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Abstract
Time-harmonic waves are scattered by obstacles, through which waves can also
travel. Various examples from acoustics, elastodynamics and electromagnetics
are discussed, including imperfect interfaces, chiral materials and wood. The
paper gives a very subjective overview but with emphasis on the contributions
and influence of Ralph Kleinman.

1 Introduction

The title refers to a basic class of problems in scattering theory: how does a time-
harmonic wave interact with a bounded obstacle when the obstacle itself can support
waves in its interior? This is an example of a transmission problem. Such examples
arise in many different physical contexts, and some of these will be discussed below.

This article gives a selective review. It is subjective, not comprehensive! The
following physical problems are discussed:

• acoustic scattering by a fluid inclusion or by a solid inclusion;

• scattering of elastic waves by an elastic inclusion, with the possibility of imper-
fect interfaces;

• electromagnetic problems, with achiral or chiral inclusions; and

• wave motion in wooden poles containing a rotten core.

The main theme, of course, is Ralph Kleinman’s contributions and influence, begin-
ning with his well-known review paper with Gary Roach.

The article is based on a lecture that I gave at the Ralph Kleinman Memorial
Meeting, and, as Prof. Senior remarked, giving the lecture was a bitter-sweet expe-
rience. Ralph Kleinman was more than a fine mathematician, he was a fine man.
It was a great pleasure to work with him and to have known him: we all miss his
presence, contributions, laughter and company.
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2 Kleinman and Roach (1974)

This paper was published in SIAM Review [10]. It is concerned with various boundary-
value problems for the Helmholtz equation in three dimensions. Thus, let Sin denote
a bounded, simply-connected domain with a smooth boundary S and unbounded ex-
terior Sex. (The notation Sin and Sex was often used by Ralph in lectures, leading to
various jokes about S being the thin demarcation line! At the Memorial Meeting, it
transpired that Sin and Sex is actually Butler’s notation.) The problem is to solve

(∇2 + k2)u = 0 in Sex,

together with a boundary condition on S, either the Dirichlet condition, u = f on S,
or the Neumann condition, ∂u/∂n = g on S, and the Sommerfeld radiation condition
at infinity. Here, f and g are given functions on S, k2 is real and positive, and ∂/∂n
denotes normal differentiation on S.

Kleinman and Roach [10] give a systematic study of methods for solving these
exterior problems, based on boundary integral equations using the free-space Green’s
function

G(P,Q; k) = −eikR/(2πR),

where R = |P−Q| is the distance between the two points, P and Q. Interior problems
are also considered, as are connections between the various integral equations, and
the problem of irregular frequencies.

I have begun with this paper because it is how I began to know Ralph’s (and
Gary’s) work. I first met Ralph, in Manchester, when he came to visit Fritz Ursell,
about 20 years ago. At that time, I was Fritz’s post-doc, working on the same
problems as those in [10], but using the so-called null-field equations [12] (which are
themselves related to Waterman’s T -matrix method).

Why was the paper [10] influential? Two reasons come to mind. First, boundary
integral equations and boundary element methods were beginning to be used by
engineers to solve practical acoustic-scattering problems; see, for example, the slim
proceedings of a 1975 ASME conference, edited by Cruse and Rizzo [5]. Thus, there
was a need for a careful (and accessible) derivation of well-founded integral-equation
methods. Second, the paper [10] gives the Big Picture: it gives a connected overview
of the field. Today, the paper’s influence has waned, probably because it has been
subsumed by the book of Colton and Kress [4].

3 The fluid–fluid problem

Ralph encouraged me to visit Delaware; I spent a sabbatical year there, from Au-
gust 1986. I arrived there with a particular interest in two topics: the use of one
integral equation to solve acoustic transmission problems; and the prevalence of hy-
persingular operators in the treatment of certain scattering problems (especially those
involving cracks).
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The acoustic transmission (or ‘fluid–fluid’) problem models the scattering of sound
in a compressible fluid by a blob of another fluid. One has to find fields ue and ui,
where

(∇2 + k2
e)ue = 0 in Sex, (∇2 + k2

i )ui = 0 in Sin

and ue satisfies the radiation condition. In addition, there are transmission (or in-
terface) conditions,

u = ui and ∂u/∂n = ρ ∂ui/∂n on S,

where u = ue + uinc is the total field in Sex, uinc is a given incident field and ρ is a
given coupling constant (usually the ratio of the two fluid densities).

