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Some negative results on the use of
Helmholtz integral equations for
rough-surface scattering

1 Introduction

A plane time-harmonic sound wave is scattered by a bounded three-dimensional obstacle
with surface S. The scattered field can be found by solving a Helmholtz integral equation.
For example, if S is sound-hard, the scattered field on S satisfies

u(p)−
∫
S
u(q)

∂G

∂nq
(p, q) dSq =

∫
S

∂uinc

∂n
G(p, q) dSq, (1)

where p and q are points on S, G is the free-space Green’s function, ∂/∂nq denotes normal
differentiation at q, and uinc is the incident field. The Helmholtz integral equations are
familiar boundary integral equations, for which there is a complete theoretical framework
(Kleinman and Roach, 1974; Colton and Kress, 1983). Many examples of their numerical
treatment, usually using boundary elements, can also be found.

Suppose now that S is unbounded. A typical problem is the reflection of a plane wave
by an infinite two-dimensional rough surface. This is a classical problem, going back to Lord
Rayleigh. Standard texts usually treat the problem using approximate techniques, such as
perturbation theory or Kirchhoff theory. More recently, there has been an effort to vali-
date these approximate techniques by comparing them with ‘exact’ methods. In particular,
comparisons have been made with numerical solutions of Helmholtz integral equations, such
as (1).

However, the derivation of a Helmholtz integral equation for an infinite rough surface is
not straightforward. Indeed, we are not aware of any correct derivations in the literature
(even though such equations have been the subject of extensive computational studies). In
fact, we can show that such an integral equation is definitely not valid in certain cases! These
will be illustrated using some explicit examples.

1



2 Bounded obstacles

Consider a bounded three-dimensional obstacle with a smooth surface S, insonified by a
plane wave. The problem is to calculate the scattered field u. In order to have a well-posed
boundary-value problem, one imposes the Sommerfeld radiation condition,

r

(
∂u

∂r
− iku

)
→ 0 as r →∞, (2)

uniformly in all directions. Here, r is a spherical polar coordinate, k is the wavenumber, and
the time-dependence is e−iωt.

Equation (1) is derived by applying Green’s theorem to u(Q) and G(P,Q) in the region
bounded internally by S and externally by Cr, a large sphere of radius r; the point P is in
this region. The radiation condition implies that the integral

I(u;Cr) ≡
∫
Cr

(
u
∂G

∂r
−G ∂u

∂r

)
dS → 0 as r →∞, (3)

and so only boundary integrals over S remain (Colton and Kress, 1983). Equation (1) follows
by letting P → p ∈ S.

3 Unbounded obstacles

The simplest scattering problem for unbounded obstacles is reflection of a plane wave by an
infinite flat plane, S. It is well known that the incident wave is reflected specularly as a single
propagating plane wave. More generally, if S is an infinite rough surface, an incident plane
wave will be scattered into a spectrum of plane waves. For such problems, the Sommerfeld
radiation condition is not appropriate as it is not satisfied by a plane wave. However, it is
common to proceed, assuming that the scattered field can be represented in terms of plane
waves, at least at some distance from S. Typically, this requires the discarding of an integral
such as (3), but with the large sphere Cr replaced by a large hemisphere Hr. Can this step
be justified?

Assume that the two-dimensional rough surface, S, is sound-hard and that it is given by
z = s(x, y), −∞ < x, y <∞, with −h < s(x, y) ≤ 0 for some constant h ≥ 0. We can write
the total field as utot = uinc + u, where u is the scattered field. The incident plane wave is

uinc(r, θ, φ) = exp {iki · x}, 0 ≤ θi ≤ 1
2
π, (4)

where ki = k(sin θi, 0,− cos θi), θi is the angle of incidence, (r, θ, φ) are spherical polar coor-
dinates, and x = rx̂ = r(sin θ cosφ, sin θ sinφ, cos θ). All the fields utot, uinc and u satisfy
the Helmholtz equation, (∇2 + k2)u = 0, for z > s. The boundary condition is

