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ABSTRACT

Elastic waves are scattered by an elastic inclusion. The interface between the
inclusion and the surrounding material is imperfect: the discontinuity in the
displacement (traction) vector across the interface is taken to be proportional
to the average of the traction (displacement) vectors on the two sides of
the interface. Uniqueness theorems are obtained, and boundary integral
equations over the interface are derived.

1. INTRODUCTION

Consider a bounded obstacle embedded in an unbounded solid. Both the
obstacle (the ‘inclusion’) and the surrounding solid (the ‘matrix’) are com-
posed of homogeneous, isotropic elastic materials. We consider the scattering
of elastic waves by the inclusion. For small time-harmonic oscillations, this
leads to a vector transmission problem, which we call the inclusion problem,
in which conditions are specified on the smooth interface, S, between the
matrix and the inclusion.

Usually, the matrix and the inclusion are assumed to be welded together, i.e.
the displacement and traction vectors are both continuous across S, which
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is then called a perfect interface. The opposite extreme is when there is no
interaction (‘complete debonding’). Intermediate situations arise when the
two solids can slip or separate, or when there is a thin layer of a different
material (such as glue or lubricant) between the solids. In this paper, we are
especially interested in those intermediate situations that can be modelled
by simple linear modifications to the perfect-interface continuity conditions.
In fact, we suppose that the discontinuity in the displacement (traction)
vector across the interface depends linearly on the average of the traction
(displacement) vectors on the two sides of the interface (see (2.4) below).
These transmission conditions include many of the phenomenological models
of imperfect interfaces in the literature.

New results are obtained, extending the work in [1]. Specifically, we obtain a
general uniqueness theorem, giving sufficient conditions on the coefficients in
the interface conditions. We also derive some new quasi-Fredholm systems
of coupled boundary integral equations over S. It remains to analyse the
solvability of these systems.

2. INCLUSION PROBLEMS

Let Bi denote a bounded domain, with a smooth closed boundary S and
simply-connected exterior, Be. We seek displacements ue(P ) and ui(P ) so
that

Leue(P ) = 0, P ∈ Be and Liui(P ) = 0, P ∈ Bi,

where u(P ) = ue(P ) + uinc(P ) for P ∈ Be, uinc is the given incident wave
and ue satisfies a radiation condition at infinity. In addition, we shall im-
pose certain continuity conditions across S; these are specified below. The
operator La is defined by

Lau = k−2
a grad div u − K−2

a curl curl u + u

where ρaω2 = (λa + 2µa)k2
a = µaK2

a and a = e or i. ρa is the density of the
solid in Ba, λa and µa are the Lamé moduli, and the time-dependence e−iωt

is suppressed throughout. The traction operator Ta is defined on S by

(Tau)m(p) = λanm div u + µanℓ(∂um/∂xℓ + ∂uℓ/∂xm)

where n(p) is the unit normal at p ∈ S, pointing into Be.

If S is a perfect interface, we impose

[t] = 0 and [u] = 0, (2.1)
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where t = Teu and ti = Tiui are traction vectors and square brackets denote
discontinuities across the interface:

[u] = u − ui, evaluated on S.

The corresponding inclusion problem has been studied extensively; see, e.g.,
Kupradze et al. [2] and Mura [3]. For a simplified treatment of the two-
dimensional problem, and further references, see [4].

The perfect-interface conditions (2.1) were first modified by Newmark in 1943
[5]. He was concerned with the transmission of static loads between straight
beams, and explicitly allowed slipping to occur. Similar modifications were
used by Mal and Bose [6] for scattering by spherical inclusions. These modi-
fications, and those of many other authors, are special cases of the following
interface conditions,

[t] = 0 and [u] = F.t, (2.2)

where the matrix F is given. We shall allow F to be a full matrix, with
elements that vary with position p on S; in the engineering literature, F is
usually taken as a constant diagonal matrix.

An alternative modification to (2.1) is

[t] = G.u and [u] = 0, (2.3)

where the elements of the matrix G could vary with position p on S. A
special case of (2.3) was used by Olsson et al. [7].

Finally, we consider a model that includes both (2.2) and (2.3), namely

[t] = G.〈u〉 and [u] = F.〈t〉, (2.4)

where 〈u〉 = 1
2 (u + ui) is the average of u and ui on S. A special case of

(2.4) was used by Baik and Thompson [8, 9].

A review of the literature on imperfect interfaces is given in [1].

3. UNIQUENESS THEOREMS

Consider the problem of scattering by an inclusion with an imperfect inter-
face. We can prove uniqueness theorems for interfaces characterized by (2.2),
(2.3) or (2.4); for its generality, we use (2.4) here, and always assume that
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all the elements of the matrices F and G are finite. We adapt standard ar-
guments from [2]. Thus, surround S with a large sphere SR of radius R. For
P ∈ Be, write

u(P ) = u
(p) + u

(s),

where
u

(p) = −k−2
e grad div u, u

(s) = u − u
(p),

and uinc ≡ 0. Then, an application of Betti’s reciprocal theorem to u and
its complex conjugate, u, in the region between S and SR gives

ke(λe + 2µe) lim
R→∞

∫

SR

|u(p)|2 ds + Keµe lim
R→∞

∫

SR

|u(s)|2 ds + I = 0, (3.1)

where

I =
1

2i

∫

S

(u.t − u.t) ds = Im

∫

S

u.t ds, (3.2)

Im denotes imaginary part and the radiation condition has been used (see
[2], Chpt. 3, §2). If we can show that I ≥ 0, we can deduce from (3.1) that
u

(p) ≡ 0 and u
(s) ≡ 0, whence u ≡ 0 in Be. Then, (2.4) imply that ui = 0

and ti = 0 on S, whence ui ≡ 0 in Bi.

