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1  Introduction

The boundary element method (BEM) is now an established procedure
for obtaining numerical solutions for a variety of problems in engineering and applied mathematics.  The
formulation of the BEM relies heavily on the existence of suitable Green's functions.  Indeed, Green's
functions are the BEM's main analytical ingredient.

With the conventional BEM, a significant analytical step is taken at the outset, and this involves
only the simplest  Green's functions.  The result is a representation integral for desired fields in terms of
boundary values  of the fields.  This result is obtained before elements and approximations of any kind are
introduced.  Unfortunately, when only the simplest Green's functions are used, about half of the boundary
values of the fields are unknown in the representation integral at this stage.  Elements and approximations
are needed afterwards, in essence, to numerically solve a boundary integral equation.  This is done to
obtain the mentioned unknown boundary data.  Then, with all boundary data known, the representation
integral provides the desired field solution throughout the region of interest.  The process, in effect,
reduces a three-dimensional problem to a two-dimensional one.  This is one of the great features of the
BEM.

Now if more sophisticated  region-specific Green's functions were to be used at the outset, less
unknown boundary data would appear in the representation integral, fewer elements and associated
approximations would be needed with the BEM, and accuracy could be increased while computing
demands would be reduced.  Carrying such reasoning to its end, one would need no elements at all if
exact, region-specific Green's functions could be found.  No unknown boundary data would appear in the
representation integral in such cases, and they would provide the desired fields everywhere after the first
step.  Errors for real problems would be limited to numerical quadrature errors on integrals with known
integrands.

The simplest  Green's functions (G) which give fields due to point disturbances in all of space,
are well-known in analytically-convenient, closed form for broad classes of problems.  The more
advantageous, more  sophisticated  Green's functions (G*), which give such fields in the presence of
bounding surfaces and other problem-specific features, have not been known, in any form, except for
relatively few simple geometries and boundary conditions.  Indeed, this is perhaps the main reason why
the conventional BEM is based on the simplest functions, despite considerable computational effort in
using it for industrial problems.

However, there has been some recent success in constructing more sophisticated Green's
functions G*, in analytical or approximate-analytical form, for specific shapes S, for a variety of classes of
problems e.g.
[ 1 ].  Therefore, one might try to preserve many of the mentioned advantages with the BEM, when G* is
known analytically, by first assembling a 'library' of such existing G*.  Then simplified computer codes,
which could be nothing more than quadrature routines involving prescribed boundary data and the G* for
specific S, could be written by users to solve their own real problems.  In fact, many such codes already



exist as "the last step" of existing BEM codes.  With a library of G*, the last step is all that would be
required for many problems.  Successful experience with such a library could be motivation to construct
more and more sophisticated G* entries over time.

Despite this scenario, it is clear that many classes of problems, for many geometrical shapes, will
probably defy, indefinitely, the construction of G* in even an approximate-analytical form.  For such cases
it is possible to construct G* in discretized  or numerical  form, for a variety of difficult but commonly
ocurring surfaces S.  These G* could be placed in another type of library.  Such library entries would take
time and computational effort to create.  However, like the creation of analytical G*, these would be one-
time tasks.  With modern technology for storage and quick retrieval of massive amounts of data, e.g., on
compact disk, and transmission of such data on computer networks, it is possible to take a fresh look at
the advantages of using even numerical G*, versus conventional BEM which uses the simpler analytical
G.

How to construct a library of discretized G*, which would consist of matrices of numbers as its
main ingredient, and how to use the library, are less clear than with analytical G*;  but these matters are
the subject of this paper.  In fact, the conventional BEM is a prime vehicle for constructing discretized
G*.  We intend to show that use of discretized G*, with some attention to standardized protocol, could be
almost as convenient and accurate for problem solving as having their analytical or approximate-
analytical counterparts.  Speed might be improved too.  To obtain discretized G* for the two-surface
problem, as described below, requires a number of matrix multiplications.  This can take some time.
However, existing G* in analytical form often require extensive integrations or series summations, and
these are notorious in the amount of time and effort to get numerical values from them.

The focus of the rest of this paper is to look in some detail at the consequences of getting more
sophisticated Green's functions  G* into the BEM picture.  To fix ideas, we outline the essential aspects of
creating a library of discretized or numerical Green's functions for problems of scattering of time-
harmonic acoustic fields by one or more three-dimensional obstacles, each bounded by a smooth surface S.
Ideas for one and two scatterers are treated explicitly.  How to deal with more than two scatterers will be
obvious, and simplifications which occur whenever G* is known in at least approximate-analytical form
will be apparent.  How to proceed for problems other than ones in acoustics, such as elastostatics, time-
harmonic elastodynamics, steady state heat conduction, or any problems governed by linear elliptic partial
differential equations, should be apparent as well.