∂utot/∂n = 0 on S, (5)

where ∂/∂n denotes normal differentiation out of the acoustic medium.
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4 Reflection by a flat surface

Let us return to the simplest problem, reflection by a flat surface, so that s = 0. The
text-book solution for u is

u(r, θ, φ) = exp {iks · x} for 0 ≤ θi <
1
2
π, (6)

where ks = k(sin θi, 0, cos θi). When θi = 1
2
π (‘grazing incidence’), we have u ≡ 0. So, for

0 ≤ θi <
1
2
π, utot = 2 eikx sin θi cos (kz cos θi) solves the problem. But consider

u′tot ≡ utot + ug (7)

with ug = V (β) eik(x cosβ+y sinβ), where β and V (β) are arbitrary, with −π < β ≤ π. u′tot also
‘solves’ the problem, in that it satisfies the Helmholtz equation and the boundary condition.
Of course, we disallow this second solution, unless V ≡ 0: but why? The answer is: because
of the radiation condition (which we have yet to specify). For example, take β = 0 and
V (0) = 1, so that ug = eikx; this gives an ‘outgoing’ grazing wave at x = +∞ but it is
an ‘incoming’ grazing wave at x = −∞ — we must therefore exclude it. Indeed, we must
exclude all contributions ug, for any β and V .

A similar condition is imposed on the two-dimensional problem (DeSanto and Martin,
1997). However, the three-dimensional problem has an extra feature: we could consider
replacing ug in (7) by

1

2π

∫ π

−π
V (β) eik(x cosβ+y sinβ) dβ

where V is a continuous function; but, as ug has been excluded, we must also exclude all
linear combinations of such plane grazing waves. In particular, by taking V (β) = (−i)n einβ,
we see that we must exclude the cylindrical standing waves

Jn(kR) einφ, (8)

where R = r sin θ and (R, φ, z) are cylindrical polar coordinates of the point at x. On the
other hand, the exact scattered field, given by (6), when evaluated on any plane z = constant,
has an azimuthal Fourier component proportional to

Jn(kiR) einφ, (9)

where ki = k sin θi ≤ k. Thus, if one wants to formulate a radiation condition, mathemat-
ically, it must be such that fields (8) are excluded but fields (9) are permitted. All this
suggests that the specification of a mathematical radiation condition for the present class
of problems (plane-wave scattering by an infinite two-dimensional rough surface) will not
be straightforward. However, the physical purpose of a radiation condition is clear: it is to
exclude all ‘incoming’ waves apart from the incident wave.

5 A radiation condition

The scattered field in the half-space z > 0 may be written using an angular-spectrum repre-
sentation, as a superposition (integral) of propagating and evanescent plane waves (DeSanto
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and Martin, 1996). A typical propagating plane wave is

v(r, θ, φ;α, β) = exp {ik · x}, 0 ≤ α ≤ 1
2
π, |β| ≤ π, (10)

where k = kk̂ = k(sinα cos β, sinα sin β, cosα). It turns out that the propagating waves
give the dominant contribution to I(u;Hr), where Hr is a large hemisphere of radius r and
centre O.

We can now give our radiation condition. We require that all propagating plane-wave
components v(r, θ, φ;α, β) in u propagate outwards through Hr, away from O. When impos-
ing this, we have to be careful with grazing waves (α = 1

2
π; see the discussion following (7)).

One convenient way is to partition the half-space z > 0 and the hemisphere Hr into four
parts. Thus, with

Hm
r = {(r, θ, φ) : 0 ≤ θ ≤ 1

2
π, 1

2
(m− 3)π ≤ φ < 1

2
(m− 2)π}, m = 1, 2, 3, 4,

being the surfaces of four octants of a sphere, we require the following conditions for the
regions specified:

m = 1 : in x < 0, y ≤ 0, use −π ≤ β < −1
2
π;

m = 2 : in x ≥ 0, y < 0, use −1
2
π ≤ β < 0.

m = 3 : in x > 0, y ≥ 0, use 0 ≤ β < 1
2
π;

m = 4 : in x ≤ 0, y > 0, use 1
2
π ≤ β < π;

(11)

This partitioning makes it easy to ensure that only plane waves propagating out through
Hm
r are included. We have used this form of radiation condition to derive boundary integral

equations.

