In: Inverse Scattering and Potential Problems in Mathematical Physics (ed. R. E. Kleinman, R. Kress and E. Martensen), Peter Lang, Frankfurt, 1995, pp. 129–140.

Some Applications of the Mellin Transform to Asymptotics of Series P. A. Martin

Department of Mathematics, University of Manchester Manchester M13 9PL, England

Abstract

Mellin transforms are used to find asymptotic approximations for functions defined by series. Such approximations were needed in the analysis of a water-wave problem, namely, the trapping of waves by submerged plates. The method seems to have wider applicability.

1 Introduction

It is well known that asymptotic approximations for functions defined by integrals can often be found using Mellin transforms [2], [8]. Analogous results can also be sought for functions defined by series,

$$f(x) = \sum_{n=1}^{\infty} c_n u(\mu_n x), \qquad (1)$$

where c_n and μ_n are known constants and u(y) is defined for all y > 0. We assume that the series is convergent for all x > 0, and seek the asymptotic behaviour of f(x) as $x \to 0+$. Ramanujan [1, Ch. 15] considered some problems of this type, such as $\mu_n = n^p$ and $u(x) = e^{-x}$, using the Euler-Maclaurin formula. In (1), u(y) is sampled at points $y = \mu_n x$; we describe such points, and the series (1), as *separable*. Separable series can often be analysed using Mellin transforms; this method was used to confirm some of Ramanujan's results [1]. More generally, we study *non-separable* series

$$f(x) = \sum_{n=1}^{\infty} c_n u(\lambda_n(x)), \qquad (2)$$

where u(y) is sampled at non-separable points, $y = \lambda_n(x)$. We find asymptotic approximations to such series by first finding suitable separable approximations to $\lambda_n(x)$, and then use Mellin transforms.

Both separable and non-separable series arise in waveguide problems. In this context, the limit $1/h \rightarrow 0$ is of interest, where the walls are at y = 0 and y = h. A typical problem in acoustics concerns an infinite bifurcated waveguide, with a semi-infinite plate (the septum) along y = d, x < 0 (*closed geometry*). A waveguide mode is incident from $x = -\infty$ in the region 0 < y < d; it is partially reflected at the end of the septum and partially transmitted into the rest of the guide. The same problem can be considered when $h = \infty$. This corresponds to an open-ended waveguide (*open geometry*). The connection between open-geometry and related closed-geometry problems is of interest because the latter are often easier to solve.

The same closed geometry has been used by Linton & Evans [4] in the context of linear water waves. The governing equation is the modified Helmholtz equation $(\nabla^2 - l^2)\phi = 0$, where l is the positive wavenumber in a direction perpendicular to the xy-plane. The septum and the bottom (y = h) are hard, whereas the boundary condition on the free surface y = 0 is $K\phi + \partial\phi/\partial y = 0$, where K is another positive wavenumber. Two more wavenumbers, k and k_0 , are defined to be the unique positive real roots of

$$K = k \tanh kd$$
 and $K = k_0 \tanh k_0 h$, (3)

respectively, and then l is chosen to satisfy $K < k_0 < l < k$. Hence, a surface wave incident from $x = -\infty$ will be totally reflected by the end of the plate. Linton & Evans [4] gave an explicit formula for the argument of the (complex) reflection coefficient, which they used to estimate the frequencies of waves trapped above a long horizontal submerged plate. We examine their formula below, and extract the limiting formula for deep water $(h \to \infty)$. Indeed, it was a study of the limiting problem that originally motivated the present analysis.

2 Mellin transforms

To find asymptotic approximations for separable series (1), we use the Mellin transform. The Mellin transform of a function f, and its inverse, are

$$\widetilde{f}(z) = \int_0^\infty f(x) x^{z-1} dx$$
 and $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \widetilde{f}(z) x^{-z} dz$,

respectively. Typically, $\tilde{f}(z)$ will be an analytic function of z within a strip, $a < \sigma < b$, say, where $z = \sigma + i\tau$; within this strip, $|\tilde{f}(z)| \to 0$ as $|\tau| \to \infty$; and a < c < b. We can obtain an asymptotic expansion of f(x) for small x by moving the inversion contour to the left; each term arises as a residue contribution from an appropriate pole in the analytic continuation of $\tilde{f}(z)$ into $\sigma \leq a$. Specifically, we have the following result.