Nevertheless, the NIST workshop, which gave rise to these proceedings, was concerned with
Green's functions and boundary elements with applications for modeling the mechanical behavior of
advanced materials.  Thus we close this introduction with some comments on the kind and character of
G* useful for this purpose.

Specifically, for materials-related problems, we wish to create for the library as many Greens
functions  G* as possible, which contain the geometrical and constitutive features of the most important
advanced materials.  Fields of greatest interest are likely to be elastostatic or elastodynamic, when
modeling mechanical behavior; but again, acoustic, thermal, or even electromagnetic responses to certain
inputs may be relevant to such behavior.

A typical strategy would be to model generic or model problems for "cells" of composite
materials, first for materials in their perfectly-bonded, undamaged  state.  Then, the G*, in either
analytical or discretized form, for these problems could be formed and stored in the library, ready for
nominal, representative, static loads to be applied by materials analysts.  From these loads and library of
G*, a variety of responses could be easily calculated from which, in turn, a "cell" stiffness or modulus
could be constructed.  Macrostructural behavior of bodies made of such composites could thereby be
assessed.

Subsequent models could include damaged  materials, i.e., those with common disbonds in
advanced composites or cracks which grow in characteristic patterns. Then, library entries G*, with the
essential, difficult, geometrical features of these models, could be created, ready for scientists to assess the



influence of the damage on local stiffness and thus, subsequently, on the macrostructural behavior of
bodies containing such defects.  In any case, with a library of proper G*, the desired fields may be
generated by representation integrals similar to the ones discussed above.  The value of "what-if"
experiments, that could be quickly and easily run with a good library of G* for complex materials,
damaged or undamaged, would evidently be considerable.

2 The one-surface problem

Consider time-harmonic scattering of acoustic waves in 3-D by a bounded body B' with surface S.
The representation integral for the acoustic field u at a point P in B exterior to B' is

2u(P) = [
∂u(q)

∂n
S

∫ G(q, P) − u(q)
∂

∂n
G(q,P)]dSq    (1)

where  G(P,Q) = G(Q,P) = - eikR/(2π R), R is Q − P , with point Q also in B and points q (and p et.

seq.) on S, k is a frequency parameter, and u satisfies a radiation condition at infinity.  Representation (1)
is obtained by applying Green's theorem to u and G in in the usual fashion [ 2 ].  Now if
∂u(q) ∂n = f (q)  is prescribed on S, expression (1) does not give the solution for u(P) since u(q) is
unknown.

However, suppose G* = G + w, where w is a regular function (satisfying the same governing
differential equation as u), can be found, and G* used in place of G, such that

∂
∂nq

G* q, P( ) = 0 for q ε S,         (2)

then (1) reduces to the integral

2u(P) = f (q)G * (q, P)dSq ≡ S0
∗

S

∫ f    (3)

which gives, in fact, the solution u(P) or u(p).  With G* instead of G, everything under the integral sign is
known.

Thus with known G* for given S and k, it is clear that solutions for arbitrary f  are obtainable
with a simple quadrature.  Having a library of G*'s, for as many shapes S as possible, would therefore
have obvious advantages.

Alternatively, consider the limit as P goes to p in (1).  The result is

     u( p) + u(q)
∂

∂nq
S

∫ G(q, p)dSq = f (q)G(q , p)

S

∫ dSq  (4)

or in operator form

Au = S0 f .                 (5)



Therefore in light of (3) and (5) it is true that on S

A−1S0 =
1
2

S0
∗

,        (6)

such that solving the boundary integral equation (BIE) (4), is formally equivalent to finding the Green's
function G* (cf. [ 3 ], and [ 4 ] eqs. (28), (29)).

Pursuing this line of reasoning a bit further, it can be shown [ 2 ], by applying Green's theorem to
G and G*, that G* satisfies the BIE (4), with 2G in place of the integral on the right hand side of (4).
Since this is true, it follows that

  G *(q, P) = 2A−1G(q, P) ,         (7)

where it is important to note that relation (7) between G and G* holds so long as at least one point in the
argument of each function is on S.   Formally inserting expression (7) for G* into (3) we obtain

       u(P) = f (q)A−1G(q, P)dS(q)

S
∫ . (8)

If A−1
 is assumed known, (8) like (3), represents the solution u(P).  Equation (8) is hardly a new result.