6 Boundary integral equations

Apply Green’s theorem to u and G in the region Dr with boundary ∂Dr = Hr ∪ Sr ∪ Tr,
where Sr = {(x, y, z) : z = s(x, y), 0 ≤ x2 + y2 < r2} is a truncated rough surface, and

Tr = {(x, y, z) : x2 + y2 = r2, s(x, y) ≤ z ≤ 0} (12)

is the surface of a truncated circular cylinder joining Hr and Sr. After using the boundary
condition (5), the result is

2u(P ) =
∫
Sr

{
u(q)

∂G

∂nq
(P, q) +

∂uinc

∂n
G(P, q)

}
dSq + I(u;Hr) + I(u;Tr), (13)

where P ∈ Dr,

I(u;S) =
∫
S

{
u(q)

∂G

∂nq
(P, q)− ∂u

∂n
G(P, q)

}
dSq

and ∂/∂nq denotes normal differentiation at q in a direction away from the origin (so that
∂/∂n = ∂/∂r on Hr, consistent with (3)).
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The next step is to estimate I(u;Hr) and I(u;Tr) for large r. This is described in detail by
DeSanto and Martin (1998). Here, we consider a single propagating plane-wave component
in the angular-spectrum representation of u, and focus on I(v;Hr) as r → ∞, where v is
defined by (10). In fact, for this calculation, it is enough to set β = 0, and so we write

v(r, θ, φ;α, 0) = v(r, θ, φ;α) = v(x;α), 0 ≤ α ≤ 1
2
π.

The simplest way to evaluate the large-r limit is to use the method of stationary phase. We
then consider the contribution from I(u;Tr) to (13). The results are surprising, and motivate
some explicit examples.

7 The method of stationary phase

We use the method of stationary phase to estimate I(v;Hr). We are interested in large
values of r = |x|, for fixed y and k. We have

G(P, q) ' (B/r) exp{ik(r − y · x̂)} (14)

where P and q have position vectors x and y, respectively, and B = −1
2
/π. Hence, for

large r, I(v;Hr) ' iB eikr L(kr), where

L(λ) = λ
∫
D
g(θ, φ) eiλF (θ,φ) dθ dφ, (15)

g(θ, φ) = (1− k̂ · x̂) exp{−iky · x̂} sin θ, (16)

F (θ, φ) = k̂ · x̂ and D = {(θ, φ) : 0 ≤ θ ≤ 1
2
π,−π ≤ φ ≤ π} is the rectangular domain of

integration.
It turns out that there are three cases, depending on the value of α: α = 0, 0 < α < 1

2
π

and α = 1
2
π.

Case I : α = 0. This corresponds to a plane wave v propagating along the z-axis. We have

L(λ) = λ
∫ π/2

0
(1− cos θ) b(θ; y) eiλ cos θ sin θ dθ (17)

where
b(θ; y) =

∫ π

−π
exp{−iky · x̂} dφ = 2π e−ikρ cos θ cos Θ J0(kρ sin θ sin Θ)

and
y = ρŷ = ρ(sin Θ cos Φ, sin Θ sin Φ, cos Θ). (18)

The integral (17) can be estimated for large λ using the (one-dimensional) method of sta-
tionary phase. The only stationary-phase point is at θ = 0; as the integrand vanishes
at θ = 0, we deduce that L(λ) = O(1) as λ → ∞. In fact, an integration by parts shows
that L(λ) ∼ i b(1

