M and S simplify to

Q =




C11 0 0
0 C66 0
0 0 C55


 , R =




0 C12 0
C66 0 0
0 0 0


 ,
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T =




C66 0 0
0 C22 0
0 0 C44


 , P =




0 0 C13

0 0 0
C55 0 0


 ,

M =




C55 0 0
0 C44 0
0 0 C33


 , S =




0 0 0
0 0 C23

0 C44 0


 ,

and the system (1.2) simplifies accordingly.
Note that isotropy is a special case of cylindrical orthotropy. For

isotropic materials, C11 = C22 = C33 = λ + 2µ, C12 = C13 = C23 = λ
and C44 = C55 = C66 = µ, where λ and µ are the Lamé moduli. Exact
solutions of (1.2) are well known for isotropic solids. They are given in
textbooks on elastic waves; see, for example, Graff [6, §8.2]. Some of
these solutions will be mentioned below.

4. AXISYMMETRIC MOTIONS

For axisymmetric motions (m = 0) of a cylindrically orthotropic solid,
we have K0 = K, RK = −KRT ,

A = iξr




0 0 C13 + C55

0 0 0
C13 + C55 0 0




and

B =




B5r
2 − C22 0 iξr(C13 − C23)
0 B4r

2 − C66 0
iξr(C55 + C23) 0 B3r

2


 ,

where
Bi = ρω2 − ξ2Cii (no sum).

So, the (axisymmetric) torsional component v0 decouples from the
radial and axial components, u0 and w0, respectively. We find that v0

satisfies
rC66

(
rv′0

)
′

+ (B4r
2 − C66)v0 = 0.

This is Bessel’s equation; solutions are

J1(ℓr) and Y1(ℓr),

where ℓ =
√

B4/C66.
The remaining pair of equations for u0 and w0 is as follows:

rC11

(
ru′

0

)
′

+ iξr2(C13 + C55)w
′

0
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+ (B5r
2 − C22)u0 + iξr(C13 − C23)w0 = 0, (1.3)

rC55

(
rw′

0

)
′

+ iξr2(C13 + C55)u
′

0

+ iξr(C55 + C23)u0 + B3r
2w0 = 0. (1.4)

Note that axisymmetric motions in a cylindrically orthotropic material
do not depend on the stiffness C12.

Equations (1.3) and (1.4) decouple when ξ = 0 [1]. Typical solution
pairs are found to be

u0 = 0 and w0 = J0(κar),

and
u0 = Jγ(κ1r) and w0 = 0,

where γ =
√

C22/C11, κ1 = ω
√

ρ/C11 and κa = ω
√

ρ/C55.
For isotropic materials, one solution pair for (1.3) and (1.4) is

u0 = ξJ1(Kr) and w0 = iKJ0(Kr),

where K2 = ρω2/µ − ξ2. Another is

u0 = kJ1(kr) and w0 = −iξJ0(kr),

where k2 = ρω2/(λ + 2µ) − ξ2. See, for example, [6, p. 471].

5. TWO-DIMENSIONAL MOTIONS

For motions of a cylindrically orthotropic material that are indepen-
dent of z (ξ = 0), we again find that the 3 × 3 system (1.2) partially
decouples. However, now we obtain a pair of equations for um and vm,
and a single equation for wm. The latter can be solved exactly: two
independent solutions are

Jβ(κar) and Yβ(κar),

where β = m
√

C44/C55 and κa = ω
√

ρ/C55.
The pair of equations for um(r) and vm(r) is as follows [1]:

rC11

(
ru′

m

)
′

+ jmr(C66 + C12)v
′

m

+ (ρω2r2 − m2C66 − C22)um − jm(C66 + C22)vm = 0, (1.5)

rC66

(
rv′m

)
′

+ jmr(C66 + C12)u
′

m

+ (ρω2r2 − C66 − m2C22)vm + jm(C66 + C22)um = 0. (1.6)

Note that motions independent of z in a cylindrically orthotropic medium
depend on only six of the nine stiffnesses, namely C11, C12, C22, C44,
C55 and C66.
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For a homogeneous isotropic elastic solid, solutions of (1.5) and (1.6)
are known. Let (um, vm) be a solution pair. There are four independent
solution pairs. The first two pairs are

um = J ′

m(kP r) and vm = jm(kP r)−1Jm(kP r) (1.7)

and
um = m(kSr)−1Jm(kSr) and vm = jJ ′

m(kSr), (1.8)

where kP = ω
√

ρ/(λ + 2µ) is the compressional wavenumber and kS =
ω

√
ρ/µ is the shear wavenumber. The second two pairs are obtained by

replacing Jn in these expressions by Yn.

