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Abstract

Mellin transforms are used to find asymptotic approximations for
functions defined by series. Such approximations were needed in the
analysis of a water-wave problem, namely, the trapping of waves by
submerged plates. The method seems to have wider applicability.

1 Introduction

It is well known that asymptotic approximations for functions defined by
integrals can often be found using Mellin transforms [2], [8]. Analogous
results can also be sought for functions defined by series,

f(x) =
∞∑
n=1

cnu(µnx), (1)

where cn and µn are known constants and u(y) is defined for all y > 0. We
assume that the series is convergent for all x > 0, and seek the asymptotic
behaviour of f(x) as x → 0+. Ramanujan [1, Ch. 15] considered some
problems of this type, such as µn = np and u(x) = e−x, using the Euler-
Maclaurin formula. In (1), u(y) is sampled at points y = µnx; we describe
such points, and the series (1), as separable. Separable series can often be
analysed using Mellin transforms; this method was used to confirm some of
Ramanujan’s results [1]. More generally, we study non-separable series

f(x) =
∞∑
n=1

cnu(λn(x)), (2)
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where u(y) is sampled at non-separable points, y = λn(x). We find asymp-
totic approximations to such series by first finding suitable separable ap-
proximations to λn(x), and then use Mellin transforms.

Both separable and non-separable series arise in waveguide problems.
In this context, the limit 1/h → 0 is of interest, where the walls are at
y = 0 and y = h. A typical problem in acoustics concerns an infinite bifur-
cated waveguide, with a semi-infinite plate (the septum) along y = d, x < 0
(closed geometry). A waveguide mode is incident from x = −∞ in the region
0 < y < d; it is partially reflected at the end of the septum and partially
transmitted into the rest of the guide. The same problem can be considered
when h = ∞. This corresponds to an open-ended waveguide (open geome-
try). The connection between open-geometry and related closed-geometry
problems is of interest because the latter are often easier to solve.

The same closed geometry has been used by Linton & Evans [4] in the
context of linear water waves. The governing equation is the modified
Helmholtz equation (∇2 − l2)φ = 0, where l is the positive wavenumber
in a direction perpendicular to the xy-plane. The septum and the bottom
(y = h) are hard, whereas the boundary condition on the free surface y = 0
is Kφ + ∂φ/∂y = 0, where K is another positive wavenumber. Two more
wavenumbers, k and k0, are defined to be the unique positive real roots of

K = k tanh kd and K = k0 tanh k0h, (3)

respectively, and then l is chosen to satisfy K < k0 < l < k. Hence, a
surface wave incident from x = −∞ will be totally reflected by the end of the
plate. Linton & Evans [4] gave an explicit formula for the argument of the
(complex) reflection coefficient, which they used to estimate the frequencies
of waves trapped above a long horizontal submerged plate. We examine their
formula below, and extract the limiting formula for deep water (h → ∞).
Indeed, it was a study of the limiting problem that originally motivated the
present analysis.

2 Mellin transforms

To find asymptotic approximations for separable series (1), we use the Mellin
transform. The Mellin transform of a function f , and its inverse, are

f̃(z) =
∫ ∞

0

f(x)xz−1 dx and f(x) =
1

2πi

∫ c+i∞

c−i∞
f̃(z)x−z dz,

respectively. Typically, f̃(z) will be an analytic function of z within a strip,
a < σ < b, say, where z = σ + iτ ; within this strip, |f̃(z)| → 0 as |τ | → ∞;
and a < c < b. We can obtain an asymptotic expansion of f(x) for small
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x by moving the inversion contour to the left; each term arises as a residue
contribution from an appropriate pole in the analytic continuation of f̃(z)
into σ ≤ a. Specifically, we have the following result.

Theorem 1 ([6, p. 7]) Suppose that f̃(z) is analytic in a left-hand plane,
σ ≤ a, apart from poles at z = −am, m = 0, 1, 2, . . .; let the principal part
of the Laurent expansion of f̃(z) about z = −am be given by

N(m)∑
n=0

Amn
(−1)nn!

(z + am)n+1
.

Assume that |f̃(σ+iτ)| → 0 as |τ | → ∞ for a′ ≤ σ ≤ a, and that |f̃(a′+iτ)|
is integrable for |τ | < ∞. Then, if a′ can be chosen so that −Re (aM+1) <
a′ < −Re (aM ) for some M , f(x) has the asymptotic expansion

f(x) ∼
M∑
m=0

N(m)∑
n=0

Amnx
am(log x)n as x→ 0+.

For more information on Mellin transforms, see [2, Ch. 4], [5], [8, Ch. 3].