THEOREM 1 ([6, p. 7]) Suppose that f(z) is analytic in a left-hand plane, $\sigma \leq a$, apart from poles at $z = -a_m$, m = 0, 1, 2, ...; let the principal part of the Laurent expansion of $\tilde{f}(z)$ about $z = -a_m$ be given by

$$\sum_{n=0}^{N(m)} A_{mn} \frac{(-1)^n n!}{(z+a_m)^{n+1}}$$

Assume that $|\tilde{f}(\sigma+i\tau)| \to 0$ as $|\tau| \to \infty$ for $a' \le \sigma \le a$, and that $|\tilde{f}(a'+i\tau)|$ is integrable for $|\tau| < \infty$. Then, if a' can be chosen so that $-\operatorname{Re}(a_{M+1}) < a' < -\operatorname{Re}(a_M)$ for some M, f(x) has the asymptotic expansion

$$f(x) \sim \sum_{m=0}^{M} \sum_{n=0}^{N(m)} A_{mn} x^{a_m} (\log x)^n \qquad as \ x \to 0+.$$

For more information on Mellin transforms, see [2, Ch. 4], [5], [8, Ch. 3].

3 Separable series: a problem of Ramanujan

EXAMPLE 1. Let ν be a real parameter. Find the behaviour of

$$f_{\nu}(x) = \sum_{n=1}^{\infty} n^{\nu-1} e^{-nx}$$
 as $x \to 0+$

We can take $c_n = n^{\nu-1}$, $\mu_n = n$ and $u(x) = e^{-x}$. Hence

$$\widetilde{f}_{\nu}(z) = \zeta(z - \nu + 1)\Gamma(z), \qquad (4)$$

where $\Gamma(z)$ is the the gamma function and $\zeta(z)$ is the Riemann zeta function. It is known that $\Gamma(z)$ is an analytic function of z, apart from simple poles at z = -N with residue $(-1)^N/N!$, for N = 0, 1, 2, ... It is also known that $\zeta(z)$ is analytic for all z, apart from a simple pole at z = 1; near z = 1, $\zeta(z) \simeq (z-1)^{-1} + \gamma$, where $\gamma = 0.5772...$ is Euler's constant.

Let us suppose that $0 < \nu < 1$. Then, $\tilde{f}_{\nu}(z)$ is analytic for $\sigma > \nu$. We choose the inversion contour along $\sigma = c$, with $c > \nu$. Moving the contour to the left, we pick up a residue contribution from the simple pole at $z = \nu$: this gives the leading contribution as $f_{\nu}(x) \sim x^{-\nu} \Gamma(\nu)$ as $x \to 0+$. If we move

the inversion contour further to the left, we formally obtain Ramanujan's expansion [1, p. 306],

$$f_{\nu}(x) \sim x^{-\nu} \Gamma(\nu) + \sum_{m=0}^{\infty} \frac{(-x)^m}{m!} \zeta(1-\nu-m) \quad \text{as } x \to 0.$$
 (5)

The fact that this is an *asymptotic* expansion follows from Theorem 1 and the known properties of $\zeta(z)$ and $\Gamma(z)$ as $|\tau| \to \infty$. Actually, (5) is valid for all values of ν , apart from $\nu = -N$. In these cases, there is a double pole at z = -N, giving a term proportional to $x^N \log x$.