Nevertheless, its use as considered below does appear to be new.

With existing boundary element methodology, it is possible to regard (8) as having many of the

advantages of (3).  Specifically, it is possible to first form a nodal-value-approximation to A−1
, say AN

−1
,

in the form of a (NxN, (N=number of nodes)) matrix, for as many shapes S and frequencies k  as desired,

using a good robust BEM.  Next, multiply AN
−1

 by G evaluated at nodes q for chosen P.  We now have a

nodal approximation to G*/2.  Now improve this approximation over the boundary elements using
appropriate shape functions in the variable q.  Similarly represent f , so that it is now possible to
integrate the only remaining variables under the integral in (8), namely, products of shape functions.  The
result of this integration is another square (NxN) matrix K, similar in character to the stiffness matrix in
finite elements.  With this process, an approximate form of (8) may be written
(sum on i,j = 1... N )

u(P) = f (li)AK
-1(li , qj )G(q j ,P)             (9)

where f (li)  is a (1xN) row matrix of nodal values of f , G(q j ,P)  is the (Nx1) column matrix of nodal

values of G for desired (parameter) P, and AK
−1(li ,q j )  is the product of AN

−1
 with K.

The ingredients in (9) and the strategy surrounding their formation and use deserve more
discussion.

Suppose a library of AN
−1

 were available for a sequence of (say oblate) spheroidal-shaped rigid

scatterers in an acoustic medium.  Let the entries be specified by an eccentricity parameter e  and
frequency parameter k.  Now a library user, with known f 's in hand (i.e. known input waves at a certain
k), would like to know the scattered field at desired P, from a rigid spheroid of certain e .  This user could
proceed as follows.



Locate the proper AN
−1

 for chosen e  and k, specify f  in a standard (easy) format, and specify a

list of specific P locations for the desired fields.  The software to pick the necessary AN
−1

 from the library,

multiply by K to get AK
−1

   (i.e. do the integration in (8)), and finally do the multiplications in (9) with the
row f  and column of G for chosen P, could all be part of a black box. The box itself could be part of the
library.  The point is, with a good library, accurate reliable u(P) values could be obtained rather quickly
with little or no knowledge of the underlying process required from the user.

In fact, if a quadrature scheme (order of shape functions, etc.) could be decided upon in advance,
it would be possible to store AK

−1
 rather than AN

−1
, and save some execution time.  This and other such

issues should be transparent to the user.  In any case, interested knowledgeable users, who might wish to
write some of their own library-access software, are faced primarily with tasks involving formation and
multiplication of matrices.  The main, complex, time-consuming task of getting AK

−1
 would already have

been done.

3  The two-surface problem

In this section we consider the same scattering problem as in section 2 but with two bounded
scatterers.  For now, consider their surfaces, S1 and S2 to be disjoint; other configurations will be treated
later.  Here, we assume the desired scattered fields satisfy a radiation condition as before and also satisfy
the boundary conditions

∂u

∂n
= f j j = 1,2 (10)

where f1  and f 2  are given functions on Sj.

Proceeding as in section 2, the counterpart of equation (1) for the two surface problem is

2u P( )= [ f 1(q1 )G q1, P( )− u q1( ) ∂
∂nq

G q1,P( )]
S1

∫ dSq

+ [ f 2(q2 )G q2, P( ) − u q2( ) ∂
∂nq

G q2 ,P( )]
S2

∫ dSq

  (11)

Again, (11) contains unknown data on the surfaces, namely, u q1( ) and u q2( ) on S1and S2, respectively.

However if G* for S2 were known and used in place of G in (11), i.e., where

     
∂

∂nq

G* q2 ,P( )= 0 ,   (12)

then (11) reduces to

    2u P( )= [ f 1(q1 )G * q1, P( )− u q1( ) ∂
∂nq

G* q1,P( )]
S1

∫ dSq + f 2 (q2 )G * q2, P( )
S2

∫ dSq      (13)



which is the two-surface counterpart of (3) with G* for S2.  Note the dependence on the unknown function

u(q2 ) is missing, such that the integral over S2 is known.  Of course u q1( ), unknown on S1, is still

present.

To simplify the subsequent discussion, assume further that f 2  is zero.  (It is a simple matter
conceptually to add this integral back for nonzero f 2 , and dealing with this term is no more difficult than
with (3) via (9)).  Without the last integral, (13) is formally the same as (1), with G* in place of G.