We wrote a paper [9], giving a systematic study of methods for solving the fluid–
fluid problem using (i) pairs of coupled boundary integral equations over S, and (ii)
single integral equations. As an example of (i), we have

(1 + ρ)u+ (K∗
e − ρK∗

i )u− (Se − Si)v = 2uinc

(1 + ρ)v + ρ(Ne −Ni)u− (ρKe −Ki)v = 2ρ ∂uinc/∂n

 (1)

where v = ∂u/∂n. This pair of equations is always uniquely solvable [8]. The op-
erators Sα, K∗

α, Kα and Nα are the standard boundary integral operators, involving
G(P,Q; kα). For example, the hypersingular operator Nα is defined by

(Nαu)(p) =
∂

∂np

∫
S
u(q)

∂

∂nq
G(p, q; kα) dsq.

Note that the system (1) was contrived so that Ne and Ni occur in the combination
(Ne − Ni). This is an example of regularization: the strong singularities cancel so
that (Ne −Ni) is compact on suitable spaces.

Note also that the system (1) and, indeed, the transmission problem itself, behave
anomalously when ρ = −1. This special case has been discussed by Ola [16].

Single integral equations can be derived by using an ansatz (single-layer potential,
say) in one region (Sex, say) and Green’s theorem in the other. So, for an example
of (ii), write

ue(P ) =
∫
S
µ(q)G(P, q; ke) dsq, P ∈ Sex,

and then compute ue and ∂ue/∂n on S in terms of the unknown source density µ.
Next, apply Green’s theorem in Sin to ui and G(P,Q; ki), and evaluate the normal
derivative on S, giving

(I +Ki)(∂ui/∂n)−Niui = 0.

Finally, use the transmission conditions to obtain

(1 + ρ)µ+ Lµ = h,

a Fredholm integral equation of the second kind for µ, where h is known and

L = Ki(I +Ke) +Ke(I − ρKe) + ρ(Ne −Ni)Se.
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4 The solid–solid problem

As a PhD student of Gerry Wickham, I had studied the scattering of elastic waves, so
it was natural for me to consider an elastic material exterior to an elastic inclusion.
For this solid–solid problem, one can proceed formally as for the fluid–fluid problem,
but there are difficulties. One of these is that singular integral operators are typical
(even for exterior problems such as scattering by a cavity). For another, consider the
elastodynamic analogue of Nα, defined by

(Nαf)(p) =
1

µα
T pα

∫
S

f(q) · T qαGα(q, p) dsq,

where Gα is the fundamental Green’s tensor (Kupradze matrix) for the elastic mate-
rial α, µα is the shear modulus and T pα is the traction operator at p. Then, it turns out
that, unlike for acoustics, (Ne−Ni) does not give a regularization. In two dimensions
(plane strain),

(1− νe)Ne − (1− νi)Ni

does give a regularization, where να is Poisson’s ratio [13]. However, in three dimen-
sions, the situation is much more complicated.

For the solid–solid problem, it is usual to assume that the two solids are welded
together across S, so that

u = ui and t = ti on S, (2)

where u is the displacement and t = Tu is the traction. However, there is an extensive
engineering literature on models of imperfect interfaces, where (2) is replaced by, for
example,

u− ui = F · t and t = ti on S.

Here, the matrix F is chosen to model sliding and/or thin interface layers (of glue,
perhaps). For a review and systematic study, see [14]. Note that Angell, Kleinman
and Hettlich [1] have discussed similar models in acoustics.