3 Separable series: a problem of Ramanujan

Example 1. Let ν be a real parameter. Find the behaviour of

fν(x) =
∞∑
n=1

nν−1e−nx as x→ 0+.

We can take cn = nν−1, µn = n and u(x) = e−x. Hence

f̃ν(z) = ζ(z − ν + 1)Γ(z), (4)

where Γ(z) is the the gamma function and ζ(z) is the Riemann zeta function.
It is known that Γ(z) is an analytic function of z, apart from simple poles
at z = −N with residue (−1)N/N !, for N = 0, 1, 2, . . .. It is also known
that ζ(z) is analytic for all z, apart from a simple pole at z = 1; near z = 1,
ζ(z) ' (z − 1)−1 + γ, where γ = 0.5772 . . . is Euler’s constant.

Let us suppose that 0 < ν < 1. Then, f̃ν(z) is analytic for σ > ν. We
choose the inversion contour along σ = c, with c > ν. Moving the contour to
the left, we pick up a residue contribution from the simple pole at z = ν: this
gives the leading contribution as fν(x) ∼ x−νΓ(ν) as x → 0+. If we move
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the inversion contour further to the left, we formally obtain Ramanujan’s
expansion [1, p. 306],

fν(x) ∼ x−νΓ(ν) +
∞∑
m=0

(−x)m

m!
ζ(1− ν −m) as x→ 0. (5)

The fact that this is an asymptotic expansion follows from Theorem 1 and
the known properties of ζ(z) and Γ(z) as |τ | → ∞. Actually, (5) is valid for
all values of ν, apart from ν = −N . In these cases, there is a double pole
at z = −N , giving a term proportional to xN log x.

4 Non-separable series: a model problem

Let us consider some non-separable series involving the roots of the tran-
scendental equation (3)2. This has real roots ±k0 and an infinite number
of pure imaginary roots, ±ikn, n = 1, 2, . . .; thus, kn are the positive real
roots of

K + kn tan knh = 0, n = 1, 2, . . . ; (6)

they are ordered so that (n− 1
2 )π < knh < nπ. In the context of water-wave

problems, h is the constant water depth and K is the positive real wavenum-
ber. We are interested in the deep-water limit, h → ∞. In dimensionless
variables, we define x = (Kh)−1 and λn(x) = knh, so that

cosλn(x) + xλn(x) sinλn(x) = 0 with (7)

(n− 1
2 )π < λn(x) < nπ, n = 1, 2, . . . . (8)

It is straightforward to show that λn(x) behaves as follows:

λn(x) ∼ nπ − (nπx)−1 − (x− 1
3 )(nπx)−3 (9)

as n→∞ for fixed x, and

λn(x) ∼ (n− 1
2 )π(1 + x+ x2) (10)

as x→ 0 for fixed n. It is this non-uniform behaviour that causes difficulties.
To find some uniform approximations, we rewrite the definition (7) as

sin νn(x)− x{µn + νn(x)} cos νn(x) = 0, where (11)

λn(x) = µn + νn(x), (12)

µn = (n − 1
2 )π and 0 < νn < π/2. Discarding the second term inside the

braces in (11) (this is certainly reasonable for large n), we obtain

νn(x) ' tan−1 (µnx) = ν(1)
n (x), (13)
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say, which is a separable approximation to νn(x). The approximation
λn(x) ' µn + ν

(1)
n (x) agrees with the first two terms in (9) and with the

first two terms in (10). This approximation can be improved by iteration:
replace νn(x) by ν(1)

n (x) inside the braces in (11) to give

νn(x) ' tan−1 {µnx+ x tan−1 (µnx)} = ν(2)
n (x), (14)

say. Then, the approximation λn(x) ' µn + ν
(2)
n (x) agrees with the three-

term asymptotics in (9) and in (10).
Example 2. Find the behaviour of

f(x) = π

∞∑
n=1

(
1

λn(x)
− 1
nπ

)
as x→ 0+.

The series converges for all x ≥ 0; in fact, using the bounds (8), we have
0 < f(x) < 2 log 2 for x > 0. As λn(0) = (n− 1

2 )π = µn, for all n, write

f(x) = 2 log 2 + S(x), where (15)

S(x) = π

∞∑
n=1

sn(x) and sn(x) =
1

λn(x)
− 1
µn
.

We have S(x) → 0 as x → 0 and S(x) is bounded as x → ∞, whence
S̃(z) is analytic in a strip −δ < σ < 0, where δ > 0. In fact, we note that
sn(x) = O(x) as x→ 0 and is bounded as x→∞, whence s̃n(z) is analytic
for −1 < σ < 0; thus, we expect that δ = 1.