4 Non-separable series: a model problem

Let us consider some non-separable series involving the roots of the transcendental equation (3)₂. This has real roots $\pm k_0$ and an infinite number of pure imaginary roots, $\pm ik_n$, n = 1, 2, ...; thus, k_n are the positive real roots of

$$K + k_n \tan k_n h = 0, \qquad n = 1, 2, \dots;$$
 (6)

they are ordered so that $(n-\frac{1}{2})\pi < k_nh < n\pi$. In the context of water-wave problems, h is the constant water depth and K is the positive real wavenumber. We are interested in the deep-water limit, $h \to \infty$. In dimensionless variables, we define $x = (Kh)^{-1}$ and $\lambda_n(x) = k_nh$, so that

$$\cos \lambda_n(x) + x\lambda_n(x)\sin \lambda_n(x) = 0 \qquad \text{with} \tag{7}$$

$$(n - \frac{1}{2})\pi < \lambda_n(x) < n\pi, \qquad n = 1, 2, \dots$$
(8)

It is straightforward to show that $\lambda_n(x)$ behaves as follows:

$$\lambda_n(x) \sim n\pi - (n\pi x)^{-1} - (x - \frac{1}{3})(n\pi x)^{-3}$$
(9)

as $n \to \infty$ for fixed x, and

$$\lambda_n(x) \sim (n - \frac{1}{2})\pi (1 + x + x^2)$$
 (10)

as $x \to 0$ for fixed *n*. It is this non-uniform behaviour that causes difficulties. To find some uniform approximations, we rewrite the definition (7) as

$$\sin \nu_n(x) - x\{\mu_n + \nu_n(x)\}\cos \nu_n(x) = 0,$$
 where (11)

$$\lambda_n(x) = \mu_n + \nu_n(x), \tag{12}$$

 $\mu_n = (n - \frac{1}{2})\pi$ and $0 < \nu_n < \pi/2$. Discarding the second term inside the braces in (11) (this is certainly reasonable for large n), we obtain

$$\nu_n(x) \simeq \tan^{-1}(\mu_n x) = \nu_n^{(1)}(x),$$
(13)

say, which is a separable approximation to $\nu_n(x)$. The approximation $\lambda_n(x) \simeq \mu_n + \nu_n^{(1)}(x)$ agrees with the first two terms in (9) and with the first two terms in (10). This approximation can be improved by iteration: replace $\nu_n(x)$ by $\nu_n^{(1)}(x)$ inside the braces in (11) to give

$$\nu_n(x) \simeq \tan^{-1} \left\{ \mu_n x + x \tan^{-1} \left(\mu_n x \right) \right\} = \nu_n^{(2)}(x), \tag{14}$$

say. Then, the approximation $\lambda_n(x) \simeq \mu_n + \nu_n^{(2)}(x)$ agrees with the three-term asymptotics in (9) and in (10).

EXAMPLE 2. Find the behaviour of

$$f(x) = \pi \sum_{n=1}^{\infty} \left(\frac{1}{\lambda_n(x)} - \frac{1}{n\pi} \right) \quad \text{as } x \to 0+.$$

The series converges for all $x \ge 0$; in fact, using the bounds (8), we have $0 < f(x) < 2 \log 2$ for x > 0. As $\lambda_n(0) = (n - \frac{1}{2})\pi = \mu_n$, for all n, write

$$f(x) = 2\log 2 + S(x), \quad \text{where} \quad (15)$$

$$S(x) = \pi \sum_{n=1}^{\infty} s_n(x)$$
 and $s_n(x) = \frac{1}{\lambda_n(x)} - \frac{1}{\mu_n}$.

We have $S(x) \to 0$ as $x \to 0$ and S(x) is bounded as $x \to \infty$, whence $\tilde{S}(z)$ is analytic in a strip $-\delta < \sigma < 0$, where $\delta > 0$. In fact, we note that $s_n(x) = O(x)$ as $x \to 0$ and is bounded as $x \to \infty$, whence $\tilde{s}_n(z)$ is analytic for $-1 < \sigma < 0$; thus, we expect that $\delta = 1$.