6. COUPLED SYSTEMS

In special cases, we have seen that we can find explicit solutions
of (1.2). However, in general, we are left with a coupled system of
ordinary differential equations to solve. This will be a 2 × 2 system if
m = 0 ((1.3) and (1.4)) or if ξ = 0 ((1.5) and (1.6)), but it will be a
3 × 3 system in the general case.

How can we solve such systems? A standard technique for solving
ordinary differential equations is the method of Frobenius, in which one
looks for solutions in the form of power series. The method proceeds by
writing

um(r) =
∞∑

n=0

ân (κr)2n+α,

vm(r) = j
∞∑

n=0

b̂n (κr)2n+α,

wm(r) =
∞∑

n=0

ĉn (κr)2n+α,

where the coefficients ân, b̂n and ĉn, and the exponent α are to be
determined. It turns out that there is no loss of generality in using
(κr)2n rather than (κr)n.

Substituting these expansions in (1.2) and collecting terms leads to an
indicial equation for α and coupled recursion relations for the coefficients.
This yields an efficient method for computing the coefficients. In the
present context, it has been used by many authors, including Ohnabe
and Nowinski [7], Chou and Achenbach [8], Markus̆ and Mead [9] and
Yuan and Hsieh [10].

The main drawback of the method of Frobenius is that it is essentially
a static method: power series in κr are only expected to be good for small
values of κr.
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If we examine the known exact solutions for isotropic solids, such as
(1.7) and (1.8), we see that they can be written as linear combinations
of two Bessel functions, with orders differing by two. For example, (1.7)
can be written as

um(r) = 1
2
{Jm−1(kP r) − Jm+1(kP r)} ,

vm(r) = 1
2
j {Jm−1(kP r) + Jm+1(kP r)} .

This suggests that we should use a generalization of the method of Frobe-
nius, in which um, vm and wm are expanded as Neumann series,

um(r) =
∞∑

n=0

an J2n+α(kr),

vm(r) = j
∞∑

n=0

bn J2n+α(kr),

wm(r) =
∞∑

n=0

cn J2n+α(kr),

where the coefficients an, bn, cn and α are to be determined. Note
that the parameter k is to some extent at our disposal; its choice is
discussed in [1], making use of the asymptotic behaviour of solutions of
the governing differential equations for large r.

In [1], we have used Neumann series to solve (1.5) and (1.6), corre-
sponding to ξ = 0. We investigated two methods for finding an and bn,
which we call direct and indirect. In the direct method, we substitute
the Neumann-series expansions directly into (1.5) and (1.6) and then
group terms. This requires manipulating series of Bessel functions, and
so is more complicated than at the analogous stage of the method of
Frobenius. It turns out that α solves the same indicial equation as be-
fore. Eventually, we obtain some recurrence relations for an and bn; they
are fairly complicated but they are well behaved numerically [1].

For the indirect method, we begin with the standard method of Frobe-
nius, leading to the computation of the coefficients ân and b̂n. From
these, we then compute the coefficients an and bn, using the known
expansion of an arbitrary power in terms of Bessel functions:

(1
2
kr)ν =

∞∑

n=0

(2n + ν) Γ(n + ν)

n!
J2n+ν(kr).

(Compare this with the definition of a Bessel function,

Jν(kr) =
∞∑

n=0

(−1)n

n! Γ(n + ν + 1)
(1
2
kr)2n+ν ,
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which can itself be obtained by the method of Frobenius.)
We have found that the use of Neumann series is more efficient for the

problems of wave propagation in wood that we have described above. We
think that the method will find application to other problems involving
wave propagation in materials with cylindrical anisotropy.
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