One might be tempted now to try to replace G* in (13) with a function G**, say, where the
normal derivative of G** vanishes, not only on S2, as does G*, but also on S1.  With such a G**, an
equation like (3) could be written.  Then, in principle, the strategy described above following (3) would
pertain.  However, there is difficulty enough in trying to find analytical G* or numerical G* as described
for the one-surface problem, such that a comparable strategy for a G** is best postponed, perhaps
indefinitely.

Nevertheless, it is worthwhile to view (13) in a fashion similar to (1), with (4), and (5).  That is,
imagine solving a BIE like (5) for u on S1 where only S1 needs be discretized with boundary elements.
This is possible, without discretizing S2, if G* is used in the process.  Information about S2 is contained
in G*.  Thus, with G*, the two surface problem, via the BIE/BEM, is formally no more difficult than the
one surface problem.

If one must use a numerical G* in (13), many of the issues already addressed in connection with
(7), (8), and (9) are still applicable.  However, there are some new issues as well.

Specifically, note first that the arguments of G* and its normal derivative as appear in (13)
involve q1 as well as P.  Thus any BIE/BEM methodology involving S1, and subsequent use of (13) as a
solution for u(P), requires G* as a two-point function, where neither point is on S2.  Thus (7) is
insufficient for this purpose.

In light of this, consider another consequence of applying Green's theorem to G and G*, namely
(cf. [ 5 ], [ 6 ]),

2G* (Q, P) = 2G(P,Q) − G * (l, P)
∂

∂nl

G(l,Q)dSl

s

∫ (14)

where S in (14) should be regarded as S2.  Now since l  in the argument of G* in (14) is on S2, we may
use (7) to write (14) as

       G *(Q, P) = G(Q, P) −
∂

∂nl

G(l,Q)A−1G(l,P)dSl

s

∫ ,          (15)

where Q and P may be interchanged in any of these expressions, since both G and G* are symmetric in
these variables.  Similarly, (cf. [ 2 ]) it is true that

∂
∂nq1

G* (q1,P) =
∂

∂nq1

G(q1, P) −
∂

∂nl

G(P,l)A−1 ∂
∂nq1

G(l,q1 )dSl

s

∫ (16)

where again integrals over S mean over S2.



Now with (15) and (16), and existing boundary element methodology, the reasoning leading to a
library of information about S2 is similar to that surrounding (8).  Specifically, it is possible to write (15)
as

G *(Q, P) = G(Q, P) − Gn l (Q, li )AK
−1(li ,q j )G(q j , P) (17)

where the n superscript means normal derivative at l , and li and q j  are the arguments for row and

column matrices as before, and AK
−1(li ,q j ) , is exactly the same matrix encountered earlier.  A similar

expression exists for the normal derivatives in (16), namely,

G *
n

Q (Q, P) = G
n

Q (Q,P) − G n
l (P, li )AK

−1(li , qj )G
n

Q (q j ,Q) (18)

Note that a row-times-square-times-column multiplication is required for each P, Q choice in
expressions (17) and (18).  The results of such operations are the G* function evaluations as needed in a
BIE/BEM treatment of the surface S1.  Other aspects of the treatment are the same as if the free-space G
were usable, i.e., as if S2 were not present.

Observe that expressions (15) and (17) have the classic form for a region-dependent Green's
function, i.e., G* = G + w, where (minus) the integral term in (15) is w, and (minus) the triple-matrix
product  in (17) is (an approximate) w.  Moreover, each expression for G* can be interpreted as "the field
at Q due to a point disturbance at P in the presence of a surface (S=S2) on which the normal derivative of
the field vanishes".  This is precisely the interpretation of (one of a class of) region dependent Green's
functions.

4  Partitioning

Consider equation (11) again  (with f2 zero), and suppose limits are taken as P goes to p1 on S1
and p2 on S2, respectively.  The result is

    
A11 u1 + A12 u2 = S11 f1 (19) 

A21u1 + A22u2 = S21 f1 (20)

where the operator notation of (5) is invoked with the following additional considerations: the first
subscript on the A and S operators refers to pi   locations on Si, whereas the second subscript on those
operators refers to qj locations on Sj; the single subscript on u and f refers to qj locations on Sj; for the Aij
operators with i not equal to j, the free u(p) term (cf. (4)) is zero.

Now if u2 is formally eliminated from (19) and (20), the result is

(A11 − A12 A22
−1 A21)u1 = (S11 − A12 A22

−1S21) f1 . (21)

Next, if the group of terms in parentheses on the left side of (21) is called A*, and the group of terms in
parentheses on the right side is called S*, (21) is formally the same as (5).  Thus the presence of S2 is

manifest in the operator-triple-products with A22
−1

 in their centers.