We shall treat S(x) using our separable approximations for $\nu_n(x)$. Since the latter may not be appropriate for small values of n, we split the sum:

$$S(x) = \pi \sum_{n=1}^{M} s_n(x) + \pi \sum_{n=M+1}^{\infty} s_n(x) = S_M(x) + S_M^{\infty}(x), \qquad (16)$$

say, where M is fixed. For S_M , we can use (10) to give

$$S_M(x) \sim \pi \sum_{n=1}^M \mu_n^{-1} \{ (1+x+x^2)^{-1} - 1 \} = -\pi x \sum_{n=1}^M \mu_n^{-1} + O(x^3)$$
 (17)

as $x \to 0$. For S_M^{∞} , we start with $s_n(x) \simeq -\mu_n^{-2}(\nu_n - \nu_n^2/\mu_n)$, since $|\nu_n/\mu_n|$ is small. Next, we approximate ν_n by $\nu_n^{(2)}$ and ν_n^2 by $(\nu_n^{(1)})^2$. Finally, since $|\nu_n^{(1)}/\mu_n|$ is small, we can approximate $\nu_n^{(2)}$ using the Taylor approximation

$$\tan^{-1} (X+H) \simeq \tan^{-1} X + H(1+X^2)^{-1}$$
(18)

for small H; the result is

$$s_n(x) \simeq -\mu_n^{-2} \{\nu_n^{(1)}(x) + x\nu_n^{(1)}(x) \left[1 + (\mu_n x)^2\right]^{-1} - \mu_n^{-1} [\nu_n^{(1)}(x)]^{-2} \} = s_n^{(1)}(x),$$

say. This is our final separable approximation for $s_n(x)$. We find that the error, $|s_n - s_n^{(1)}|$ is $O(n^{-4})$ as $n \to \infty$ for fixed x, and is $O(x^3)$ as $x \to 0$ for fixed n. The Mellin transform of $s_n^{(1)}(x)$ is given by

$$\tilde{s}_n^{(1)}(z) = -\mu_n^{-z-2}\tilde{u}_1(z) + \mu_n^{-z-3}\tilde{u}_2(z), \quad \text{where}$$
(19)

$$\widetilde{u}_1(z) = \int_0^\infty x^{z-1} \tan^{-1} x \, dx = \frac{\pi}{2z \sin\left[\pi(z-1)/2\right]},\tag{20}$$

$$\widetilde{u}_2(z) = \int_0^\infty x^{z-1} \{ \tan^{-1} x - x(1+x^2)^{-1} \} \tan^{-1} x \, dx.$$
(21)

 $\widetilde{u}_1(z)$ is analytic for $-1 < \sigma < 0$ and $\widetilde{u}_2(z)$ is analytic for $-4 < \sigma < 0$. Summing over *n*, using (16) and (19), gives

$$\widetilde{S}_M^{\infty}(z) \simeq -\psi_M(z+2)\widetilde{u}_1(z) + \psi_M(z+3)\widetilde{u}_2(z), \qquad (22)$$

where, by definition,

$$\psi_M(z) = \pi \sum_{n=M+1}^{\infty} \mu_n^{-z} = \pi^{1-z} (2^z - 1)\zeta(z) - \pi \sum_{n=1}^M \mu_n^{-z}.$$
 (23)

 $\psi_M(z)$ is analytic for all z, apart from a simple pole at z = 1;

$$\psi_M(z) \simeq (z-1)^{-1} + \gamma + \log(4/\pi) - \pi \sum_{n=1}^M \mu_n^{-1} \quad \text{near } z = 1.$$
 (24)

To invert $\widetilde{S}_{M}^{\infty}(z)$, we start with the inversion contour to the left of z = 0, and then move it further to the left; thus, we are interested in singularities in $\sigma < 0$. Consider the first term on the right-hand side of (22). From (20), we see that $\widetilde{u}_1(z)$ has simple poles at $z = -1, -3, \ldots$; near z = -1, we have $\widetilde{u}_1(z) \simeq (z+1)^{-1} + 1$. Hence, $\psi_M(z+2)\widetilde{u}_1(z)$ has a double pole at z = -1, giving terms proportional to $x \log x$ and x in $S_M^{\infty}(x)$. The next singularity at z = -3 gives a term in x^3 , but we have already made errors of this order when we replaced $s_n(x)$ by $s_n^{(1)}(x)$. The second term on the right-hand side of (22) is analytic for $-4 < \sigma < 0$, apart from a simple pole at z = -2: this gives a term in x^2 . Combining these results gives

$$S_M^{\infty}(x) = x \log x - x \left\{ 1 + \gamma + \log\left(4/\pi\right) - \pi \sum_{n=1}^M \mu_n^{-1} \right\} + O(x^2)$$

as $x \to 0$. Finally, using (16) and (17), we obtain

$$S(x) = x \log x - x \{1 + \gamma + \log(4/\pi)\} + O(x^2), \quad \text{as } x \to 0; \quad (25)$$

f(x) is given by (15). Note that this result does not depend on M; see (16).