We shall treat S(x) using our separable approximations for νn(x). Since
the latter may not be appropriate for small values of n, we split the sum:

S(x) = π

M∑
n=1

sn(x) + π

∞∑
n=M+1

sn(x) = SM (x) + S∞M (x), (16)

say, where M is fixed. For SM , we can use (10) to give

SM (x) ∼ π
M∑
n=1

µ−1
n {(1 + x+ x2)−1 − 1} = −πx

M∑
n=1

µ−1
n +O(x3) (17)

as x→ 0. For S∞M , we start with sn(x) ' −µ−2
n (νn − ν2

n/µn), since |νn/µn|
is small. Next, we approximate νn by ν(2)

n and ν2
n by (ν(1)

n )2. Finally, since
|ν(1)
n /µn| is small, we can approximate ν(2)

n using the Taylor approximation

tan−1 (X +H) ' tan−1X +H(1 +X2)−1 (18)
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for small H; the result is

sn(x) ' −µ−2
n {ν(1)

n (x)+xν(1)
n (x) [1+(µnx)2]−1−µ−1

n [ν(1)
n (x)]−2} = s(1)n (x),

say. This is our final separable approximation for sn(x). We find that the
error, |sn− s(1)n | is O(n−4) as n→∞ for fixed x, and is O(x3) as x→ 0 for
fixed n. The Mellin transform of s(1)n (x) is given by

s̃(1)n (z) = −µ−z−2
n ũ1(z) + µ−z−3

n ũ2(z), where (19)

ũ1(z) =
∫ ∞

0

xz−1 tan−1 x dx =
π

2z sin [π(z − 1)/2]
, (20)

ũ2(z) =
∫ ∞

0

xz−1{tan−1 x− x(1 + x2)−1} tan−1 x dx. (21)

ũ1(z) is analytic for −1 < σ < 0 and ũ2(z) is analytic for −4 < σ < 0.
Summing over n, using (16) and (19), gives

S̃∞M (z) ' −ψM (z + 2)ũ1(z) + ψM (z + 3)ũ2(z), (22)

where, by definition,

ψM (z) = π

∞∑
n=M+1

µ−zn = π1−z(2z − 1)ζ(z)− π
M∑
n=1

µ−zn . (23)

ψM (z) is analytic for all z, apart from a simple pole at z = 1;

ψM (z) ' (z − 1)−1 + γ + log (4/π)− π
M∑
n=1

µ−1
n near z = 1. (24)

To invert S̃∞M (z), we start with the inversion contour to the left of z = 0,
and then move it further to the left; thus, we are interested in singularities
in σ < 0. Consider the first term on the right-hand side of (22). From (20),
we see that ũ1(z) has simple poles at z = −1,−3, . . .; near z = −1, we have
ũ1(z) ' (z+ 1)−1 + 1. Hence, ψM (z+ 2)ũ1(z) has a double pole at z = −1,
giving terms proportional to x log x and x in S∞M (x). The next singularity
at z = −3 gives a term in x3, but we have already made errors of this order
when we replaced sn(x) by s(1)n (x). The second term on the right-hand side
of (22) is analytic for −4 < σ < 0, apart from a simple pole at z = −2: this
gives a term in x2. Combining these results gives

S∞M (x) = x log x− x

{
1 + γ + log (4/π)− π

M∑
n=1

µ−1
n

}
+O(x2)
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as x→ 0. Finally, using (16) and (17), we obtain

S(x) = x log x− x{1 + γ + log (4/π)}+O(x2), as x→ 0; (25)

f(x) is given by (15). Note that this result does not depend on M ; see (16).

5 A problem of Linton and Evans

In this section, we consider a water-wave problem described in §1 and solved
by Linton & Evans [4]. They calculate a certain complex reflection coeffi-
cient; its argument is proportional to

E(h) = tan−1

(
α−1

√
l2 − k2

0

)
− tan−1 (l/α)− 1

2π − (α/π)L0 + T, (26)

where L0 = c log (h/c) + d log (h/d) and T is the sum

∞∑
n=1

{
tan−1 α√

l2 + n2π2/c2
− tan−1 α√

l2 + k2
n

+ tan−1 α√
l2 + κ2

n

}
.

The parameters d, l, K and κn (n = 1, 2, . . .) are fixed. k0 is defined by (3)2
and α =

√
k2 − l2, where k is defined by (3)1. We have c = h− d > 0 and

K < k0 < l < k.
Example 3. Find

lim
h→∞

E(h) = E∞, (27)

say. This corresponds, physically, to solving the problem of Linton &
Evans [4] when the water is infinitely deep.