Now, applying Betti’s theorem in Bi to ui and ui gives

0 =
1

2i

∫

S

(ui.ti − ui.ti) ds = Im

∫

S

ui.ti ds. (3.3)

But, since

u.t − ui.ti =
1

2

{

(t + ti).(u − ui) + (u + ui).(t − ti)
}

,

subtracting (3.3) from (3.2) gives

I = Im

∫

S

{

〈t〉.F.〈t〉 + 〈u〉.G.〈u〉
}

ds

after using (2.4). Thus, I ≥ 0, provided that

Fkℓ = F ℓk for k 6= ℓ and Im(Fkk) ≥ 0 (no sum) (3.4)

and

Gkℓ = Gℓk for k 6= ℓ and Im(Gkk) ≤ 0 (no sum). (3.5)
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So, if the elements of F and G are finite and satisfy (3.4) and (3.5), re-
spectively (for all p ∈ S if F and G vary with p), we have proved that the
corresponding inclusion problem has at most one solution.

4. BOUNDARY INTEGRAL EQUATIONS

In this section, we derive (direct) boundary integral equations over S for in-
clusions with imperfect interfaces characterized by (2.4), in the plane case. In
fact, our aim is to derive quasi-Fredholm systems of singular integral equa-
tions, for all the usual Fredholm theorems hold for such systems [10]. In
particular, we can analyse solvability by showing that the corresponding ho-
mogeneous system has only the trivial solution.

First, we introduce two fundamental Green’s tensors, Ga(P ;Q) (a = e, i):

(Ga(P ;Q))ij =
1

µa

{

Ψaδij +
1

K2
a

∂2

∂xi∂xj

(Ψa − Φa)

}

where Φa = −(i/2)H
(1)
0 (kaR), Ψa = −(i/2)H

(1)
0 (KaR) and R = |P − Q|.

Next, we define elastic single-layer and double-layer potentials by

(Sau)(P ) =

∫

S

u(q).Ga(q;P ) dsq

and

(Dau)(P ) =

∫

S

u(q).T q
aGa(q;P ) dsq,

respectively, where T q
a means Ta applied at q ∈ S. Then, three applications

of Betti’s theorem (one in Be to ue and Ge, one in Bi to uinc and Ge, and
one in Bi to ui and Gi) yield the familiar representations

2ue(P ) = (Set)(P ) − (Deu)(P ), P ∈ Be, (4.1)

and

−2ui(P ) = (Siti)(P ) − (Diui)(P ), P ∈ Bi. (4.2)

Letting P → p ∈ S, (4.1) and (4.2) give

(I + K∗

e )u − Set = 2uinc (4.3)

and

(I − K∗

i )ui + Siti = 0, (4.4)
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respectively, where

K∗

au =

∫

S

u(q).T q
aGa(q; p) dsq

is a singular integral operator. We can obtain two further relations by calcu-
lating the tractions on S corresponding to (4.1) and (4.2). However, we shall
forego this possibility here. This self-imposed restriction prevents us from
obtaining quasi-Fredholm systems for some choices of F and G, including the
case of a perfect interface (F = G = 0); see [4] for such a system, involving
a regularization of the operator TD.

When G = 0, we have (2.2), which we can use in (4.4) to give

(I − K∗

i )u + {Si − (I − K∗

i )F}t = 0. (4.5)

The pair (4.3) and (4.5) is a system of four coupled singular integral equations
for the four components of the two vectors u(p) and t(p), p ∈ S. It can be
shown that this system is a quasi-Fredholm system, provided that F is a non-
singular matrix (for all p ∈ S if F varies with p). This system was derived
in [1].

When F = 0 in (2.4), we have (2.3). It is easily seen that the use of (2.3)
in (4.4), as before, does not lead to a quasi-Fredholm system for any G
(including G = 0).

Suppose that, in (2.4), F is non-singular. Then, we have

t = Au − Bui and ti = Bu − Aui

on S, where the matrices A and B are given by

A = F−1 +
1

4
G and B = F−1 −

1

4
G.

Substituting into (4.3) and (4.4) gives

(I + K∗

e − SeA)u + SeBui = 2uinc

SiBu + (I − K∗

i − SiA)ui = 0

}

(4.6)

This is a quasi-Fredholm system for u(p) and ui(p). In particular, if G = 0,
we have A = B = F−1, whence (4.6) reduces to the pair (4.3) and (4.5),
since t = F−1[u].

Finally, suppose instead that G is non-singular in (2.4), whence

u = Ct − Dti and ui = Dt − Cti
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on S, where the matrices C and D are given by

C = G−1 +
1

4
F and D = G−1 −

1

4
F.

Substituting into (4.3) and (4.4) gives

{(I + K∗

e )C − Se}t − (I + K∗

e )Dti = 2uinc

(I − K∗

i )Dt − {(I − K∗

i )C − Si}ti = 0

}

(4.7)

This is a system of singular integral equations for t(p) and ti(p). To analyse
it, let

M = σ(I + K∗

e ) and N = σ(I − K∗

i ),

where σ(L) is the symbol matrix of the singular integral operator L; see [10]
or [4]. Then, we have to examine the determinant, ∆, of

(

MC −MD
ND −NC

)

=

(

M 0
0 N

) (

C −D
D −C

)

.

Thus,
∆ = det(M) det(N)∆0

where

∆0 = det

(

C −D
D −C

)

.

It follows that (4.7) is a quasi-Fredholm system provided that ∆0 does not
vanish. This is readily shown to be the case if F = 0 or if F and G are real
and symmetric; cf. the sufficient conditions for uniqueness obtained in § 3.
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