2
π; y) as λ→∞, whence

I(v;Hr) = eikr J0(kρ sin Θ) +O((kr)−1/2) as kr →∞, for α = 0. (19)
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Case II : 0 < α < 1
2
π. We can estimate L(λ), defined by (15), for large λ, using the method

of stationary phase for two-dimensional integrals. Thus, we look for stationary-phase points
c = (θ, φ) ∈ D at which gradF = 0; such points may be in the interior of D or on the
boundary, ∂D. Each c contributes a term to L(λ) proportional to g(c) exp {iλF (c)}, the
next term being O(λ−1). The relevant stationary-phase points are at c = (0,±1

2
π) and (α, 0).

At these points, g(c) = 0, whence L(λ) = o(1) as λ→∞. In fact, we find that

I(v;Hr) = O((kr)−1/2) as kr →∞, for 0 < α < 1
2
π.

Case III : α = 1
2
π. Now, two more stationary-phase points appear, at c = (1

2
π,±π). These

give a non-trivial contribution; the result is

I(v;Hr) = 2 exp{ik · y}+O((kr)−1/2) as kr →∞, for α = 1
2
π.

Let us summarise these results. The symmetry axis of the hemisphere Hr is the z-axis.
We considered plane waves v propagating out of the hemisphere, at an angle α to the z-axis.
We saw that I(v;Hr) → 0 as r → ∞, for 0 < α < 1

2
π. For α = 1

2
π (‘grazing waves’, with

respect to the plane z = 0), I(v;Hr) → 2 exp{ik · y}, a finite quantity, as r → ∞. For
α = 0 (‘normal waves’, with respect to z = 0), I(v;Hr) ∼ eikr J0(kρ sin Θ), which means
that I(v;Hr) does not have a limit (in this case) as r →∞. This is an unpleasant result!

8 Asymptotic behaviour of I(u;Tr)

The truncated cylindrical surface Tr is defined by (12). A point q ∈ Tr, with position vector x,
has cylindrical polar coordinates (r, φ, z). Then, for large r, |x−y| ' r−ρ sin Θ cos (φ− Φ),
where the fixed point P has position vector y and spherical polar coordinates (ρ,Θ,Φ)
defined by (18). It follows that

I(u;Tr) ∼
1

2π
eikr

∫ π

−π
E(r, φ) exp {−ikρ sin Θ cos (φ− Φ)} dφ as r →∞,

where

E(r, φ) =
∫ 0

s

(
∂u

∂r
− iku

)
dz

and the lower limit is s(r cosφ, r sinφ).
When is it true that I(u;Tr)→ 0 as r →∞? To answer this question, we need additional

assumptions. For example, a sufficient condition is that s → 0 as r → ∞, for all φ, which
means that the rough surface approaches the flat plane z = 0 at large distances, in all
directions. We could also put some restriction on the behaviour of u near S.

However, there are situations in which I(u;Tr) does not vanish as r → ∞. An explicit
example of this is given next.

9 An example

Recall the integral representation (13) for u(P ) when P ∈ Dr, the region bounded by the
hemisphere Hr, the truncated rough surface Sr and the truncated circular cylinder Tr:

2u(P ) = I(u;Sr) + I(u;Hr) + I(u;Tr). (20)
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We note that the left-hand side of (20) does not depend on r, so that the right-hand side
must have a limit as r → ∞. Nevertheless, it is instructive to see how the different surface
pieces contribute. We do this by examining a very simple example, which is for a plane wave
normally incident upon a flat surface at z = −h. Thus

uinc = A0 e−ikz and u = eikz with A0 = e−2ikh.

This is the exact solution. Let us see how this solution is reconstructed by the representa-
tion (20). For simplicity, we take P at the origin; this will permit all the integrals to be
evaluated exactly (without any asymptotic approximations).