Note that, as h varies, so too do k0, kn and c; all other parameters
remain unchanged. To begin with, (3)2 shows that k0h ∼ Kh(1 + 2e−2Kh)
as Kh→∞, so we can replace k0 by K in the first term of E(h), as h→∞.
It is elementary to show that L0 = d(log h + 1 − log d) + o(1) as h → ∞.
For T , we note that the arguments of the three inverse tangents behave like
αc/(nπ), αh/(nπ) and αd/(nπ), respectively, as n → ∞, and so we can
write T = T1 − T2 + T3, where

T1 =
∞∑
n=1

{
tan−1

(
α√

l2 + n2π2/c2

)
− αc

nπ

}
, (28)

T2 =
∞∑
n=1

{
tan−1

(
α√

l2 + k2
n

)
− αh

nπ

}
, (29)

T3 =
∞∑
n=1

{
tan−1

(
α√

l2 + κ2
n

)
− αd

nπ

}
, (30)
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using c−h+d = 0. Note that T1 is a separable series, T2 is a non-separable
series and T3 is independent of h. So, at this stage, we have

E(h) = − tan−1 [α(l2 −K2)−1/2]− tan−1 (l/α)
− (αd/π)(log h+ 1− log d) + T1 − T2 + T3 + o(1) as h→∞.

Deep-water behaviour of T1. From (28), we have T1 = f(π/c), where
f(x) is defined by (1) with cn = 1,

u(x) = tan−1

(
α√

l2 + x2

)
− α

x
(31)

and µn = n. Proceeding as in §3, we obtain f̃(z) = ζ(z)ũ(z), where ũ(z) is
analytic for 1 < σ < 3. We must find the singularities of ũ(z) in 0 ≤ σ ≤ 1.
For 1 < σ < 3, we integrate by parts to give

f̃(z) = (α/z)ζ(z)ũ1(z), (32)

where

ũ1(z) =
∫ ∞

0

xz
{

x√
x2 + l2 (x2 + k2)

− 1
x2

}
dx. (33)

is analytic for 1 < σ < 3. It turns out that ũ1 can be continued analytically
into −2 < σ < 3, apart from a simple pole at z = 1; near z = 1, we find
that ũ1(z) ' −(z − 1)−1 +Q, where

Q = log (2/l) + (k/α) log [(k − α)/l]. (34)

Hence, (32), shows that f̃(z) has a double pole at z = 1, a simple pole at
z = 0, and is otherwise analytic in −2 < σ < 3; near z = 1,

f̃(z) ' α(1 + w)−1(w−1 + γ)(−w−1 +Q) ' α{−w−2 + w−1(Q− γ + 1)},

where w = z − 1, whereas near z = 0,

f̃(z) ' (α/z)ζ(0)ũ1(0) = − 1
2z
−1 tan−1 (α/l).

We can then move the inversion contour to the left of z = 0, giving

f(x) = (α/x) log x+ (α/x)(Q− γ + 1)− 1
2 tan−1 (α/l) + o(1)

as x→ 0. Replacing x by π/c, and expanding for large h gives

T1 = (αh/π){− log h+ log π +Q− γ + 1} − 1
2 tan−1 (α/l)

+ (αd/π){log (h/π)−Q− γ}+ o(1) as h→∞. (35)
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Deep-water behaviour of T2. As in Example 2, we expect the lead-
ing behaviour of the non-separable series T2 to be given by (29) with knh
replaced by µn = (n− 1

2 )π. So, consider

T∞(1/h) =
∞∑
n=1

{
tan−1

(
α√

l2 + µ2
n/h

2

)
− αh

nπ

}
. (36)

We have

T∞(x) =
∞∑
n=1

{
tan−1

(
α√

l2 + µ2
nx

2

)
− α

µnx

}
+
α

x

∞∑
n=1

(
1
µn
− 1
nπ

)
;

the second sum is (2/π) log 2. Hence, T∞(x) = (2α/(πx)) log 2+f(x), where
f(x) is the separable series (1), with cn = 1, µn = (n − 1

2 )π and u(x) is
again given by (31). We obtain

f̃(z) = π−z(2z − 1)ζ(z)ũ(z) = (α/z)π−z(2z − 1)ζ(z)ũ1(z),

where ũ1(z) is defined by (33). Note that, unlike the function defined by
(32), here, f̃(z) does not have a pole at z = 0. However, it does have a
double pole at z = 1; near z = 1,

f̃(z) ' (α/π){−(z − 1)−2 + (z − 1)−1(Q− γ + 1 + log π − 2 log 2)}.