In light of the observations about (21), made possible by the partitioning process, and the form of
equations (1) and (13) [with f2 zero], and the form of equations (15) and (16) [or (17) and (18)], it
probably occurs to the reader to question whether the partitioning process and the process of defining and
using G* are equivalent.  Indeed, this is the case as is rigorously shown in [ 2 ].



Specifically, if G* and its normal derivative, as given by (15) and (16), are used in place of G and
its normal derivative in (4),  the "11" terms in (21) come from the "G" part of the Green's function, and
the triple-product terms come from the "w" (integral (over S2)) part.

Note finally that the surfaces S1 and S2 above need not be disjoint.  The partitioning of a single
surface into two parts is arbitrary and really a matter of convenience.  For example, S2 may be a common-
shaped appendage on a variety of problem-specific shapes S1.  Specifically, S2 may be a thin antenna
attached to the surfaces S1 of different vehicles.  Most of the discussion in sections 3 and 4 applies in such
cases.

5  Discussion

Consider again the work involved in the creation and use of the Green's function library.  For
clarity, consider these matters for the one- and two- surface problems separately.

For the one-surface problem, the suggested strategy is to form a library of AK
−1

 for single
surfaces S, dependent on shape parameters, and for material parameters characterizing common acoustic
media.  The desired field for a particular S and k would then be given by (9).  Of course it would take time
and effort using existing BEM to form AK

−1
.  However, we believe that ease and speed of subsequently

obtaining scattered fields, using AK
−1

 from the library, would more than justify the creation of individual
entries.  This has certainly been the case in our experience with the small library we have already created
for our own use.  Like any library, the larger the better, but creation costs would suggest some advance
determination of parameters characterizing those AK

−1
 which would be used repeatedly.   The number of

entries for acoustic scattering would probably be more a function of the variety of shapes rather than the
number of different acoustic media.  The size of the individual entries would be a function of the degrees
of freedom, or number of nodes N in the BEM used to get the AK

−1
.  In any case, all of the work to get

AK
−1

 would be done in advance of their use by the library formers.

For the users, the time to get u(P) via (9) would depend primarily on N.  The user specifies f ,

and picks the particular AK
−1

 needed, then f (li)  would be formed by library software.  Next, the software

would multiply f (li)  by AK
−1(li ,q j )  to get a row dependent on qj.  Subsequent operations by the same

software to get u would involve "(1xN) row times (Nx1) column" operations for each (perhaps many) P
from a list of P specified by the user. A new multiplication involving the (NxN) AK

−1(li ,q j )  would be

required only for new f .

 For the two-surface problem the situation is a bit more complicated and more computationally
intensive.  Here, the strategy is to set up and solve the BIE equivalent of (4) or (5) wherein only S1 needs
be discretized.  For this, as already noted, G* replaces G. In principle then, solving the two-surface
problem using G* is formally identical to solving the one-surface problem via the conventional BEM
using G.  However, to actually implement this formality, both G *( p1,q1)  and its normal derivative at q1
are required, where neither p1 nor q1 are on S2.  Then, to finally get u(P) via (13), one needs G *(P,q1)
and its normal derivative at q1.  Again, neither point is on S2.

Getting the values of G and its normal derivative at the mentioned points is easy, but getting the
corresponding values of G* and its normal derivative at the same points requires (17) and (18).
(Expression (7) is insufficient since q=q1 is required).  Thus, just to obtain values of the required Green's
functions at points off of S2, more matrix multiplications via (17) and (18) are needed than to get u(P) via



(9), for the one-surface problem.  Then, after obtaining those values, there still remains the job of using
them to set up the BIE (5), solving (5), and finally using (13) to get u(P) for the two-surface problem.

Nevertheless, despite the number of steps, there is considerable conceptual and strategic
advantage in utilizing a library-collection of AK

−1
 for the two-surface problem, as well as for the one-

surface problem.  Matrix multiplications are the main computational burden in (17) and (18). However,
such are less formidable than discretizing a commonly-occuring but complex shape S2 each time - not to
mention that the operator (matrix) A* which needs to be inverted is smaller than the A (for the union of
S1 and S2) when only G is used.

With the library in place, this, in a nutshell, is the tradeoff: less user expertise and modeling
effort plus certain CPU time required  to solve a problem using G*, versus less of the first two items, and
probably less CPU too, than when using G.  We believe in the long run this is a good trade.

In any case, having a library of G*, in analytical or discretized form, the BEM should become a
more powerful, more accurate and even a faster tool, which would be usable on smaller computers, by
less-expert users.
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