On Hr, we have u = eikr cos θ, ∂u/∂n = iku cos θ, G = Br−1 eikr and ∂G/∂n = (ik−r−1)G.
Integrating over θ gives

I(u;Hr) = eikr. (21)

On Sr, we have u = e−ikh, ∂u/∂n = −iku,

G = BR−1
σ eikRσ , ∂G/∂n = hR−2

σ

(
ik −R−1

σ

)
G

and Rσ =
√
σ2 + h2, whence the integral over Sr is

I(u;Sr) = 2πB e−ikh
∫ r

0
eikRσ

{
ik + hR−1

σ

(
ik −R−1

σ

)} σ dσ
Rσ

= −e−ikh
∫ R

h
eikt

{
ik + ht−1

(
ik − t−1

)}
dt

= −e−ikh
[
eikt + ht−1 eikt

]R
t=h

= 2−
(

1 +
h

R

)
eik(R−h) (22)

where R =
√
r2 + h2.

On Tr, we have u = eikz and ∂u/∂n = ∂u/∂r = 0, whence

I(u;Tr) = 2πBr
∫ 0

−h
eikz ∂

∂r

(
eikRz

Rz

)
dz

= −
[
(1− zR−1

z ) eik(Rz+z)
]0
z=−h

= −eikr +

(
1 +

h

R

)
eik(R−h) (23)

where Rz =
√
r2 + z2.

Adding equations (21), (22) and (23), we see that their sum is exactly 2, which is 2u(P )
evaluated at the origin. Note that, as r →∞,

I(u;Sr) ∼ 2− eik(r−h),

I(u;Tr) ∼ −eikr + eik(r−h),

and I(u;Hr) does not simplify further. Thus, the boundary integral over the truncated rough
surface does not have a limit as r →∞. Moreover, the integral over the truncated cylinder Tr
does not have a limit as r →∞, and it is not negligible. This is a genuine three-dimensional
effect, which is not seen in the two-dimensional case (DeSanto and Martin, 1997).
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10 Discussion

The results described above show that if the scattered field includes a plane wave propagating
along the z-axis away from the rough surface (‘normal waves’), then the usual Helmholtz
integral equation is not valid: the boundary integral diverges. It is possible to devise a
modified integral equation which reduces to the standard Helmholtz integral equation when
normal waves are absent (DeSanto and Martin, 1998).

This is unsatisfactory, even though the mathematical difficulty may be overcome. Indeed,
this difficulty is due entirely to the unphysical problem posed at the outset: plane-wave
reflection by an infinite rough surface. Clearly, we can realise neither a plane wave nor an
infinite rough surface. Moreover, the mathematical difficulty disappears if we consider either
point-source insonification or a finite patch of roughness on an otherwise flat surface.

At the Metsovo conference, Ralph Kleinman asked if the results in section 9 could be
extended to point-source insonification: they can. Thus, suppose that the incident field is
generated by a point source at (x, y, z) = (0, 0, z0) with z0 > 0:

uinc = AR−1 eikR with R =
√
x2 + y2 + (z − z0)2.

If we take A = A0z0 e−ikz0 with A0 = e−2ikh, then uinc ∼ A0 e−ikz as z0 → ∞, which means
that the point-source incident field reduces to the incident plane wave considered in section 9.

We know the exact solution for the field scattered by an infinite plane surface at z = −h,
using an image singularity. It is

u = AR−1
1 eikR1 with R =

√
x2 + y2 + (z + z0 + 2h)2.

If we take P at O, we can evaluate the integrals discussed in section 9. For example, we find
that

I(u;Hr) =
A

z0 + 2h

(
1− r

R0

)
eik(R0+r),

where R0 =
√
r2 + (z0 + 2h)2. Substituting for A gives, exactly,

I(u;Hr) =
z0

z0 + 2h

(
1− r

R0

)
eik(R0+r−z0−2h).

If we fix z0 and h, we see that I(u;Hr)→ 0 as r →∞, because R0 ∼ r. On the other hand,
if we fix r and h and let z0 →∞, we recover (21).
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