5 A problem of Linton and Evans

In this section, we consider a water-wave problem described in §1 and solved by Linton & Evans [4]. They calculate a certain complex reflection coefficient; its argument is proportional to

$$E(h) = \tan^{-1} \left(\alpha^{-1} \sqrt{l^2 - k_0^2} \right) - \tan^{-1} \left(l/\alpha \right) - \frac{1}{2}\pi - (\alpha/\pi)L_0 + T, \quad (26)$$

where $L_0 = c \log (h/c) + d \log (h/d)$ and T is the sum

$$\sum_{n=1}^{\infty} \left\{ \tan^{-1} \frac{\alpha}{\sqrt{l^2 + n^2 \pi^2/c^2}} - \tan^{-1} \frac{\alpha}{\sqrt{l^2 + k_n^2}} + \tan^{-1} \frac{\alpha}{\sqrt{l^2 + \kappa_n^2}} \right\}.$$

The parameters d, l, K and κ_n (n = 1, 2, ...) are fixed. k_0 is defined by $(3)_2$ and $\alpha = \sqrt{k^2 - l^2}$, where k is defined by $(3)_1$. We have c = h - d > 0 and $K < k_0 < l < k$.

EXAMPLE 3. Find

$$\lim_{h \to \infty} E(h) = E_{\infty},\tag{27}$$

say. This corresponds, physically, to solving the problem of Linton & Evans [4] when the water is infinitely deep.

Note that, as h varies, so too do k_0 , k_n and c; all other parameters remain unchanged. To begin with, (3)₂ shows that $k_0h \sim Kh(1 + 2e^{-2Kh})$ as $Kh \to \infty$, so we can replace k_0 by K in the first term of E(h), as $h \to \infty$. It is elementary to show that $L_0 = d(\log h + 1 - \log d) + o(1)$ as $h \to \infty$. For T, we note that the arguments of the three inverse tangents behave like $\alpha c/(n\pi)$, $\alpha h/(n\pi)$ and $\alpha d/(n\pi)$, respectively, as $n \to \infty$, and so we can write $T = T_1 - T_2 + T_3$, where

$$T_1 = \sum_{n=1}^{\infty} \left\{ \tan^{-1} \left(\frac{\alpha}{\sqrt{l^2 + n^2 \pi^2/c^2}} \right) - \frac{\alpha c}{n\pi} \right\},$$
(28)

$$T_2 = \sum_{n=1}^{\infty} \left\{ \tan^{-1} \left(\frac{\alpha}{\sqrt{l^2 + k_n^2}} \right) - \frac{\alpha h}{n\pi} \right\},$$
(29)

$$T_3 = \sum_{n=1}^{\infty} \left\{ \tan^{-1} \left(\frac{\alpha}{\sqrt{l^2 + \kappa_n^2}} \right) - \frac{\alpha d}{n\pi} \right\},$$
(30)

using c-h+d=0. Note that T_1 is a separable series, T_2 is a non-separable series and T_3 is independent of h. So, at this stage, we have

$$E(h) = -\tan^{-1} \left[\alpha (l^2 - K^2)^{-1/2} \right] - \tan^{-1} (l/\alpha) - (\alpha d/\pi) (\log h + 1 - \log d) + T_1 - T_2 + T_3 + o(1) \text{ as } h \to \infty.$$