5 The fluid–solid problem

In September 1989, Ralph and George Hsiao organised the Workshop on Integral and
Field Equation Methods in Fluid Structure Interactions, in Newark. This stimulat-
ing meeting motivated my own work on an idealised fluid–solid problem, in which
a smooth elastic body is surrounded by an inviscid, compressible fluid [11]. The
transmission conditions are

∂p/∂n = ρfω
2 u · n and − pn = Tu on S,
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where p is the acoustic pressure, u is the elastic displacement, ρf is the fluid density, ω
is the frequency and T is the traction operator. Thus, there are four scalar transmis-
sion conditions connecting four scalar unknowns, namely p in Sex and u = (u1, u2, u3)
in Sin.

In [11], we studied the solvability of various systems of coupled boundary integral
equations for the fluid–solid problem; these have four scalar unknowns. We also
derived and analysed various new single integral equations over S, involving a single
unknown 3-vector.

The question of uniqueness is interesting. It turns out that the fluid–solid trans-
mission problem may exhibit Jones frequencies [7]. At these, there are free vibrations
of the solid with Tu = 0 and u · n = 0 on S; such vibrations do not couple to the
fluid, and so cannot be precluded by the radiation condition. Generically (which
means when S is chosen arbitrarily), Jones frequencies do not exist [6]. However,
they certainly do exist for special geometries, such as all axisymmetric bodies (tor-
sional vibrations). Note that Jones frequencies are a consequence of our simplified
model; they would not occur if the exterior fluid was viscous.

6 Electromagnetic inclusion problems

Ralph was always interested in electromagnetic problems. I cut my teeth in this area
by working out the electromagnetic analogue of [9] with Petri Ola [15]: electromag-
netic scattering by a homogeneous dielectric obstacle, based on Maxwell’s equations,

curl E− ikH = 0 and curl H + ikE = 0,

where E is the electric field, H is the magnetic field and k = ω
√
µε is a constant.

Again, we gave a systematic study of various reformulations of the problem, involving
pairs of coupled integral equations or single integral equations.

More recently, I have worked with Christos Athanasiadis and Iannis Stratis from
the University of Athens on scattering by chiral inclusions. The chiral material is
modelled by a modified form of Maxwell’s equations, namely

curl E− ik(H + β curl H) = 0

curl H + ik(E + β curl E) = 0,


where β is the chirality parameter,

The chiral (or ‘handed’) nature of the material can be displayed by making use of
the Bohren decomposition,

QL = E + iH and QR = E− iH,

whence curl QL = γLQL and curl QR = −γRQR, where γL = k/(1 − kβ) and γR =
k/(1 + kβ). Thus, the left-handed component QL and the right-handed component
QR propagate at different speeds if β 6= 0.
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We have derived and analysed pairs of coupled integral equations for solving the
chiral-inclusion problem. In practice, the chirality is small but significant, so that
0 < kβ � 1. We have shown that the fields are analytic functions of kβ for |kβ| < 1,
and we have shown how to compute the O(kβ) correction to the achiral (β = 0)
solution [2].

We have also studied the so-called far-field operator F , which plays a role in certain
methods for solving the inverse problem. (Fh is the far-field pattern corresponding
to an incident Herglotz field with kernel h.) Thus, in general, we have shown that
the eigenvalues of F are precisely the eigenvalues of Waterman’s T -matrix [3].

My own work with Greek mathematicians parallels Ralph’s own collaborations,
especially his work with George Dassios on low-frequency scattering. In fact, I last
saw Ralph in Greece, in July 1997, at a meeting to mark the retirement of Gary
Roach.

7 Waves in wood

My final topic is the propagation of stress waves through wooden poles. This work
arose from a request to understand how ultrasonics could be used to inspect tele-
graph poles for internal decay. Thus, the inclusion is a region of rotten wood inside
a wooden cylinder. We have modelled the wood as an elastic material with cylin-
drical orthotropy, and then looked for solutions in the form of generalized Frobenius
expansions (using Bessel functions rather than powers).

I gave a lecture on this topic at Oberwolfach in September 1998, a lecture on
wooden poles in the middle of the Black Forest! The meeting itself was co-organised
by Ralph and Rainer Kress. Many participants made comments in their lectures on
Ralph and their interactions with him. My own, repeated at the Memorial Meeting,
concerned the elusive notion of taste in mathematics; all I can say is that Ralph
had it!
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