Hence T∞(x) = (α/π){x−1 log x+ x−1(Q− γ + 1 + log π)}+ o(1) as x→ 0,
and so, as h→∞, we obtain

T∞(1/h) = −(α/π)h log h+ (α/π)h(Q− γ + 1 + log π) + o(1). (37)

We now examine the difference between T2 and T∞(1/h). Let

T4 = T2 − T∞(1/h) =
∞∑
n=1

tn, where (38)

tn = tan−1

(
α√

l2 + k2
n

)
− tan−1

(
α√

l2 + µ2
n/h

2

)
.

Clearly, tn = o(1) as h→∞, for fixed n, so we have

T4 =
∞∑

n=M+1

tn + o(1) as h→∞,

where M is fixed (cf. (16)). Writing knh = µn + νn, as in (12), we have
l2 + k2

n ' ∆2
n + 2νnµn/h2 as |νn/µn| is small, where ∆2

n = l2 + µ2
n/h

2.
Hence, using the Taylor approximation (18), we find that

tn '
−ανnµn

h2∆n(∆2
n + α2)

.
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Finally, we use the approximation (13), νn ' ν
(1)
n = tan−1 (µn/(Kh)),

giving tn ' −(α/h)t(1)n (1/h), where

t(1)n (y) =
µny tan−1 (µny/K)√
l2 + µ2

ny
2 (k2 + µ2

ny
2)
, (39)

using k2 = α2 + l2. So, we have approximated T4 by a separable series:

T4 = −(α/h)T∞M (1/h) + o(1) as h→∞, where (40)

T∞M (x) =
∞∑

n=M+1

t(1)n (x)

and t
(1)
n (x) is defined by (39). As t(1)n (x) ∼ 1

2π(µnx)−2 as x → ∞, we see
that T̃∞M (z) is analytic in a strip β < σ < 2, for some β, so we can take the
inversion contour just to the left of σ = 2. We have T̃∞M (z) = π−1ψM (z)ũ(z),
where ψM (z) is defined by (23) and

ũ(z) =
∫ ∞

0

yz tan−1 (y/K)√
y2 + l2 (y2 + k2)

dy

is analytic for −2 < σ < 2. Hence, T̃∞M (z) is analytic for −2 < σ < 2, apart
from a simple pole at z = 1; using (24), we have T̃∞M (z) ' Lπ−1(z − 1)−1

near z = 1, where

L = ũ(1) =
∫ ∞

0

y tan−1 (y/K)√
y2 + l2 (y2 + k2)

dy. (41)

Hence, as the conditions of Theorem 1 are satisfied, we obtain

T∞M (x) = L/(πx) + o(1)

as x → 0, whence (40) gives T4 = −(α/π)L + o(1) as h → ∞. Finally, we
combine this result with (37) and (38) to give

T2 = (α/π){−h log h+ h(Q− γ + 1 + log π)− L}+ o(1) as h→∞. (42)

The integral defining L, (41), is not elementary. However, it can be
expressed in terms of dilogarithms [3]; we find that

αL = 1
4π

2 − 1
2A log(k +K) + 1

2A log(k −K)− δ tan−1(ψ/α)− L (43)

where ψ =
√
l2 −K2, A = − log((k − α)/l), δ = tan−1(ψ/K) and

L = Li2(e−A, δ)− Li2(e−A, π + δ). (44)
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Here, the dilogarithm is defined by

Li2(z) = −
∫ z

0

log(1− w)
dw

w
(45)

for complex z, and Li2(r, θ) = Re
{

Li2(reiθ)
}

.
Synthesis. From (35) and (42), we have

T1− T2 = (α/π){L+ d(log h− log π−Q+ γ)}− 1
2 tan−1(α/l) + o(1), (46)

as h→∞, so that the terms involving h and h log h in (35) and (42) cancel.
Moreover, when (46) is substituted into (31), we see that the terms in log h
cancel, leaving only bounded terms as h → ∞. Finally, substituting for Q
and L, we obtain

E∞ =
αd

π

{
log

ld

2π
+ γ − 1

}
− kd

π
log

k − α
l
− tan−1 α

ψ
− 1

2
tan−1 l

α

+ T3 −
1
π
L+

1
2π

log
k − α
l

log
k +K

k −K
− 1
π

tan−1 ψ

K
tan−1 ψ

α
. (47)

This expression for E∞ bears little resemblance to E(h); indeed, it is
perhaps surprising to see terms involving products of logarithms and prod-
ucts of inverse tangents. Nevertheless, the result can be checked by solving
the deep-water problem directly. This has been done by Parsons [7], using
the Wiener-Hopf technique; the two approaches yield the same result.
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