Deep-water behaviour of T_1 . From (28), we have $T_1 = f(\pi/c)$, where f(x) is defined by (1) with $c_n = 1$,

$$u(x) = \tan^{-1}\left(\frac{\alpha}{\sqrt{l^2 + x^2}}\right) - \frac{\alpha}{x}$$
(31)

and $\mu_n = n$. Proceeding as in §3, we obtain $\tilde{f}(z) = \zeta(z)\tilde{u}(z)$, where $\tilde{u}(z)$ is analytic for $1 < \sigma < 3$. We must find the singularities of $\tilde{u}(z)$ in $0 \le \sigma \le 1$. For $1 < \sigma < 3$, we integrate by parts to give

$$\overline{f}(z) = (\alpha/z)\zeta(z)\widetilde{u}_1(z), \qquad (32)$$

where

$$\widetilde{u}_1(z) = \int_0^\infty x^z \left\{ \frac{x}{\sqrt{x^2 + l^2} \left(x^2 + k^2\right)} - \frac{1}{x^2} \right\} \, dx. \tag{33}$$

is analytic for $1 < \sigma < 3$. It turns out that \tilde{u}_1 can be continued analytically into $-2 < \sigma < 3$, apart from a simple pole at z = 1; near z = 1, we find that $\tilde{u}_1(z) \simeq -(z-1)^{-1} + Q$, where

$$Q = \log (2/l) + (k/\alpha) \log [(k - \alpha)/l].$$
 (34)

Hence, (32), shows that $\tilde{f}(z)$ has a double pole at z = 1, a simple pole at z = 0, and is otherwise analytic in $-2 < \sigma < 3$; near z = 1,

$$\widetilde{f}(z) \simeq \alpha (1+w)^{-1} (w^{-1}+\gamma)(-w^{-1}+Q) \simeq \alpha \{-w^{-2}+w^{-1}(Q-\gamma+1)\},\$$

where w = z - 1, whereas near z = 0,

$$\widetilde{f}(z) \simeq (\alpha/z)\zeta(0)\widetilde{u}_1(0) = -\frac{1}{2}z^{-1}\tan^{-1}\left(\alpha/l\right)$$

We can then move the inversion contour to the left of z = 0, giving

$$f(x) = (\alpha/x)\log x + (\alpha/x)(Q - \gamma + 1) - \frac{1}{2}\tan^{-1}(\alpha/l) + o(1)$$

as $x \to 0$. Replacing x by π/c , and expanding for large h gives

$$T_{1} = (\alpha h/\pi) \{ -\log h + \log \pi + Q - \gamma + 1 \} - \frac{1}{2} \tan^{-1} (\alpha/l) + (\alpha d/\pi) \{ \log (h/\pi) - Q - \gamma \} + o(1) \text{ as } h \to \infty.$$
(35)

Deep-water behaviour of T_2 . As in Example 2, we expect the leading behaviour of the non-separable series T_2 to be given by (29) with $k_n h$ replaced by $\mu_n = (n - \frac{1}{2})\pi$. So, consider

$$T_{\infty}(1/h) = \sum_{n=1}^{\infty} \left\{ \tan^{-1} \left(\frac{\alpha}{\sqrt{l^2 + \mu_n^2/h^2}} \right) - \frac{\alpha h}{n\pi} \right\}.$$
 (36)

We have

$$T_{\infty}(x) = \sum_{n=1}^{\infty} \left\{ \tan^{-1} \left(\frac{\alpha}{\sqrt{l^2 + \mu_n^2 x^2}} \right) - \frac{\alpha}{\mu_n x} \right\} + \frac{\alpha}{x} \sum_{n=1}^{\infty} \left(\frac{1}{\mu_n} - \frac{1}{n\pi} \right);$$

the second sum is $(2/\pi) \log 2$. Hence, $T_{\infty}(x) = (2\alpha/(\pi x)) \log 2 + f(x)$, where f(x) is the separable series (1), with $c_n = 1$, $\mu_n = (n - \frac{1}{2})\pi$ and u(x) is again given by (31). We obtain

$$\widetilde{f}(z) = \pi^{-z} (2^z - 1)\zeta(z)\widetilde{u}(z) = (\alpha/z)\pi^{-z} (2^z - 1)\zeta(z)\widetilde{u}_1(z),$$

where $\tilde{u}_1(z)$ is defined by (33). Note that, unlike the function defined by (32), here, $\tilde{f}(z)$ does not have a pole at z = 0. However, it does have a double pole at z = 1; near z = 1,

$$\widetilde{f}(z) \simeq (\alpha/\pi) \{ -(z-1)^{-2} + (z-1)^{-1} (Q - \gamma + 1 + \log \pi - 2\log 2) \}.$$

Hence $T_{\infty}(x) = (\alpha/\pi) \{x^{-1} \log x + x^{-1}(Q - \gamma + 1 + \log \pi)\} + o(1)$ as $x \to 0$, and so, as $h \to \infty$, we obtain

$$T_{\infty}(1/h) = -(\alpha/\pi)h\log h + (\alpha/\pi)h(Q - \gamma + 1 + \log \pi) + o(1).$$
(37)

We now examine the difference between T_2 and $T_{\infty}(1/h)$. Let

$$T_4 = T_2 - T_\infty(1/h) = \sum_{n=1}^{\infty} t_n, \quad \text{where}$$
 (38)

$$t_n = \tan^{-1}\left(\frac{\alpha}{\sqrt{l^2 + k_n^2}}\right) - \tan^{-1}\left(\frac{\alpha}{\sqrt{l^2 + \mu_n^2/h^2}}\right).$$

Clearly, $t_n = o(1)$ as $h \to \infty$, for fixed n, so we have

$$T_4 = \sum_{n=M+1}^{\infty} t_n + o(1) \qquad \text{as } h \to \infty,$$

where M is fixed (cf. (16)). Writing $k_n h = \mu_n + \nu_n$, as in (12), we have $l^2 + k_n^2 \simeq \Delta_n^2 + 2\nu_n \mu_n / h^2$ as $|\nu_n/\mu_n|$ is small, where $\Delta_n^2 = l^2 + \mu_n^2 / h^2$. Hence, using the Taylor approximation (18), we find that

$$t_n \simeq \frac{-\alpha \nu_n \mu_n}{h^2 \Delta_n (\Delta_n^2 + \alpha^2)}.$$

P. A. Martin

Finally, we use the approximation (13), $\nu_n \simeq \nu_n^{(1)} = \tan^{-1}(\mu_n/(Kh))$, giving $t_n \simeq -(\alpha/h)t_n^{(1)}(1/h)$, where

$$t_n^{(1)}(y) = \frac{\mu_n y \tan^{-1}\left(\mu_n y/K\right)}{\sqrt{l^2 + \mu_n^2 y^2} \left(k^2 + \mu_n^2 y^2\right)},\tag{39}$$

using $k^2 = \alpha^2 + l^2$. So, we have approximated T_4 by a separable series:

$$T_4 = -(\alpha/h)T_M^{\infty}(1/h) + o(1) \qquad \text{as } h \to \infty, \text{ where}$$

$$T_M^{\infty}(x) = \sum_{n=M+1}^{\infty} t_n^{(1)}(x)$$
(40)

and $t_n^{(1)}(x)$ is defined by (39). As $t_n^{(1)}(x) \sim \frac{1}{2}\pi(\mu_n x)^{-2}$ as $x \to \infty$, we see that $\widetilde{T}_M^{\infty}(z)$ is analytic in a strip $\beta < \sigma < 2$, for some β , so we can take the inversion contour just to the left of $\sigma = 2$. We have $\widetilde{T}_M^{\infty}(z) = \pi^{-1}\psi_M(z)\widetilde{u}(z)$, where $\psi_M(z)$ is defined by (23) and

$$\widetilde{u}(z) = \int_0^\infty \frac{y^z \tan^{-1}(y/K)}{\sqrt{y^2 + l^2} (y^2 + k^2)} \, dy$$

is analytic for $-2 < \sigma < 2$. Hence, $\widetilde{T}_M^{\infty}(z)$ is analytic for $-2 < \sigma < 2$, apart from a simple pole at z = 1; using (24), we have $\widetilde{T}_M^{\infty}(z) \simeq L\pi^{-1}(z-1)^{-1}$ near z = 1, where

$$L = \tilde{u}(1) = \int_0^\infty \frac{y \tan^{-1}(y/K)}{\sqrt{y^2 + l^2} (y^2 + k^2)} \, dy.$$
(41)

Hence, as the conditions of Theorem 1 are satisfied, we obtain

 $T_M^{\infty}(x) = L/(\pi x) + o(1)$

as $x \to 0$, whence (40) gives $T_4 = -(\alpha/\pi)L + o(1)$ as $h \to \infty$. Finally, we combine this result with (37) and (38) to give

$$T_2 = (\alpha/\pi) \{ -h \log h + h(Q - \gamma + 1 + \log \pi) - L \} + o(1) \quad \text{as } h \to \infty.$$
(42)

The integral defining L, (41), is not elementary. However, it can be expressed in terms of dilogarithms [3]; we find that

$$\alpha L = \frac{1}{4}\pi^2 - \frac{1}{2}A\log(k+K) + \frac{1}{2}A\log(k-K) - \delta \tan^{-1}(\psi/\alpha) - \mathcal{L}$$
 (43)

where $\psi = \sqrt{l^2 - K^2}$, $A = -\log((k - \alpha)/l)$, $\delta = \tan^{-1}(\psi/K)$ and

$$\mathcal{L} = \operatorname{Li}_2(\mathrm{e}^{-A}, \delta) - \operatorname{Li}_2(\mathrm{e}^{-A}, \pi + \delta).$$
(44)

Here, the dilogarithm is defined by

$$\text{Li}_{2}(z) = -\int_{0}^{z} \log(1-w) \,\frac{dw}{w}$$
 (45)

for complex z, and $\text{Li}_2(r,\theta) = \text{Re} \{\text{Li}_2(re^{i\theta})\}$. Synthesis. From (35) and (42), we have

$$T_1 - T_2 = (\alpha/\pi) \{ L + d(\log h - \log \pi - Q + \gamma) \} - \frac{1}{2} \tan^{-1}(\alpha/l) + o(1), \quad (46)$$

as $h \to \infty$, so that the terms involving h and $h \log h$ in (35) and (42) cancel. Moreover, when (46) is substituted into (31), we see that the terms in $\log h$ cancel, leaving only bounded terms as $h \to \infty$. Finally, substituting for Q and L, we obtain

$$E_{\infty} = \frac{\alpha d}{\pi} \left\{ \log \frac{ld}{2\pi} + \gamma - 1 \right\} - \frac{kd}{\pi} \log \frac{k - \alpha}{l} - \tan^{-1} \frac{\alpha}{\psi} - \frac{1}{2} \tan^{-1} \frac{l}{\alpha} + T_3 - \frac{1}{\pi} \mathcal{L} + \frac{1}{2\pi} \log \frac{k - \alpha}{l} \log \frac{k + K}{k - K} - \frac{1}{\pi} \tan^{-1} \frac{\psi}{K} \tan^{-1} \frac{\psi}{\alpha}.$$
 (47)

This expression for E_{∞} bears little resemblance to E(h); indeed, it is perhaps surprising to see terms involving products of logarithms and products of inverse tangents. Nevertheless, the result can be checked by solving the deep-water problem directly. This has been done by Parsons [7], using the Wiener-Hopf technique; the two approaches yield the same result.

References

- [1] B.C. Berndt, Ramanujan's Notebooks, Part II, Springer, 1989.
- [2] N. Bleistein & R.A. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart & Winston, New York, 1975.
- [3] L. Lewin, Dilogarithms & Associated Functions, Macdonald, 1958.
- [4] C.M. Linton & D.V. Evans, Quart. J. Mech. Appl. Math. 44 (1991), 487–506.
- [5] P.A. Martin, Proc. Roy. Soc. A **432** (1991), 301–320.
- [6] F. Oberhettinger, Tables of Mellin Transforms, Springer, 1974.
- [7] N.F. Parsons, Ph.D. thesis, University of Manchester, in preparation.
- [8] R. Wong, Asymptotic Approximations of Integrals, Academic, 1989.